
A 2-BLOCK SPLITTING IN ALTERNATING GROUPS

CHRISTINE BESSENRODT

Abstract. In 1956, Brauer showed that there is a partitioning of the p-
regular conjugacy classes of a group according to the p-blocks of its irre-
ducible characters with close connections to the block theoretical invariants.
In a previous paper, the first explicit block splitting of regular classes for a
family of groups was given for the 2-regular classes of the symmetric groups.
Based on this work, here the corresponding splitting problem is investigated
for the 2-regular classes of the alternating groups. As an application, an easy
combinatorial formula for the elementary divisors of the Cartan matrix of
the alternating groups at p = 2 is deduced.

1. Introduction

In 1956, Richard Brauer introduced the idea of not only distributing characters
into p-blocks but also to associate p-regular conjugacy classes to p-blocks [5].
He showed that it is possible to distribute the p-regular classes in such a way
into blocks that it fits with the blocks of irreducible Brauer characters (and
suitable subsets of ordinary irreducible characters in the blocks); this is to say
that the determinant of the corresponding block part of the Brauer character
table (or a suitable part of the ordinary character table) is not congruent to 0
modulo p (a prime ideal over p). Given such a splitting of p-regular classes into
blocks, Brauer showed that the elementary divisors of the Cartan matrix of a
block are then exactly the p-parts in the orders of the centralizers of elements
in the classes corresponding to the block. He also observed that in general
there may be several such block splittings, and there did not seem to be any
natural choice for a given finite group.
But while it is well-known how to determine the p-blocks of irreducible char-
acters, for the p-regular classes only the existence of such a block splitting is
known by Brauer’s work – concrete examples for providing such a distribution
for families of groups were not known for a long time. Only recently, such an
explicit block splitting in the sense of Brauer was exhibited for the conjugacy
classes of odd order elements and the 2-blocks of the symmetric groups [1]; in
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fact, in this case the 2-block splitting of the 2-regular classes is unique. The
proof exploited detailed information on the double covers of the symmetric
groups, in particular results on the 2-powers in the spin character values of
these groups [3] as well as on the 2-block distribution of the spin characters [2]
turned out to be important ingredients.
Based on these results, the present paper investigates the corresponding prob-
lem of constructing a 2-block splitting of the 2-regular classes for the alternating
groups. We provide a basic set of characters for the alternating groups, and
find a natural choice for a block splitting of the classes. As an application,
we deduce an easy combinatorial description of the invariants of the Cartan
matrices for the 2-blocks of the alternating groups.

Here is a brief outline of the sections. In section 2, we recall Brauer’s results on
block splittings for finite groups which motivated the present work. Then, in
section 3, some combinatorial notations needed in the representation theory of
the symmetric groups is introduced, and we state some results from [1] on the
block splitting of 2-regular classes for the symmetric groups that are the basis
for the new results on alternating groups. In particular, the class labels for the
2-block splitting of Sn are recalled. In section 4, we first collect the necessary
information on characters of the alternating groups, and prove some prelim-
inary results towards the construction of a class splitting for the alternating
groups. In the main Theorem 4.7 properties of the determinants of the corre-
sponding block character tables are proved which imply that the construction
gives indeed a block splitting of the classes. By Brauer’s Theorem, our result
then implies an easy combinatorial description of the Cartan invariants for the
2-blocks of the alternating groups (Corollary 4.9).

2. Brauer’s block splitting

First, we have to introduce some notation.
Let G be a finite group, p a prime, (K, R, F ) a p-modular splitting system
for G, and p a maximal ideal of R lying over p. Let `(G) be the cardinality of
the set Clp′(G) of p-regular conjugacy classes in G. For each K ∈ Clp′(G) we
let xK denote an element in K. A defect group of K is a Sylow p-subgroup of
CG(x) for some x ∈ K; if this has order pd, then d is called the p-defect of K.
We let IBr(G) denote the set of modular irreducible characters of G; then

ΦG = (ϕ(xK)) ϕ∈ IBr(G)
K∈Clp′ (G)
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is the Brauer character table of G. It is well-known by Brauer’s work that the
Brauer character table is non-singular modulo p, i.e.,

det ΦG 6≡ 0 (mod p) .

