
HUPPERT’S CONJECTURE FOR ALTERNATING GROUPS

CHRISTINE BESSENRODT, HUNG P. TONG-VIET†, AND JIPING ZHANG∗

Abstract. We prove that the alternating groups of degree at least 5 are uniquely de-
termined up to an abelian direct factor by the set of degrees of their irreducible complex
representations. This confirms Huppert’s Conjecture for alternating groups.

1. Introduction

Let G be a finite group. Denote by Irr(G) = {χ1, χ2, . . . , χk} the set of all complex
irreducible characters of G. Let cd(G) be the set of all irreducible character degrees of G
forgetting multiplicities, that is,

cd(G) = {χ(1) | χ ∈ Irr(G)}.
It is well known that the complex group algebra CG of G admits a decomposition

CG = Mn1(C)⊕Mn2(C)⊕ · · · ⊕Mnk
(C),

where ni := χi(1), for 1 ≤ i ≤ k. Therefore, the complex group algebra CG determines
the character degrees of G and their multiplicities.

An important question in character theory is whether one can recover a group or its
properties from its character degrees with or without multiplicity. In other words, how
much does CG or cd(G) know about the structure of G?

In general, the complex group algebras and hence the character degree sets do not
uniquely determine the groups. For example, the dihedral group D8 and the quaternion
group Q8, both of order 8, have the same character table and thus their complex group
algebras are isomorphic but the groups are not isomorphic. We also have that cd(D8) =
cd(S3) = {1, 2}. Hence the character degree sets cannot recognize nilpotency; however,
the complex group algebras can (see Isaacs [11]).

Recently, G. Navarro [15] showed that the character degree set alone cannot determine
the solvability of the group. Indeed, he constructed a finite perfect group H and a finite
solvable group G such that cd(G) = cd(H). More surprisingly, Navarro and Rizo [16]
found a finite perfect group and a finite nilpotent group with the same character degree
set. Notice that in both examples, these finite perfect groups are not nonabelian simple.
It remains open whether the complex group algebra can determine the solvability of the
group or not. This is related to Brauer’s Problem 2 [4], which asks when nonisomorphic
groups have isomorphic group algebras.

For nonabelian simple groups and related groups, the situation is much different as
pointed out in [9]. Indeed, it has been proved recently that all quasisimple groups are
uniquely determined up to isomorphism by their complex group algebras. (See [2].) Recall
that a finite group G is quasisimple if G is perfect and G/Z(G) is a nonabelian simple
group. It turns out that a stronger result might hold for nonabelian simple group as
proposed by B. Huppert [9] in the following conjecture.
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Huppert’s Conjecture. Let H be any finite nonabelian simple group and G be a finite
group such that cd(G) = cd(H). Then G ∼= H ×A, where A is abelian.

Notice that Huppert’s Conjecture is best possible in the sense that if G = H × A with
A abelian, then cd(G) = cd(H). In this paper, we prove the following result.

Theorem 1.1. Let 5 ≤ n ∈ N. Let G be a finite group such that cd(G) = cd(An). Then
G ∼= An ×A, where A is abelian.

This verifies Huppert’s Conjecture for all alternating groups and is a major step toward
the proof of the conjecture. This also extends the main result obtained by the second
author in [21], which says that the alternating groups are determined by their complex
group algebras.

In the proof of Theorem 1.1, we can assume that n ≥ 14. Huppert proved the conjecture
in many cases, including alternating groups of degree up to n = 11; for n = 12 and 13, it
was proved by H. N. Nguyen, H. P. Tong-Viet and T. P. Wakefield in [17].

We now describe our approach to the proof of Huppert’s Conjecture for alternating
groups. Suppose that G is a finite group and H is a finite nonabelian simple group such
that cd(G) = cd(H). To verify Huppert’s Conjecture for the nonabelian simple group H,
we need to prove the following.

Step 1: Show that G is nonsolvable;

Step 2: If L/M is any nonabelian chief factor of G, then L/M ∼= H;

Step 3: If L is a finite perfect group and M is a minimal normal elementary abelian
subgroup of L such that L/M ∼= H, then some degree of L divides no degree of H.

Step 4: If T is any finite group with H�T ≤ Aut(H) and T 6= H, then cd(T ) * cd(H).

The method given here is a modification of Huppert’s strategy as described in [9], where
we add some improvements.

In verifying Step 1 it is essential that H is simple. As mentioned earlier, one can find a
finite perfect group and a nilpotent group with the same character degree set. Our proof of
Step 1 uses a result of G. R. Robinson [20] on the minimal degree of nonlinear irreducible
characters of finite solvable groups. We suspect that our argument might be used also to
verify Step 1 for H being one of the remaining finite simple groups of Lie type.

To verify Step 2, we use the classification of finite simple groups in conjunction with
the classification of prime power degree representations of alternating groups, symmetric
groups and their covers [1, 3] and the small degree representations of alternating groups
[19].

In proving Step 3 for An (n ≥ 14), we first see that either CL(M) = M or CL(M) = L
so L ∼= 2 · An. For the first possibility, we use a result due to Guralnick and Tiep [8]
on the non-coprime k(GV ) problem. Unfortunately, this only works for n ≥ 17. For the
remaining values of n, we have to resort to Huppert’s original strategy (see Theorem 6.3).
The second situation will be handled in Theorem 7.1 by using the classification of prime
power degree representations of alternating groups in [1] and the existence of a nontrivial
2-power degree representation of 2 ·An.

Up to this point, we have been able to show that either G ∼= An×A or G ∼= (An×A) ·2
and G/A ∼= Sn with A abelian (see Theorem 7.1).

Finally, Theorem 1.1 follows if one can show that cd(Sn) * cd(An) which is Step 4.

