Publikationsdetails
Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings
- verfasst von
- Nikola Adzaga, Shiva Chidambaram, Timo Keller, Oana Padurariu
- Abstract
We complete the computation of all Q-rational points on all the 64 maximal Atkin-Lehner quotients X(N)
∗ such that the quotient is hyperelliptic. To achieve this, we use a combination of various methods, namely the classical Chabauty–Coleman, elliptic curve Chabauty, quadratic Chabauty, and the bielliptic quadratic Chabauty method (from a forthcoming preprint of the fourth-named author) combined with the Mordell-Weil sieve. Additionally, for square-free levels N, we classify all Q-rational points as cusps, CM points (including their CM field and j-invariants) and exceptional ones. We further indicate how to use this to compute the Q-rational points on all of their modular coverings.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Externe Organisation(en)
-
University of Zagreb
Massachusetts Institute of Technology (MIT)
Universität Bayreuth
Boston University (BU)
- Typ
- Artikel
- Journal
- Research in Number Theory
- Band
- 8
- Publikationsdatum
- 12.10.2022
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Algebra und Zahlentheorie
- Elektronische Version(en)
-
https://doi.org/10.1007/s40993-022-00388-9 (Zugang:
Offen)