Furthermore, we let D = (dχ ϕ)χ∈ Irr(G)
ϕ∈ IBr(G)

denote the p-decomposition matrix

for G, and we let C = DtD denote its Cartan matrix. Let Blp(G) be the
set of p-blocks of G. For B ∈ Bl(G), Irr(B) is the set of ordinary irreducible
characters in B, IBr(B) is the set of modular irreducible characters in B,
`(B) = | IBr(B)|, D(B) = (dχ,ϕ)χ∈ Irr(B)

ϕ∈ IBr(B)

denotes the p-decomposition matrix

for B and C(B) is the Cartan matrix for B.
Then C resp. D are the block direct sums of the matrices C(B) resp. D(B),
B ∈ Blp(G).

The following result was proved by Brauer.

Theorem 2.1. [5, §5] There exists a disjoint decomposition of Clp′(G) into
blocks of p-regular conjugacy classes

Clp′(G) =
⋃

B∈Blp(G)

Clp′(B)

and a selection of characters Irr′(B) ⊆ Irr(B) for each p-block B of G such
that the following conditions are fulfilled:

(1) |Clp′(B)| = | Irr′(B)| = `(B) for all B ∈ Blp(G).
(2) For XB = (χ(xK)) χ∈Irr′(B)

K∈Clp′ (B)

, we have det XB 6≡ 0 (mod p).

(3) For ΦB = (ϕ(xK)) ϕ∈IBr(B)
K∈Clp′ (B)

, we have det ΦB 6≡ 0 (mod p).

(4) For DB = (dχϕ)χ∈Irr′(B)
ϕ∈IBr(B)

, we have det DB 6≡ 0 (mod p).

Furthermore, the elementary divisors of the Cartan matrix C(B) are then ex-
actly the orders of the p-defect groups of the conjugacy classes in Clp′(B), for
all B ∈ Blp(G).

The properties in (2), (3) and (4) are not independent of each other, as
XB = DB ΦB. In particular, if we have a suitable choice Irr′(B) of charac-
ters that satisfies (4), and a suitable choice of classes that satisfies (3), then
these together are a suitable choice for (2). If we have a basic set of irreducible
characters, i.e., a subset Irr′(G) ⊆ Irr(G) giving a Z-basis for the character
restrictions to the p-regular classes, then the p-block decomposition of this set
will give a suitable choice of sets Irr′(B) satisfying (4).
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3. The 2-block splitting for Sn

Let n ∈ N. For the symmetric groups Sn, the corresponding combinatorial
notions and their representation theory, we will follow mostly the usual notation
in [7].

Let P be the set of partitions, P (n) the partitions of n. For a partition λ of n,
the number of its (non-zero) parts is called its length, and is denoted by l(λ).
The complex irreducible character of Sn corresponding to λ is denoted by [λ].
For any partition µ of n, we choose an element σµ in Sn of cycle type µ.
Let µ = (1m1(µ), 2m2(µ), . . .) be written in exponential notation; then we set

aµ =
∏
i≥1

imi(µ), bµ =
∏
i≥1

mi(µ)!

Let zµ = |CSn(σµ)|; then zµ = aµbµ.

Let p be a prime; we will soon fix this to p = 2. A partition is called p-regular
if no part is repeated p or more times, and a partition is called p-class regular
if no part is divisible by p.
Let D(n) be the set of partitions of n into distinct parts; this is thus the set of
2-regular partitions of n. Let O(n) be the set of partitions of n into odd parts
only; this is the set of 2-class regular partitions of n. Let O =

⋃
n∈N O(n) and

let D =
⋃

n∈N D(n). It is well-known that

Irr′(Sn) = {[λ], λ ∈ D(n)}

forms a 2-basic set for Sn.
Then the 2-regular character table of the symmetric group Sn is defined to be

Xn = ([λ](σα)) λ∈D(n)
α∈O(n)

where the partitions are ordered in a suitable way.
As a special case of a result by Olsson [10], we know that | det(Xn)| =

∏
µ∈O(n) aµ,

and thus in particular,

2 - det(Xn) .

The main result in [1] provides a block version of this property, by distributing
not only the characters but also the 2-regular conjugacy classes into blocks in
such a way that the corresponding block parts of the character table have odd
determinants. This block distribution of conjugacy classes provided a block
splitting in the sense of Brauer as described in the previous section.
We recall this 2-block splitting for the symmetric groups below. The reader
is referred to [1] for the full results; these involve more detailed information
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on spin characters which we omit here since it would require to recall a lot of
notation on the double cover groups and their characters.
For the combinatorics of the p-modular representation theory for Sn, and in
particular the p-block distribution of its characters we refer to [7].
Let B be a 2-block of Sn, with associated 2-core κ(B); this is then a staircase
partition ρk = (k, k − 1, . . . , 2, 1), k ∈ N0. For any partition λ, we denote by
λ(2) the 2-core of λ. Then we define

DB = {λ ∈ D(n) | λ(2) = κ(B)} .