(Recall that we assume n ≥ 14.) Indeed, it is conjectured in [22] that if λ = (k + 1, 1k)
when n = 2k + 1 and λ = (k, 2, 1k−2) when n = 2k, then χλ(1) ∈ cd(Sn) \ cd(An),
and χλ(1)/2 ∈ cd(An) \ cd(Sn). A lot of evidence for this conjecture had already been
collected, implying Theorem 1.1 in particular for some infinite series of values for n, but
the conjecture was only recently fully confirmed by K. Debaene [6].
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The rest of the paper is organized as follows. In Section 2, we collect some useful results
on character degrees of simple groups. In Section 3, we present several technical results
on character degrees of alternating groups which will be needed in subsequent sections.
Section 4 is devoted to verifying Step 1. Step 2 and part of Step 3 will be verified in
Section 5 and 6, respectively. Finally, in Section 7 we prove Theorem 7.1 and Theorem
1.1.

2. Preliminaries

For a finite group G, we write π(G) for the set of all prime divisors of the order of G.
Denote by p(G) the largest prime divisor of the order of G. Let ρ(G) be the set of all
primes which divide some irreducible character degree of G. If cd(G) = {d0, d1, . . . , d`},
with di < di+1, 0 ≤ i ≤ `− 1, then we define di = di(G) for 1 ≤ i ≤ `. Then di(G) is the
ith smallest degree of the nontrivial character degrees of G. The largest character degree
of G will be denoted by b(G), and we let k(G) denote the number of conjugacy classes
of G. Furthermore, if N �G and θ ∈ Irr(N), then the inertia group of θ in G is denoted
by IG(θ). The set of all irreducible constituents of θG is denoted by Irr(G|θ). A group
G is called an almost simple group with socle S if S � G ≤ Aut(S) for some nonabelian
simple group S.

We need a couple of results from number theory. The first is called Bertrand’s postulate;
a proof can be found in [18].

Lemma 2.1. (Tschebyschef) If m ≥ 7, then there is at least one prime p with m/2 < p ≤
m.

The following is an elementary result.

Lemma 2.2. Let n ≥ 5 be an integer and let p be a prime. If the p-part of n! is pν , then
ν ≤ n/(p− 1).

Combining the Ito-Michler Theorem with the fact that χ(1) divides |G| for all χ ∈
Irr(G), we have the following known result.

Corollary 2.3. If S is a nonabelian simple group then ρ(S) = π(S).

Note that every simple group of Lie type S in characteristic p (excluding the Tits group)
has an irreducible character of degree |S|p, which is the size of the Sylow p-subgroup of S,
and is called the Steinberg character of S, denoted by StS . Moreover, this character
extends to Aut(S), the full automorphism group of S.

Lemma 2.4. [22, Lemma 2.4]. Let S be a simple group of Lie type in characteristic p
defined over a finite field of size q. Assume that S 6= PSL2(q),

2F4(2)′. Then there exist
two irreducible characters χi of S, i = 1, 2, such that both χi extend to Aut(S) with
1 < χ1(1) < χ2(1) and χ2(1) = |S|p. In particular, if G is an almost simple group with
socle S, where S 6= PSL2(q),

2F4(2)′, then |S|p > d1(G).

In Table 1, for each sporadic simple group or the Tits group S, we list the largest
prime divisor of |S| and the two irreducible characters of S which are both extendible to
Aut(S). In Table 2, we list the two smallest nontrivial degrees of Aut(S) where Out(S) is
nontrivial.

The following lemma will be useful in the last section.

Lemma 2.5. [14, Theorem 2.3]. Let N be a normal subgroup of a group G and let
θ ∈ Irr(N) be G-invariant. If χ(1)/θ(1) is a power of a fixed prime p for every χ ∈ Irr(G|θ)
then G/N is solvable.
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Table 1. Sporadic simple groups and the Tits group

S p(S) θi θi(1) S p(S) θi θi(1)
M11 11 χ5 11 O’N 31 χ2 26 · 32 · 19

χ6 24 χ7 27 · 11 · 19
M12 11 χ6 32 · 5 Co3 23 χ2 23

χ7 2 · 33 χ5 52 · 11
J1 19 χ2 23 · 7 Co2 23 χ2 23

χ4 22 · 19 χ4 52 · 11
M22 11 χ2 3 · 7 Fi22 13 χ2 2 · 3 · 13

χ3 32 · 5 χ3 3 · 11 · 13
J2 7 χ6 22 · 32 HN 19 χ4 23 · 5 · 19

χ7 32 · 7 χ5 24 · 11 · 19
M23 23 χ2 2 · 11 Ly 67 χ3 24 · 5 · 31

χ3 32 · 5 χ4 2 · 11 · 31 · 67
HS 11 χ2 2 · 11 Th 31 χ2 23 · 31

χ3 7 · 11 χ3 7 · 19 · 31
J3 19 χ6 22 · 34 Fi23 23 χ2 2 · 17 · 23

χ9 24 · 3 · 17 χ3 22 · 3 · 13 · 23
M24 23 χ2 23 Co1 23 χ2 22 · 3 · 23

χ3 32 · 5 χ3 13 · 23
McL 11 χ2 2 · 11 J4 43 χ3 31 · 43

χ3 3 · 7 · 11 χ4 32 · 29 · 31 · 37
He 17 χ6 23 · 5 · 17 Fi′24 29 χ2 13 · 23 · 29

χ9 3 · 52 · 17 χ3 3 · 72 · 17 · 23
Ru 29 χ2 2 · 33 · 7 B 47 χ2 3 · 31 · 47

χ4 2 · 7 · 29 χ3 33 · 5 · 23 · 31
Suz 13 χ2 11 · 13 M 71 χ2 47 · 59 · 71

χ3 22 · 7 · 13 χ3 22 · 31 · 41 · 59 · 71
2F4(2)′ 13 χ5 33

χ6 2 · 3 · 13

Table 2. Automorphism groups of sporadic simple groups

G p(G) d1(G) d2(G)
M12 · 2 11 22 32
M22 · 2 11 21 45
J2 · 2 7 28 36
HS · 2 11 22 77
J3 · 2 19 170 324
McL · 2 11 22 231
He · 2 17 102 306
Suz · 2 13 143 364
O’N · 2 31 10944 26752
Fi22 · 2 13 78 429
HN · 2 19 266 760
Fi′24 · 2 29 8671 57477
2F4(2)′ · 2 13 27 52
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3. Character degrees of the alternating groups

