Publikationsdetails
Projective dimension of weakly chordal graphic arrangements
- verfasst von
- Takuro Abe, Lukas Kühne, Paul Mücksch, Leonie Mühlherr
- Abstract
A graphic arrangement is a subarrangement of the braid arrangement whose set of hyperplanes is determined by an undirected graph. A classical result due to Stanley, Edelman and Reiner states that a graphic arrangement is free if and only if the corresponding graph is chordal, i.e., the graph has no chordless cycle with four or more vertices. In this article we extend this result by proving that the module of logarithmic derivations of a graphic arrangement has projective dimension at most one if and only if the corresponding graph is weakly chordal, i.e., the graph and its complement have no chordless cycle with five or more vertices.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
Rikkyo University
Universität Bielefeld
- Typ
- Artikel
- Journal
- Seminaire Lotharingien de Combinatoire
- Band
- 8
- Publikationsdatum
- 03.03.2025
- Publikationsstatus
- Elektronisch veröffentlicht (E-Pub)
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Diskrete Mathematik und Kombinatorik
- Elektronische Version(en)
-
https://doi.org/10.5802/alco.403 (Zugang:
Offen)
https://doi.org/10.48550/arXiv.2307.06021 (Zugang: Offen)