Publikationsdetails

Reflection groups and quiver mutation

Diagrammatics

verfasst von
Patrick Wegener
Abstract

We extend Carter's notion of admissible diagrams and attach a "Dynkin-like" diagram to each reduced reflection factorization of an element in a finite Weyl group. We give a complete classification for the diagrams attached to reduced reflection factorizations. Remarkably, such a diagram turns out to be cyclically orientable if and only if it is isomorphic to the underlying graph of a quiver which is mutation-equivalent to a Dynkin quiver. Furthermore we show that each diagram encodes a natural presentation of the Weyl group as reflection group. The latter one extends work of Cameron, Seidel and Tsaranov as well as Barot and Marsh.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Electronic Journal of Combinatorics
Band
32
Seiten
2-10
Anzahl der Seiten
9
ISSN
1077-8926
Publikationsdatum
25.04.2025
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik, Geometrie und Topologie, Diskrete Mathematik und Kombinatorik, Theoretische Informatik und Mathematik, Angewandte Mathematik
Elektronische Version(en)
https://doi.org/10.37236/13369 (Zugang: Offen)
https://arxiv.org/abs/1910.09421 (Zugang: Offen)