Let n be a positive integer. We call λ = (λ1, λ2, . . . , λr) a partition of n, written λ ` n,
provided λi, i = 1, . . . , r are integers, with λ1 ≥ · · · ≥ λr > 0 and

∑r
i=1 λi = n. We

collect the same parts together and write λ = (`a11 , `
a2
2 , . . . , `

ak
k ), with `i > `i+1 > 0 for

i = 1, . . . , k − 1; ai 6= 0; and
∑k

i=1 ai`i = n. It is well known that the irreducible complex

characters of the symmetric group Sn are parameterized by partitions of n. Denote by χλ

the irreducible character of Sn corresponding to the partition λ. The irreducible characters
of the alternating group An are then obtained by restricting χλ to An. In fact, χλ is
still irreducible upon restriction to the alternating group An if and only if λ is not self-
conjugate. Otherwise, χλ splits into two different irreducible characters of An having the
same degree.

Based on results by Rasala [19] we deduce the following list of minimal degrees for the
alternating groups.

Lemma 3.1. (a) If n ≥ 15, then
(1) d1(An) = n− 1;
(2) d2(An) = 1

2n(n− 3);

(3) d3(An) = 1
2(n− 1)(n− 2);

(4) d4(An) = 1
6n(n− 1)(n− 5);

(b) If n ≥ 22, then
(5) d5(An) = 1

6(n− 1)(n− 2)(n− 3);

(6) d6(An) = 1
3n(n− 2)(n− 4);

(7) d7(An) = n(n− 1)(n− 2)(n− 7)/24;
(8) d8(An) = (n− 1)(n− 2)(n− 3)(n− 4)/24.

(c) If n ≥ 43, then
(9) d9(An) = n(n− 1)(n− 4)(n− 5)/12;
(10) d10(An) = n(n− 1)(n− 3)(n− 6)/8;
(11) d11(An) = n(n− 2)(n− 3)(n− 5)/8;
(12) d12(An) = n(n− 1)(n− 2)(n− 3)(n− 9)/120.

Proof. The first seven degrees were already deduced from the list of minimal degrees for
the symmetric groups in [21, Corollary 5]. Similar arguments can be applied for the other
degrees, by using the list of minimal degrees for Sn up to d14(Sn); these are given in
Rasala [19]. For n ≥ 22, the next smallest degrees of Sn are dj(Sn), j ∈ {8, 9, 10, 11}, with
polynomials as in (8)− (11). For n ≥ 43, the degree d12(Sn) is given by the polynomial in
(12), and the next smallest degrees are

d13(Sn) = (n− 1)(n− 2)(n− 3)(n− 4)(n− 5)/120
d14(Sn) = n(n− 1)(n− 2)(n− 4)(n− 8)/30.

All these character degrees for Sn are attained (in the corresponding range) only at
non-symmetric partitions λ = (λ1, λ2, . . .), namely at partitions where n − λ1 ≤ 5. Thus
they restrict to irreducible characters of An.

For n ≥ 22, we want to argue that d8(An) is given as above. Now a constituent
χ ∈ Irr(An) in the restriction of a character of degree > d11(Sn) satisfies

χ(1) >
1

2
d11(Sn) > d8(Sn),

hence the formula in (8) holds.
For n ≥ 43, a constituent χ ∈ Irr(An) in the restriction of a character of degree> d14(Sn)

satisfies

χ(1) >
1

2
d14(Sn) > d12(Sn),

hence we have the formulae in (9)− (12). �
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The list above is crucial for excluding degrees that will come up in later sections.

Lemma 3.2. Let n ∈ N, n ≥ 14, and let s, t ∈ N.

(a) If n− 1 = s(t− 1) then st 6∈ cd(An).

(b) If s > 1 and n(n− 3)/2 = s(t− 1) then st 6∈ cd(An).

Proof. (a) For n = 14, we have 14, 26 6∈ cd(An), so the claim holds. When n ≥ 15, the
inequality

n− 1 < st = n− 1 + s ≤ 2(n− 1) < n(n− 3)/2,

yields the assertion by Lemma 3.1.
(b) For n = 14, the assertion is checked directly, so we may now assume n ≥ 15. If

t = 2, then
(n− 1)(n− 2)/2 < st = n(n− 3) < n(n− 1)(n− 5)/6,

and if t > 2 then s ≤ n(n− 3)/4 and

(n− 1)(n− 2)/2 < st = n(n− 3)/2 + s ≤ 3n(n− 3)/4 < n(n− 1)(n− 5)/6,

hence part (b) holds, again by Lemma 3.1. �

Lemma 3.3. Let n ∈ N.

(a) For any 1 < m | n− 1, m(n− 1) 6∈ cd(An).

(b) For 1 < s | n − 1, s(n − 1)(n − 2)/2 6∈ cd(An) except when s = 2, n = 9 or
s = 12, n = 13, and s(n − 1)(n − 2)(n − 3)/6 6∈ cd(An), except when s = 3 and
n ∈ {4, 10, 16}.

(c) For i ≤ 3, n(n − 1)(n − 3)/2i ∈ cd(An), only when i = 1 and n ∈ {9, 10, 14}, or
i = 2 and n ∈ {4, 8, 12}, or i = 3 and n ∈ {5, 7, 8, 11}.

