Publikationsdetails

Projective dimension of weakly chordal graphic arrangements

verfasst von
Takuro Abe, Lukas Kühne, Paul Mücksch, Leonie Mühlherr
Abstract

A graphic arrangement is a subarrangement of the braid arrangement whose set of hyperplanes is determined by an undirected graph. A classical result due to Stanley, Edelman and Reiner states that a graphic arrangement is free if and only if the corresponding graph is chordal, i.e., the graph has no chordless cycle with four or more vertices. In this article we extend this result by proving that the module of logarithmic derivations of a graphic arrangement has projective dimension at most one if and only if the corresponding graph is weakly chordal, i.e., the graph and its complement have no chordless cycle with five or more vertices.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Externe Organisation(en)
Rikkyo University
Universität Bielefeld
Typ
Artikel
Journal
Seminaire Lotharingien de Combinatoire
Band
8
Publikationsdatum
03.03.2025
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Diskrete Mathematik und Kombinatorik
Elektronische Version(en)
https://doi.org/10.5802/alco.403 (Zugang: Offen)
https://doi.org/10.48550/arXiv.2307.06021 (Zugang: Offen)