Publikationsdetails

Selfextensions of modules over group algebras

with an appendix by Bernhard Böhmler and René Marczinzik

verfasst von
Bernhard Böhmler, Karin Erdmann, Viktória Klász, Rene Marczinzik
Abstract

Let \(KG\) be a group algebra with \(G\) a finite group and \(K\) a field and \(M\) an indecomposable \(KG\)-module. We pose the question, whether \(Ext_{KG}^1(M,M) \neq 0\) implies that \(Ext_{KG}^i(M,M) \neq 0\) for all \(i \geq 1\). We give a positive answer in several important special cases such as for periodic groups and give a positive answer also for all Nakayama algebras, which allows us to improve a classical result of Gustafson. We then specialise the question to the case where the module \(M\) is simple, where we obtain a positive answer also for all tame blocks of group algebras. For simple modules \(M\), the appendix provides a Magma program that gives strong evidence for a positive answer to this question for groups of small order.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
University of Oxford
Rheinische Friedrich-Wilhelms-Universität Bonn
Typ
Artikel
Journal
Journal of Algebra
Band
649
Seiten
319-346
Anzahl der Seiten
28
ISSN
0021-8693
Publikationsdatum
01.07.2024
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Algebra und Zahlentheorie
Elektronische Version(en)
https://doi.org/10.1016/j.jalgebra.2024.03.014 (Zugang: Offen)
https://doi.org/10.48550/arXiv.2310.12748 (Zugang: Offen)