(d) For i ≤ 3, n(n − 1)(n − 2)(n − 4)/3i ∈ cd(An) only when i = 1 with n ∈
{11, 12, 13, 18, 23}, or i = 3 with n ∈ {10, 13, 27, 31}.

(e) For n = 14, 7280 = n(n − 1)(n − 2)(n − 4)/3 /∈ cd(An). For n = 16 and s = 3

or 5, s
(
15
5

)
/∈ cd(An).

Proof. Set dj = dj(An) for 1 ≤ j ∈ N.
(a) For n < 15, (n−1)2 is not a degree (by inspection), and for n ≥ 15, d3 < (n−1)2 < d4

shows the assertion by Lemma 3.1.

(b) Let 1 < s | n− 1. Set t = (n− 1)(n− 2)/2.
Assume first that s = n − 1. For n < 22, st is in cd(An) only for n = 13. For n ≥ 22,

we have d6 < st < d7, and thus st is not in cd(An).
Assume now that 1 < s < n − 1, so 2 ≤ s ≤ (n − 1)/2. For n < 22, st is in cd(An)

only for n = 9, s = 2. For n ≥ 22, we have d3 < st < d6, so we only have to check that
st 6= d4, d5. Now st = d4 implies 3s(n− 2) = n(n− 5) and hence n | 3(n− 2), giving n | 6,
a contradiction. If st = d5, then 3s = n − 3, and thus s | (n − 1, n − 3) ≤ 2 and n ≤ 9,
again a contradiction.

For the second assertion, we now set u = (n− 1)(n− 2)(n− 3)/6. For n < 43, we only
find the stated exceptional cases (by computation), so we now assume n ≥ 43.

Again, we start with the case s = n − 1. We deduce from d11 < su < d12 that
su 6∈ cd(An).

Now consider 1 < s < n− 1, i.e., 2 ≤ s ≤ (n− 1)/2. Then we have d6 < su < d10, and
we only have to show that su 6∈ {d7, d8, d9}. An easy consideration of cases similar to the
previous case shows that no further exception arises.

(c) Let ti = n(n− 1)(n− 3)/2i.
For n ≤ 21 we find the exceptions with a computation (by Maple, say). So we may

assume n ≥ 22. One easily checks: d6 < t1 < d7, d5 < t2 < d6, and d3 < t3 < d4. Hence
t1, t2, t3 6∈ cd(An) for n ≥ 22.
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(d) Let ti = n(n− 1)(n− 2)(n− 4)/3i.
For n ≤ 42 we find the stated exceptions by computation. So we may assume n ≥ 43.

One easily checks: d11 < t1 < d12, d9 < t2 < d10, and d6 < t3 < d7. Hence t1, t2, t3 6∈
cd(An) for n ≥ 43.

(e) is easily checked directly. �

4. Solvable groups

First we collect some preliminary facts.

Lemma 4.1. Let n ∈ N. Then the following holds.

(a) (n− 1, n(n− 3)/2) = d > 1 if and only if n = 4k + 3 and d = 2.

(b) Let s, n, a, b ∈ N and p a prime with s(n − 1) = pa − 1 and pb | n where b = a
or a/2. Then n = pa or pb.

Proof. (a) is easy arithmetic.

(b) Let t be such that tpb = n, then s(tpb−1) = pa−1. So stpb = pa+s−1. There exists
a non-negative integer k satisfying s−1 = kpb. Now t(kpb+1)pb = pa+kpb, ts = pa−b+k.
If a = b then tkpa = t(s − 1) = 1 + k − t ≤ k which implies that k = 0 and s = 1 with
n = pa. If a = 2b then (kt − 1)pb = k − t, so either t = pb and n = pa, or t = 1 and
n = pb. �

Lemma 4.2. Let n ∈ N, n ≥ 14, and G a solvable group with cd(G) = cd(An). Then the
following holds.

(a) G has no normal subgroup N with G/N nonabelian of prime power order.

(b) For φ ∈ Irr(G) such that φ(1) = n − 1 or n(n − 3)/2, if φ(1) is the minimal
nonlinear degree in cd(G/Ker(φ)) and Ker(φ) is maximal possible under subgroup
inclusion within G, then G/Ker(φ) is a Frobenius group with a minimal normal
subgroup as the Frobenius kernel.

Proof. (a) Suppose that G/N is a nonabelian p-group and let φ be a nonlinear irreducible
character of G with N ≤ Ker(φ), then n − 1 = pb = φ(1) by [1, Theorem 5.1]. For
χ ∈ Irr(G) with χ(1) = n(n − 3)/2 the restriction of χ to N is irreducible, thus for any
β ∈ Irr(G/N), χβ ∈ Irr(G). In particular (n − 1)n(n − 3)/2 ∈ cd(An), by Lemma 3.3 we
have n = 14, but then there exists χ′ ∈ Irr(G) with χ′(1) = 560, however (n − 1)χ′(1) /∈
cd(An), a contradiction.

(b) By [20, Theorem 1] and (a), if G/Ker(φ) is not a Frobenius group then φ(1) = s(t−1)
with t−1 a prime power and st ∈ cd(G/Ker(φ)) ⊆ cd(An), this contradicts Lemma 3.2. �

Theorem 4.3. Let n ∈ N, n ≥ 14. If G is a finite group with cd(G) = cd(An) then G is
nonsolvable.

Proof. Suppose toward a contradiction that G is solvable. Let φ be an irreducible character
of G of degree n − 1 such that L = Ker(φ) is of maximal order among the kernels of
irreducible characters of G of the same degree. By Lemma 4.2 and [20, Theorem 1] we see
that G/L = N ·H is a Frobenius group, where N and H are subgroups of G containing L
such that N is a minimal normal subgroup of G/L of order pa and H is the complement
of N and is cyclic of order n− 1.