This is the set of labels of irreducible characters in B in the basic set mentioned
above, and we set

Irr′(B) = {[λ] | λ ∈ DB} .

To define the splitting of the classes we need a few more definitions.
For a partition λ = (λ1, . . . , λm) ∈ D(n) we set

dbl(λ) =

([
λ1 + 1

2

]
,

[
λ1

2

]
,

[
λ2 + 1

2

]
,

[
λ2

2

]
, . . . ,

[
λm + 1

2

]
,

[
λm

2

])
,

the doubling of λ. For example, the staircase ρk = (k, k − 1, . . . , 2, 1) is the
doubling of the partition τk = (2k − 1, 2k − 5, . . .).
The most natural way of defining the blocks of classes is based on the Glaisher
map which we consider next.
J.W.L. Glaisher [6] defined a bijection between partitions with parts not di-
visible by a given number k on the one hand and partitions where no part is
repeated k times on the other hand; in particular for k = 2 this gives a bijection
between O(n) and D(n). Here, Glaisher’s map G is defined as follows. Let
α = (1m1 , 3m3 , · · · ) ∈ O(n). Write each multiplicity mi as a sum of distinct
powers of 2, i.e., in its 2-adic decomposition: mi =

∑
j 2aij . Then G(α) ∈ D(n)

consists of the parts (2aij i)i,j, sorted in order to give a partition.

Let B be a 2-block of Sn, contained in a 2-block B̃ of the double cover group

S̃n (see [2] for the background and notation). Then we define the set

OB = OB̃ = {α ∈ O(n) | dbl(G(α))(2) = κ(B)} .

Note that in [1] we have used the language of 4̄-combinatorics for the description
of the 2-block distribution of spin characters, and the set OB is then the set
of partitions of type O such that the Glaisher image has as 4̄-core the one

associated to B̃.
The sets OB for the 2-blocks B of Sn give then a set partition O(n) =

⋃
B OB.
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The set OB is the set of labels of the 2-regular classes we want to associate
to B, i.e., we set

Cl′(B) = {σSn
α | α ∈ OB} .

Defining
DB̃ = {λ ∈ D(n) | dbl(λ)(2) = κ(B)} ,

the Glaisher map then induces bijections OB → DB̃, for all 2-blocks B of Sn.
By [2], |DB| = |DB̃| = p(w(B)). Thus the following block parts of the character
table are all square matrices:

XB = ([µ](σα)) µ∈DB
α∈OB

.

Denoting the irreducible Brauer characters of Sn by ϕµ, µ ∈ D(n), we also
consider the corresponding block part of the Brauer character table:

ΦB = (ϕµ(σα)) µ∈DB
α∈OB

.

Theorem 3.1. [1] Let Irr′(B) and Cl′(B) for the 2-blocks B of Sn be defined
as above. Then the determinants of the associated block parts of the character
table and the Brauer character table

det ΦB = det XB , B ∈ Bl(Sn)

are all odd.
Thus the sets Cl′(B) define a 2-block splitting of the 2-regular classes for Sn.

Remarks 3.2. (i) More precisely, the determinant det XB is (up to sign) the
odd part of the determinant of the corresponding block part of the reduced spin
character table for the 2-block B̃ of the double cover group S̃n containing B,
i.e.,

Zs(B̃) = (〈λ〉(σ̃α)) λ∈D
B̃

α∈OB

.

See [1] for the notation used here and details on this result.
(ii) By the 2-block splitting for Sn given above and Brauer’s Theorem, the
elementary divisors of the Cartan matrix CB of a 2-block B of Sn are exactly
the 2-powers

2kα = |CSn(σα)|2, α ∈ OB .

Here, the 2-defect of the class of type α in Sn may easily be computed as follows
(see [1]):

kα = l(α)− l(G(α)) .

This is a restatement of a formula from [11] which is based on [2]; a corrected
version of an earlier formula from [8] already appeared in [2]. One should note,
though, that this formula was used in the confirmation of the block splitting
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for Sn in [1], so this does not give an independent proof for the elementary
divisors of the Cartan matrix.

