1 |
Michael Cuntz:
Fusion algebras for imprimitive complex reflection groups. J. Algebra 311,1 (2007), 251--267.
|
2 |
Michael Cuntz:
Integral modular data and congruences. J. Algebraic Combinatorics 29 (2009), 357--387.
|
3 |
Michael Cuntz:
Classification of Fusion Categories. Oberwolfach Reports, Arbeitsgemeinschaft: Conformal Field Theory 4,2 (2007).
|
4 |
Michael Cuntz:
Fusion algebras with negative structure constants. J. Algebra 319 (2008), 4536--4558.
|
5 |
Michael Cuntz, Istvan Heckenberger:
Weyl groupoids with at most three objects. J. Pure Appl. Algebra 213,6 (2009), 1112--1128.
|
6 |
Michael Cuntz, Istvan Heckenberger:
Weyl groupoids of rank two and continued fractions. Algebra & Number Theory 3 (2009), 317--340.
|
7 |
Michael Cuntz, Christopher Goff:
An isomorphism between the fusion algebras of $V_L^+$ and type $D^{(1)}$ level $2$. (2008).
|
8 |
Michael Cuntz, Istvan Heckenberger:
Reflection groupoids of rank two and cluster algebras of type $A$. J. Combin. Theory Ser. A 118,4 (2011), 1350--1363.
|
9 |
Michael Cuntz, Istvan Heckenberger:
Finite Weyl groupoids of rank three. Trans. Amer. Math. Soc. 364 (2012), 1369--1393.
|
10 |
Michael Cuntz:
Minimal fields of definition for simplicial arrangements in the real projective plane. Innov. Incidence Geom. 12 (2011), 49--60.
|
11 |
Michael Cuntz:
Crystallographic arrangements: Weyl groupoids and simplicial arrangements. Bull. London Math. Soc. 43,4 (2011), 734--744.
|
12 |
Michael Cuntz, Istvan Heckenberger:
Finite Weyl groupoids. J. Reine Angew. Math. 702 (2015), 77--108.
|
13 |
Mohamed Barakat, Michael Cuntz:
Coxeter and crystallographic arrangements are inductively free. Adv. Math. 229,1 (2012), 691--709.
|
14 |
Michael Cuntz, Yue Ren, Guenther Trautmann:
Strongly symmetric smooth toric varieties. Kyoto J. Math. 52,3 (2012), 597--620.
|
15 |
Michael Cuntz:
Simplicial arrangements with up to 27 lines. Discrete Comput. Geom. 48,3 (2012), 682--701.
|
16 |
Michael Cuntz:
Klassifikation simplizialer Arrangements mit dem Computer. Computeralgebra Rundbrief 50 (März 2012).
|
17 |
Michael Cuntz:
A lecture on finite Weyl groupoids. Oberwolfach (October 2012), 1--14.
|
18 |
Michael Cuntz, Christian Stump:
On root posets for noncrystallographic root systems. Math. Comp. 84,291 (2015), 485--503.
|
19 |
Michael Cuntz, David Geis:
Combinatorial simpliciality of arrangements of hyperplanes. Beitr. Algebra Geom. 56,2 (2015), 439--458.
|
20 |
Michael Cuntz, Torsten Hoge:
Free but not recursively free arrangements. Proc. Amer. Math. Soc. 143,1 (2015), 35--40.
|
21 |
Takuro Abe, Mohamed Barakat, Michael Cuntz, Torsten Hoge, Hiroaki Terao:
The freeness of ideal subarrangements of Weyl arrangements. J. Eur. Math. Soc. 18,6 (2016), 1339--1348.
|
22 |
Michael Cuntz:
Frieze patterns as root posets and affine triangulations. European J. Combin. 42 (2014), 167--178.
|
23 |
Takuro Abe, Michael Cuntz, Hiraku Kawanoue, Takeshi Nozawa:
Non-recursively freeness and non-rigidity. Discrete Mathematics. 339,5 (2016), 1430--1449.
|
24 |
Michael Cuntz, Simon Lentner:
A simplicial complex of Nichols algebras. Math. Z. 285, no. 3-4 (2017), 647–-683.
|
25 |
Michael Cuntz:
On wild frieze patterns. Exp. Math. 26,3 (2017), 342--348.
|
26 |
Michael Cuntz, Bernhard Mühlherr, Christian J. Weigel:
Simplicial arrangements on convex cones. Rend. Semin. Mat. Univ. Padova 138 (2017), 147--191.
|
27 |
Michael Cuntz:
On subsequences of quiddity cycles and Nichols algebras. J. Algebra 502 (2018), 315--327.
|
28 |
Michael Cuntz:
(22_4) and (26_4) configurations of lines. Ars Math. Contemp. 14, no. 1 (2018), 157--163.
|
29 |
Jürgen Bokowski, Michael Cuntz:
Hurwitz’s regular map (3,7) of genus 7: a polyhedral realization. Art Discr. Appl. Math. 1,1 (2017).
|
30 |
Michael Cuntz, David Geis:
Tits arrangements on cubic curves. preprint (2017).
|
31 |
Michael Cuntz, Thorsten Holm:
Frieze patterns over integers and other subsets of the complex numbers. J. Comb. Algebra 3 (2019), 153--188.
|
32 |
Michael Cuntz, Gerhard Roehrle, Anne Schauenburg:
Arrangements of ideal type are inductively free. Internat. J. Algebra Comput. 29 (2019), no. 5, 761--773.
|
33 |
Michael Cuntz:
A combinatorial model for tame frieze patterns. Münster J. of Math. 12 (2019), 49--56.
|
34 |
Michael Cuntz, Paul Mücksch:
Supersolvable simplicial arrangements. Adv. in Appl. Math. 107 (2019), 32--73.
|
35 |
Michael Cuntz, Bernhard Mühlherr, Christian J. Weigel:
On the Tits cone of a Weyl groupoid. Comm. Algebra. 47, no. 12 (2019), 5261--5285.
|
36 |
Michael Cuntz, Pierre-Guy Plamondon:
Appendix: Counting friezes in type E6. preprint (2018).
|
37 |
Michael Cuntz:
A bound for crystallographic arrangements. preprint (2019).
|
38 |
Michael Cuntz, Paul Mücksch:
MAT-free reflection arrangements. preprint (2019).
|
39 |
Michael Cuntz, Thorsten Holm, Peter Jørgensen:
Frieze patterns with coefficients. preprint (2019).
|