We first consider the case n = 14. Choose η ∈ Irr(G) such that η(1) = 560 = 24·5·7, then
ηN ∈ Irr(N), by [10, Theorem 6.18] we have ηL = η1, eη1 or η1+ · · ·+ηpa where ηi ∈ Irr(L)
and e2 = pa. Since we see that e does not divide 560 (if p | 70 then a = 12, e = 6), ηL = η1
then 13 · 560 ∈ cd(A14), a contradiction.
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So assume n > 14. Let χ be another irreducible character of G of degree n(n − 3)/2.
Let β ∈ Irr(N) be an irreducible constituent of the restriction χN . Then β extends to
β′ ∈ Irr(IG(β)) as IG(β)/N ≤ G/N ∼= H is cyclic.

We claim that IG(β) acts irreducibly on N . If IG(β) = G the claim is obvious. So
we need only consider the case where IG(β) is a proper subgroup of G. Note that since
|G/IG(β)| divides both n−1 and χ(1), |G/IG(β)| = (n−1, n(n−3)/2) = 2 with n = 4k+3.
Let x ∈ H be such that 〈x〉 = H; then x2 ∈ IG(β) and x2k+1 inverts every element of N ,
which implies that x2 acts irreducibly on N , so the claim is true.

Now by [10, Theorem 6.18] for IG(β) and β we have βL = θ1, eθ1 or Σi≤paθi, where

pa = |N |, e2 = pa and θi ∈ Irr(L). If βL = θ1 then IG(β) ≤ IG(θ1) and for any α ∈
Irr(IG(β)/L), αβ′ ∈ Irr(IG(β)). Note that

α(1)β′(1) ≤ n− 1

d
· n(n− 3)

2d
,

where d = |G/IG(β)|. Since we can choose α(1) = (n− 1)/d, either n(n− 1)(n− 3)/2, or
n(n− 1)(n− 3)/2d or n(n− 1)(n− 3)/2d2 lies in cd(An), which is impossible. Thus we
have either pa | χ(1) or a = 2b with pb | χ(1).

By Lemma 4.1(b), if pb | n, then we have n = pb or pa, thus n = pa as N is minimal in
G/L. For the case where pb does not divide n, we claim that either p | n or n = 2pb + 3.
Suppose (p, n) = 1, then pb | (n − 3). If b = a, then pa − 1 ≤ n − 2 < n − 1, this is
contradictory to pa−1 divisible by n−1. So a = 2b with n−3 = t′pb and p2b−1 = s′(n−1)
for some positive integers s′ and t′. Since

s′t′pb = s′(n− 3) = s′(n− 1)− 2s′ = p2b − 1− 2s′,

we have 2s′ + 1 = kpb for some positive integer k. Thus

2pb = 2s′t′ + 2k = t′(kpb − 1) + 2k.

It follows that (t′k − 2)pb = t′ − 2k, which has as its only solution t′ = 2 with k = 1, so
n = 2pb + 3, and the claim is true. In particular, if (p, n) = 1 then n 6= 18, 23, 27 or 31,
and if n = pc for some positive integer c then c = a. In any case, we can exclude n = 18:
when p | n = 18, either p = 2 with a = 2b = 8 or p = 3 with a = 2b = 16, from which we
see that pb does not divide 18(18− 3)/2 = 33 · 5.

Now choose ζ ∈ Irr(G) with ζ(1) = n(n− 2)(n− 4)/3. Let σ ∈ Irr(N) be an irreducible
constituent of ζN . We claim that IG(σ) acts irreducibly on N . Suppose this is not the
case, then IG(σ) is bound to be a proper subgroup of G and acts reducibly on N . So
ζN = σ + σ2 + σ3 and 3 = (n− 1, n(n− 2)(n− 4)/3) with n = 9k + 4, where σ, σ2 and σ3
are conjugate irreducible characters of N . As n− 1 = 9k + 3 = 3(3k + 1), x3 ∈ IG(σ),

N = V1 ⊕ V2 ⊕ V3
where the Vi’s are x3-spaces and thus 3 | a. Let C be the centralizer of x in GL(N); we
see that C is cyclic of order pa − 1 and conjugate in GL(N) to the multiplicative group
F∗pa of the Galois field Fpa (N is viewed as the additive group of Fpa), so the action of

〈x〉 on N is just the multiplication by elements of F∗pa . Now N can be viewed as a space
over Fps where s = 1 if 3 | (p − 1) and s = 2 if 3 | (p + 1), so x can be viewed as an

element of GL(m′, ps) where m′ is the dimension of N over Fps . Note that each Vi is of

dimension divisible by s and 〈x3k+1〉 is the only subgroup of order 3 in F∗pa , thus Vi is also
an 〈x〉-space, a contradiction. Hence the claim holds true.

Evidently σ extends to σ′ ∈ Irr(IG(σ)). By [10, Theorem 6.18] for IG(σ) and σ we have
σL = σ1, eσ1 or Σi≤paσi, where e2 = pa and σi ∈ Irr(L). We claim that n = pa. Suppose

otherwise that n 6= pa, then as discussed above pb does not divide n and n 6= 18, 23, 27
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or 31. If σL = σ1 then IG(σ) ≤ IG(σ1) and for any α′ ∈ Irr(IG(σ)/L), α′σ′ ∈ Irr(IG(σ)).
Note that

α′(1)σ′(1) ≤ n− 1

d′
n(n− 2)(n− 4)

3d′
,

where d′ = |G/IG(σ)|. Since we can choose α′(1) = (n− 1)/d′, one of

n(n− 1)(n− 2)(n− 4)

3
,
n(n− 1)(n− 2)(n− 4)

3d′
,
n(n− 1)(n− 2)(n− 4)

3d′2

lies in cd(An), which is impossible by Lemma 3.3(d). Thus we have either pa | ζ(1) or
a = 2b with pb | ζ(1). Now we have pb | (χ(1), ζ(1)) and pb does not divide n, so p divides

