Publikationsdetails

Rational Points on Elliptic K3 Surfaces of Quadratic Twist Type

verfasst von
Zhizhong Huang
Abstract

In studying rational points on elliptic K3 surfaces of the form $$\begin{equation∗} f(t)y^2=g(x), \end{equation∗}$$ where f, g are cubic or quartic polynomials (without repeated roots), we introduce a condition on the quadratic twists of two elliptic curves having simultaneously positive Mordell-Weil rank. We prove a necessary and sufficient condition for the Zariski density of rational points by using this condition, and we relate it to the Hilbert property. Applying to surfaces of Cassels-Schinzel type, we prove unconditionally that rational points are dense both in Zariski topology and in real topology.

Organisationseinheit(en)
Institut für Algebra, Zahlentheorie und Diskrete Mathematik
Typ
Artikel
Journal
Quarterly Journal of Mathematics
Band
72
Seiten
755-772
Anzahl der Seiten
18
ISSN
0033-5606
Publikationsdatum
09.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Mathematik (insg.)
Elektronische Version(en)
https://arxiv.org/abs/1806.07869 (Zugang: Offen)
https://doi.org/10.1093/qmath/haaa044 (Zugang: Geschlossen)