4. A 2-block splitting for alternating groups

We also have to introduce some notation for the alternating group An.
We let P+(n) = {λ ∈ P (n) | (−1)n−l(λ) = 1} denote the set of even partitions
in P (n); these are the cycle types of elements in An.
The conjugacy classes in An are then of two types. The classes labelled by
partitions µ ∈ P+(n)\(O∩D)(n) are the non-split classes, i.e., those conjugacy
classes of Sn which are also An-classes; we note that the corresponding An-
centralizer is then of order z′µ = zµ/2. For the partitions µ ∈ (O ∩ D)(n),
the Sn-class of σµ splits into two conjugacy classes in An, for which we denote
representatives by σ+

µ and σ−µ ; their centralizers are of order z′µ = zµ.
A set of representatives of the 2-regular classes of An is thus given by:

R(n) = {σα | α ∈ (O \ O ∩ D)(n)} ∪ {σ±α | α ∈ (O ∩D)(n)} .

Furthermore, we briefly have to recall some information on the irreducible An-
characters (see [7, sect. 2.5]).
For a partition λ of n, let λ′ denote the conjugate partition. Let

S(n) = {λ ∈ P (n) | λ = λ′}
be the set of symmetric partitions of n.
If λ is non-symmetric, then [λ] ↓An= [λ′] ↓An is irreducible. Let {λ} = {λ′}
denote this irreducible character of An.
If λ = λ′, then [λ] ↓An= {λ}+ + {λ}− is a sum of two distinct irreducible
An-characters (which are conjugate in Sn).
This gives all the irreducible complex characters of An, i.e.,

Irr(An) = {{λ}± | λ ∈ S(n)} ∪ {{λ} | λ ∈ (P \ S)(n)} .

The characters {λ}±, for λ ∈ S(n), are only distinguished by their values on
the corresponding “critical” classes of cycle type h(λ) = (hλ

1 , . . . , h
λ
d), where

hλ
1 , . . . , h

λ
d are the principal hook lengths in λ and d = d(λ) is the diagonal

length of λ. Note that h(λ) ∈ (O∩D)(n), so the corresponding Sn-class splits.

Then we have [λ](σh(λ)) = (−1)
n−d

2 =: ελ. We set Hλ =
∏d

i=1 hλ
i . Then

{λ}+(σ±h(λ)) =
1

2

(
ελ ±

√
ελHλ

)
{λ}−(σ±h(λ)) =

1

2

(
ελ ∓

√
ελHλ

)
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For any other irreducible An-character the values on these two classes coincide.

We have the following easy and well-known property:

Lemma 4.1. The map h : S(n) → (O∩D)(n) with h(λ) = (hλ
1 , . . . , h

λ
d(λ)), for

λ ∈ S(n), is a bijection.

Let B ∈ Bl(Sn) with 2-core ρk = (k, k − 1, . . . , 2, 1) = dbl(τk), where τk =
(2k−1, 2k−5, . . .); let DB̃ and OB = OB̃ as before in Section 3 and (O∩D)B̃ =
OB̃ ∩ DB̃.

We set SB = {λ ∈ S(n) | λ(2) = ρk}.
In our context, we need the following refinement of the Lemma above:

Proposition 4.2. The map h induces bijections SB → (O ∩D)B̃ .

Proof. We have to show that for any λ ∈ S(n), we have λ(2) = dbl(h(λ))(2).
In the notation of 4̄-combinatorics an easy reduction argument shows that
λ(2) = dbl(h(λ)(4̄)); simultaneously removing 2-hooks from the diagram of λ
that are symmetrically positioned in λ corresponds to removing 4-bars from
h(λ), namely, subtracting 4 from a part in h(λ), and removing an inner 2× 2
array corresponds to removing a pair 3, 1 (which is also a 4-bar). This ends at a
staircase partition ρk = λ(2), and in parallel at the corresponding τk = h(λ)(4̄).
By [2, Lemma (3.6)], we obtain the equation on the 2-cores. �

Remark 4.3. It is not difficult to see ([9, (12.5)]) that

| SB | =
{

0 if w(B) is odd
p(w

2
) if w(B) is even

.