(n− 3, (n− 2)(n− 4)) = 1,

which is absurd. Thus we have n = pa as claimed.
Choose ρi ∈ Irr(G) such that ρi(1) =

(
n−1
i

)
, i = 2, 3 or 5, then we have

(ρi)N = ζi + ζi2 + · · ·+ ζit

where t = |G/IG(ζi)| and ζi2, . . . , ζit are all conjugate to ζi ∈ Irr(N). Note that ζi
extends to ζ ′i ∈ Irr(IG(ζi)). Since (p, ρi(1)) = 1, (ζi)L = δi ∈ Irr(L). Thus for any
λ ∈ Irr(N/L), λζi ∈ Irr(N) and λζi 6= λ′ζi if λ 6= λ′. We claim that t = n − 1. Suppose
that t < n−1 then IG(ζi)/N is cyclic of order (n− 1)/t > 1. If IG(ζi) = IG(δi) then for αi ∈
Irr(IG(ζi)/L) with αi(1) = (n− 1)/t, (αiζ

′
i)
G ∈ Irr(G) and is of degree (n− 1)ρi(1)/t ∈

cd(An), which is impossible (for i = 2 with n arbitrary or i = 3 with n 6= 16 or i = 5
with n = 16). So IG(ζi) < IG(δi). Now for any y ∈ IG(δi) \ IG(ζi) (of course we choose
y ∈ 〈x〉), there is a nontrivial linear character λ ∈ Irr(N/L) such that ζyi = λζi. It follows
that for any v ∈ IG(ζi) \N with v ∈ 〈x〉,

λζi = (ζi)
vy = (ζi)

yv = (λζi)
v = λvζi,

so λ = λv, contradictory to the fixed-point-free action of IG(ζi)/N on Irr(N/L). Thus
t = n−1 as claimed. It follows IG(ζi) = N , and ζi(1) = ρi(1)/(n− 1) which implies n 6= 16

(as
(
n−1
5

)
/(n− 1) is not an integer for n = 16) and 2 | (pa− 2) with 6 | (pa− 2)(pa− 3), so

p = 2 and a = 2k+1. As discussed above, for χ and β, |G/IG(β)| = (n−1, n(n−3)/2) = 1,
G = IG(β) and β = χN . Note that pa is not a square, βL = Σi≤2aθi, thus θ1(1) = (2a−3)/2
which is absurd. We are done. �

5. Nonabelian composition factors

Recall that a group G is said to be an almost simple group if there exists a nonabelian
simple group S such that S�G ≤ Aut(S). In this section, we show that every nonabelian
chief factor of a finite group G with cd(G) = cd(An), n ≥ 14, is isomorphic to An.

Theorem 5.1. Let G be a group such that cd(G) = cd(An) with n ≥ 14. If L/M is a
nonabelian chief factor of G then L/M ∼= An.

Proof. Assume that L/M is a nonabelian chief factor of G. Then L/M ∼= Sk, where
k ≥ 1 and S is a nonabelian simple group. Let C be a normal subgroup of G such that
C/M = CG/M (L/M). Then LC/C ∼= Sk is the unique minimal normal subgroup of G/C
so that G/C embeds into Aut(S) o Sk, where Sk is the symmetric group of degree k.

Suppose that θ ∈ Irr(S) such that θ extends to Aut(S). Let ψ = θ × 1 × · · · × 1 and
ϕ = θk be irreducible characters of LC/C ∼= Sk. By the character theory of wreath
products, ϕ extends to ϕ0 ∈ Irr(G) so θ(1)k ∈ cd(G). Let I be the inertia group of ψ in
G. Then ψ extends to ψ0 ∈ Irr(I) and hence kψ0(1) = kθ(1) ∈ cd(G).

It follows from Corollary 2.3 that if r is any prime divisor of |S|, then there exists
φ ∈ Irr(S) such that r | φ(1). Let γ = φk ∈ Irr(LC/C). As LC/C � G/C, we deduce
that γ(1) = φ(1)k must divide χ(1) for some χ ∈ Irr(G) by [10, Lemma 6.8]. As cd(G) =
cd(An), we obtain that χ(1) divides |An|, which implies that rk | n!/2. Recall that p(S)
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is the largest prime divisor of S and since |π(S)| ≥ 3 we have p(S) ≥ 5. Again, set
dj = dj(G) for j ≥ 1.

Claim 1. k = 1. Suppose that k ≥ 2. By the discussion above, p(S)k divides n!/2, so
by Lemma 2.2 we have

2 ≤ k ≤ n

p(S)− 1
. (1)

Observe that if p is any prime and n/2 < p ≤ n, then |An|p = p. Since k ≥ 2 and p(S)k

divides |An|, we deduce that p(S) ≤ n/2 and thus

n ≥ 2p(S). (2)

Using the classification of finite simple groups, we consider the following cases.

(1a) S is a sporadic simple group or the Tits group. Using [5], for each sporadic simple
group or the Tits group S, there exist two nontrivial irreducible characters θi ∈ Irr(S)
such that both θi extend to Aut(S) and 11 ≤ θ1(1) < θ2(1) (see Table 1). By the argument
above, we obtain that kθi(1) ∈ cd(G) for i = 1, 2. Using [7] for n = 14 and Lemma 3.1(a)
for n ≥ 15, we have

d1 = n− 1
d2 = n(n− 3)/2
d3 = (n− 1)(n− 2)/2
d4 = n(n− 1)(n− 5)/6.

We first claim that

kθ1(1) ≤ d3 =
(n− 1)(n− 2)

2
. (3)

As n ≥ 2p(S), by checking Table 1 we obtain that

(n− 1)(n− 5)

6
≥ (2p(S)− 1)(2p(S)− 5)

6
>

θ1(1)

p(S)− 1
.

Since k ≤ n/(p(S)− 1), we have

d4 =
n(n− 1)(n− 5)

6
>

nθ1(1)

p(S)− 1
≥ kθ1(1).

