Publikationsdetails
Rational Points on Elliptic K3 Surfaces of Quadratic Twist Type
- verfasst von
- Zhizhong Huang
- Abstract
In studying rational points on elliptic K3 surfaces of the form $$\begin{equation∗} f(t)y^2=g(x), \end{equation∗}$$ where f, g are cubic or quartic polynomials (without repeated roots), we introduce a condition on the quadratic twists of two elliptic curves having simultaneously positive Mordell-Weil rank. We prove a necessary and sufficient condition for the Zariski density of rational points by using this condition, and we relate it to the Hilbert property. Applying to surfaces of Cassels-Schinzel type, we prove unconditionally that rational points are dense both in Zariski topology and in real topology.
- Organisationseinheit(en)
-
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
- Typ
- Artikel
- Journal
- Quarterly Journal of Mathematics
- Band
- 72
- Seiten
- 755-772
- Anzahl der Seiten
- 18
- ISSN
- 0033-5606
- Publikationsdatum
- 09.2021
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Elektronische Version(en)
-
https://arxiv.org/abs/1806.07869 (Zugang:
Offen)
https://doi.org/10.1093/qmath/haaa044 (Zugang: Geschlossen)