For a character χ of G, let χo denote the restriction of χ to the 2-regular
elements of G. The following useful proposition provides a good 2-basic set for
the alternating groups. Note here that the set (D ∩ S)(n) labelling the third
subset of characters is non-empty only if n is a triangular number; in that case,
if n =

(
k+1
2

)
, (D ∩ S)(n) = {ρk}, and thus both characters {ρk}± of defect 0

then belong to the basic set.

Proposition 4.4. Set

C(n) = {{λ} | λ ∈ (D\S)(n)}∪{{λ}+ | λ ∈ S(n)}∪{{λ}− | λ ∈ (D∩S)(n)} .

Then {χo | χ ∈ C(n)} is a basic set for An (at the prime p = 2).
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Proof. If χ = {µ} = [µ] ↓An for µ ∈ (P \ S)(n), then, since the 2-regular
partitions label a basic set for Sn,

χo = [µ]o ↓An=
∑

λ∈D(n)

cµ λ[λ]o ↓An=
∑

λ∈(D\S)(n)

cµ λ{λ}o+
∑

λ∈(D∩S)(n)

cµ λ({λ}o
++{λ}o

−)

with integer coefficients cµ λ; as explained just before the proposition, the sec-
ond sum above has at most one partition λ ∈ (D∩S)(n) giving a contribution,
namely when n is a triangular number.
For χ = {µ}+, µ ∈ S(n), or χ = {µ}−, µ ∈ (D ∩ S)(n), there is nothing
to prove. If χ = {µ}−, µ ∈ S \(D ∩ S)(n), then, again since the 2-regular
partitions label a basic set for Sn,

χo = {µ}o
− = [µ]o ↓An −{µ}o

+ =

 ∑
λ∈D(n)

cµ λ[λ]o ↓An

− {µ}o
+

=

 ∑
λ∈(D\S)(n)

cµ λ{λ}o +
∑

λ∈(D∩S)(n)

cµ λ({λ}o
+ + {λ}o

−)

− {µ}o
+

an integral linear combination as desired.
Since |C(n)| = |D(n)| + | S(n)| = |O(n)| + |(O ∩ D)(n)| = |Cl′(An)|, the set
{χo | χ ∈ C(n)} is a Z-basis of 〈χo | χ ∈ Irr(An)〉Z, as claimed. �

For any set Q ⊆ P (n), we set

aQ =
∏
λ∈Q

aλ .

Using the basic set above, we define the 2-regular character table for the alter-
nating group An to be

XA
n = (χ(σ)) χ∈C(n)

σ∈R(n)
.

Using the properties of the irreducible characters of An stated above (see
also [4]), as well as the formula for the 2-regular character table for Sn from
[10] we deduce:

Corollary 4.5.

| det XA
n | = | det Xn| ·

√
a(O∩D)(n) = aO(n) ·

√
a(O∩D)(n) .

In the main theorem stated below, we will give a block refinement of the first
equation above.
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Remark 4.6. The 2-blocks of Sn and An are closely related (see [9]) . Let
B ∈ Bl(Sn). If w(B) = 0, then B covers two 2-blocks of An (of defect 0), say
BA

ε , ε ∈ {±}. This only occurs when n is a triangular number, say n =
(

k+1
2

)
,

and κ(B) = ρk = (k, k − 1, . . . , 2, 1); then Irr(BA
ε ) = {{ρk}ε}, ε ∈ {±}.

Note that there is then a suitable choice of signs ε̄ for ε ∈ {±} such that
{ρk}ε(σh(ρk),ε̄) 6≡ 0 mod p .

If w(B) > 0, then B covers only one 2-block BA of An, and this block BA is
only covered by B. We then have

Irr(BA) = {{λ}(±) | λ ∈ P (n), λ(2) = κ(B)} .

Here, {λ}(±) means that we take the character {λ} if λ is non-symmetric, and
both characters {λ}± if λ is symmetric.

Theorem 4.7. Let B ∈ Bl(Sn) with 2-core κ(B) = ρk = dbl(τk).
If w(B) = 0, then OB = {τk} and DB = {ρk}, and we set

Cl′A(BA
ε ) = {σAn

τk,ε̄} , Irr′(BA
ε ) = {{ρk}ε} , for ε ∈ {±} .

If w(B) > 0, we set

Cl′A(BA) = {σAn

α(,±) | α ∈ OB} , Irr′(BA) = {{λ} | λ ∈ DB}∪{{λ}+ | λ ∈ SB} .