Thus kθ1(1) < d4 and so kθ1(1) ≤ d3 which proves our claim. As k ≥ 2 and d3 =
(n− 1)(n− 2)/2, we obtain

(n− 1)(n− 2)

2
≥ 2θ1(1). (4)

We now consider the following cases.

(i) S ∈ {M11,M12, J1,M22,M23,HS,M24,Ru, 2F4(2)′,Co1,Co2,Co3}.
Since n ≥ 2p(S), for all simple groups in this case we can check that

θ2(1)

p(S)− 1
<

2p(S)− 3

2
≤ n− 3

2
.

From (1), we deduce that

kθ2(1) ≤ nθ2(1)

p(S)− 1
<
n(n− 3)

2
= d2.

But this is impossible as kθ2(1) > kθ1(1) ≥ d1 so kθ2(1) ≥ d2.
(ii) S ∈ {J2, J3,McL,He,Suz,Fi22,HN,Ly,Th,Fi23,Fi′24,B}.
Since n ≥ 2p(S), we deduce that

kθ2(1) ≤ nθ2(1)

p(S)− 1
<
n(n− 1)(n− 5)

6
= d4
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unless S ∈ {Fi′24,B}. For the exceptions, applying (4), we have that n ≥ 134 when S ∼= B
and n ≥ 188 when S ∼= Fi′24. For these cases, we also obtain that kθ2(1) < d4. Thus
kθ2(1) ≤ d3. Observe that (d2, d3) = 1 and (d1, d2) ≤ 2. For each sporadic simple group
S in this case, we can check that (θ1(1), θ2(1)) ≥ 2 and so (kθ1(1), kθ2(1)) ≥ 4. Since
d1 ≤ kθ1(1) < kθ2(1) ≤ d3 and (kθ1(1), kθ2(1)) ≥ 4, we have kθ1(1) = d1 = n− 1 and

kθ2(1) = d3 =
1

2
(n− 1)(n− 2) =

1

2
kθ1(1)(n− 2).

Hence 2θ2(1) = (n− 2)θ1(1). In particular, θ1(1) divides 2θ2(1) and

n =
2θ2(1)

θ1(1)
+ 2.

Inspecting Table 1, we deduce that S ∼= McL or S ∼= Fi22. If S ∼= McL, then n = 23.
But then n − 1 = 22 = kθ1(1), which implies that k = 1, a contradiction. Similarly, if
S ∼= Fi22, then n = 13 < 14, a contradiction.

(iii) S ∈ {O’N, J4,M}. Firstly, by applying (4), we have that n ≥ 889 when S ∼= M and
n ≥ 211 when S ∼= O’N. Also by (2), we have that n ≥ 86 when S ∼= J4. Observe that for
each simple group S in this case, we have

kθ2(1) ≤ nθ2(1)

p(S)− 1
< d7 =

n(n− 1)(n− 2)(n− 7)

24
.

Thus kθ2(1) ≤ d6 = n(n − 2)(n − 4)/3. If kθ2(1) ≤ d3, then we can argue as in case (ii)
to obtain a contradiction. Thus we can assume that

kθ2(1) ≥ d4 =
n(n− 1)(n− 5)

6
.

Combining with (3), we obtain that

n(n− 5)θ1(1) ≤ 3θ2(1)(n− 2). (5)

If S ∼= O’N or M, then we can check that (5) cannot happen. Assume S ∼= J4. If
kθ1(1) = d1 = n − 1, then n ≥ 1 + 2θ1(1) = 2667. But then (5) cannot happen. Thus
kθ1(1) ≥ d2 = n(n − 3)/2. Hence n(n − 3)/2 ≤ nθ1(1)/42, which implies that n ≤ 66, a
contradiction.

(1b) S ∼= Am, m ≥ 7. Let χi ∈ Irr(Sm), 1 ≤ i ≤ 3, be irreducible characters of Sm
labeled by the partitions (m − 1, 1), (m − 2, 2) and (m − 2, 12), respectively. As these
partitions are not self-conjugate, we deduce that for all i, χi is still irreducible upon
restriction to Am. Let θi ∈ Irr(S) be the restrictions of χi to Am. Then θi ∈ Irr(S) are
all extendible to Aut(S) ∼= Sm. By the Hook formula, we obtain that θ1(1) = m − 1,
θ2(1) = m(m − 3)/2 and θ3(1) = θ2(1) + 1 = (m − 1)(m − 2)/2. By Lemma 2.1, there is
a prime p such that m/2 < p ≤ m for each m ≥ 7. Hence p(S) > m/2, where p(S) is the
largest prime divisor of the order of S ∼= Am. By (1), we have that

k ≤ n

p(S)− 1
<

n

m/2− 1
=

2n

m− 2
.

Assume first that kθ1(1) ≥ d2 = n(n− 3)/2. As (m− 1)/(m− 2) < 2, we have

n(n− 3)

2
≤ 2n(m− 1)

m− 2
< 4n.

It follows that n < 11, a contradiction. Thus kθ1(1) < d2 and so kθ1(1) = d1 which yields
that n − 1 = k(m − 1). Since k ≥ 2, we deduce that n ≥ 2(m − 1) + 1 = 2m − 1. As
1 < kθ1(1) < kθ2(1) < kθ3(1), we see that kθ3(1) ≥ d3. Hence

k(m− 1)(m− 2)

2
≥ (n− 1)(n− 2)

2
.
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Substituting n−1 = k(m−1) and simplifying, we have m− 2 ≥ n− 2, which implies that
m ≥ n. Combining with the previous claim that n ≥ 2m− 1, we get a contradiction.

