ForschungPublikationen
Publikationsdetails

Publikationsdetails

Irreducible spin representations of symmetric and alternating groups which remain irreducible in characteristic 3

verfasst von
Matthew Fayers, Lucia Morotti
Abstract

For any finite group $G$ and any prime $p$ one can ask which ordinary irreducible representations remain irreducible in characteristic $p$, or more generally, which representations remain homogeneous in characteristic $p$. In this paper we address this question for $p=3$ when $G$ is a proper double cover of the symmetric or alternating group. We obtain a classification except in the case of a certain family of partitions relating to spin RoCK blocks. Our techniques involve induction and restriction, degree calculations, decomposing projective characters and recent results of Kleshchev and Livesey on spin RoCK blocks.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Preprint
Publikationsdatum
10.08.2022
Publikationsstatus
Elektronisch veröffentlicht (E-Pub)
Elektronische Version(en)
https://doi.org/10.48550/arXiv.2208.05207 (Zugang: Offen)