Let XBA = (χ(xK)) χ∈Irr′(BA)

K∈Cl′A(BA)

. Then

| det XBA| = | det XB| ·
√

a(O∩D)
B̃

.

In particular, | det XBA| 6≡ 0 mod p. Hence, the sets above, taken for all
B ∈ Bl(Sn), define a 2-block splitting for An.

Proof. Using the notation above, let BA be a 2-block of An. As seen above,
the sets Cl′A(BA) and Irr′(BA) are of the same cardinality. We have to show
that all the block tables have a non-zero determinant modulo p.
For the case where w(B) = 0, we have already seen before that we can make
a suitable choice (namely the one used in the statement of the Theorem) such
that this holds for the two blocks of An covered by B.
Thus we may now assume that w(B) > 0; then we do not have an irreducible
character labelled by a partition of type D ∩ S in B, i.e., DB ∩ SB = ∅. We
consider the part of the character table of An corresponding to BA, sorted
such that among the character labels we first list the non-symmetric ones and
then the symmetric ones. The classes are ordered such that we first have
the OB classes, and among these classes the (O ∩ D)B̃ classes at the end,
and here first the (O ∩ D)+

B̃
classes (where the “+” indicates that we take
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the representatives σ+
α ), followed by the corresponding (O ∩ D)−

B̃
classes. The

classes of type (O∩D)B̃ are taken in some ordering, and the SB characters are
then taken in the corresponding order, i.e., with the label µ ∈ SB corresponding
to h(µ) ∈ (O ∩D)B̃.
Recall that for any λ ∈ (P \ S)(n) and α ∈ (O ∩ D)(n), we have {λ}(σ+

α ) =
{λ}(σ−α ) = [λ](σα). Now take µ ∈ S(n); then for α = h(µ) we have

{µ}+(σ±h(µ)) =
1

2
(εµ ±

√
εµHµ) =: y±µ ,

while for β ∈ (O ∩ D)(n), β 6= h(µ), we have {µ}+(σ+
β ) = {µ}+(σ−β ). Set

cµ =
√

εµHµ = y+
µ − y−µ . Now for any α ∈ (O ∩ D)B̃, subtract the column

of the block character table XBA to the class of σ+
α from the one to the class

of σ−α . By the above, then the final columns to the (O ∩ D)−
B̃

classes are
transformed into an upper zero part, corresponding to the characters labelled
by non-symmetric partitions, and below this a diagonal matrix with diagonal
entries −cµ, µ ∈ SB. The table

XS
B = ({λ}(σ(+)

α )) λ∈DB
α∈O

B̃

is the upper left hand block part of the table XBA . By the above and Section 3,
this is exactly the block part of the 2-regular character table of the symmetric
group corresponding to the block B of Sn, with the block splitting constructed
for the symmetric groups, i.e.,

XS
B = XB = ([λ](σα)) λ∈DB

α∈OB

.

Thus we have det XS
B 6≡ 0 mod p. Hence

| det XBA| = | det XS
B| ·

∏
µ∈SB

|cµ| = | det XB| ·
√

a(O∩D)
B̃
6≡ 0 mod p ,

and thus we have proved that our construction provides a 2-block splitting
for An. �

Remark 4.8. In contrast to the case of symmetric groups, the block splitting
of the 2-regular classes for the alternating groups as given above is not the
only block splitting; already A6 provides a counterexample. Indeed, instead of
associating the classes to (16), (13, 3), (32) to the principal 2-block of A6, also
the choices (16), (13, 3), (1, 5)+ or (16), (32), (1, 5)+ are possible.

Recall that for α ∈ O(n)\(O∩D)(n), the corresponding conjugacy class of σα is
non-split in An, so we then have |CAn(σα)|2 = 2kα−1, with kα = l(α)− l(G(α))
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as before.
By Brauer’s Theorem 2.1 we can now deduce from our 2-block splitting given
in Theorem 4.7 the following result on the Cartan matrices of 2-blocks of alter-
nating groups, providing a combinatorial formula for the elementary divisors
which is easy to compute.

Corollary 4.9. Let B ∈ Bl(Sn) of weight w(B) > 0, covering the block BA ∈
Bl(An). Then the elementary divisors of the Cartan matrix CBA are

|CAn(σα)|2 = 2kα−1, α ∈ OB \ (O ∩D)B̃ ; 12|(O∩D)
B̃
| .

In particular,

det CB = 22`(B)−`(BA) det CBA .
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