Publikationsdetails
Selfextensions of modules over group algebras
with an appendix by Bernhard Böhmler and René Marczinzik
- verfasst von
- Bernhard Böhmler, Karin Erdmann, Viktória Klász, Rene Marczinzik
- Abstract
Let \(KG\) be a group algebra with \(G\) a finite group and \(K\) a field and \(M\) an indecomposable \(KG\)-module. We pose the question, whether \(Ext_{KG}^1(M,M) \neq 0\) implies that \(Ext_{KG}^i(M,M) \neq 0\) for all \(i \geq 1\). We give a positive answer in several important special cases such as for periodic groups and give a positive answer also for all Nakayama algebras, which allows us to improve a classical result of Gustafson. We then specialise the question to the case where the module \(M\) is simple, where we obtain a positive answer also for all tame blocks of group algebras. For simple modules \(M\), the appendix provides a Magma program that gives strong evidence for a positive answer to this question for groups of small order.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
University of Oxford
Rheinische Friedrich-Wilhelms-Universität Bonn
- Typ
- Artikel
- Journal
- Journal of Algebra
- Band
- 649
- Seiten
- 319-346
- Anzahl der Seiten
- 28
- ISSN
- 0021-8693
- Publikationsdatum
- 01.07.2024
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie
- Elektronische Version(en)
-
https://doi.org/10.1016/j.jalgebra.2024.03.014 (Zugang:
Offen)
https://doi.org/10.48550/arXiv.2310.12748 (Zugang: Offen)