(1c) S is a simple group of Lie type in characteristic p and S 6= 2F4(2)′. It is well
known that S possesses an irreducible character θ ∈ Irr(S) of degree |S|p ≥ 4 such that θ

extends to Aut(S). Let ϕ = θk. We know that ϕ extends to G and thus ϕ(1) = θ(1)k =
|S|kp ∈ cd(G). Hence G possesses a nontrivial prime power degree. By [1, Theorem 5.1],

n− 1 = θ(1)k and thus θ(1)k = d1. Since 1 < kθ(1) ∈ cd(G), we must have kθ1(1) ≥ d1 =
θ1(1)k. However this inequality cannot happen as k ≥ 2 and θ(1) ≥ 4.

Claim 2. S is not a sporadic simple group nor the Tits group. Assume by contradiction
that S is a sporadic simple group or the Tits group. We see that G/C is an almost simple
group with socle LC/C ∼= S. If Out(S) is trivial, then G/C ∼= S and hence cd(S) ⊆ cd(An)
so that by [21, Theorem 12], we have S ∼= An, a contradiction. Thus we can assume that
Out(S) is nontrivial and then by [5], G/C ∼= Aut(S) ∼= S · 2 and so cd(S · 2) ⊆ cd(An). It
follows that dj(S · 2) ≥ dj for all j ≥ 1. As n ≥ 14, we have

d2(S · 2) ≥ d2(An) ≥ 14(14− 3)/2 = 77,

hence by checking Table 2, S is one of the following simple groups

HS, J3,McL,He,Suz,O’N,Fi22,HN,Fi′24.

If d1(S · 2) = d1, then n = d1(S · 2) + 1 ≥ 22. But then d4(S · 2) < d4, which is impossible.
Thus we can assume that

d1(S · 2) ≥ d2 =
n(n− 3)

2
.

Clearly, π(S · 2) ⊆ π(An), so n ≥ n0, where n0 = max{14, p(S · 2)}.
(2a) S ∈ {J3,McL,He,HN}. For these groups, we have that

d4 ≥
n0(n0 − 1)(n0 − 5)

6
> d2(S · 2)

and thus

d2(S · 2) ≤ d3 =
(n− 1)(n− 2)

2
.

As d1(S · 2) ≥ d2, we must have that d2(S · 2) = d3 and d1(S · 2) = d2 yielding that
d2(S · 2) = d1(S · 2) + 1, which is impossible by checking Table 2.

(2b) S ∈ {Suz,Fi22}. If n ≥ 16, then d4 > d2(S ·2) and we can argue as in the previous
case to obtain a contradiction. For 14 ≤ n ≤ 15, direct calculation using [7] shows that
cd(S · 2) * cd(An).

(2c) S ∼= O’N. As n ≥ 31, we have that d7 ≥ 26970 > d2(S · 2) and hence

d2(S · 2) = 26752 ≤ d6 =
n(n− 2)(n− 4)

3
.

Solving this inequality, we have n ≥ 46. But then d7(S · 2) = 58653 < d7, a contradiction.

(2d) S ∼= Fi′24. As n ≥ 29, we have that d7 ≥ 20097 > d1(S · 2) and hence

d1(S · 2) = 8671 ≤ d6 =
n(n− 2)(n− 4)

3
.

Solving this inequality, we obtain that n ≥ 32 and then d5 ≥ 8990 > d1(S · 2) so

d1(S · 2) ∈ {d2, d3, d4}.
As d2 ≤ d1(S · 2), we deduce that n ≤ 133. However the equations d1(S · 2) = dj for
j = 2, 3, 4, have no integer solution n in the range 32 ≤ n ≤ 133.

Claim 3. S is not a simple group of Lie type. Assume that LC/C ∼= S, where
S 6= 2F4(2)′ is a simple group of Lie type in characteristic p. Let θ ∈ Irr(S) be the
Steinberg character of S. Arguing as in (1c) above, we have that n − 1 = θ(1) = |S|p.
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Thus |S|p = d1 is the smallest nontrivial degree of G. By Lemma 2.4, we must have

S ∼= PSL2(q), where q = pf for some integer f ≥ 1. Hence G/C is an almost simple group
with socle LC/C ∼= PSL2(q). Observe that q+1 is the largest character degree of PSL2(q).

Let µ ∈ Irr(S) be any nontrivial irreducible character of S. As |Out(S)| = (2, q−1)f ≤
q = pf , if χ ∈ Irr(G/C) is an irreducible constituent of µG/C , then χ(1) ≤ |G : LC|µ(1) ≤
|Out(S)|(q + 1) ≤ q(q + 1). Hence q(q + 1) is an upper bound for all degrees of G/C. As
n− 1 = |S|p, we have that n = q + 1. Since n ≥ 14

q(q + 1) = (n− 1)n <
n(n− 1)(n− 5)

6
= d4

which yields that for all χ ∈ Irr(G/C), χ(1) ≤ d3 and so |cd(G/C)| ≤ 4. By [10, Theo-
rem 12.15], we deduce that |cd(G/C)| = 4 as G/C is nonsolvable. By [13, Corollary B],
cd(G/C) is either {1, s− 1, s, s+ 1} or {1, 9, 10, 16}, where s is some prime power.

Assume first that cd(G/C) = {1, s − 1, s, s + 1}. Then s − 1 ≥ d1 = n − 1 = q. Since
s + 1 ≤ d3 = (n − 1)(n − 2)/2, we deduce that s + 1 = (n − 1)(n − 2)/2, s = n(n − 3)/2
and s − 1 = n − 1. The latter equation implies that s = n. But then as s = n(n − 3)/2,
we have n = 5 < 14, a contradiction.

Assume cd(G/C) = {1, 9, 10, 16}. Then d1(G/C) = 9 ≥ d1 = n− 1, which implies that
n− 1 ≤ 9, so n ≤ 10 < 14, a contradiction.

Claim 4. Show S ∼= An. We have shown that S ∼= Am, where m ≥ 7. It suffices to
show that m = n. As in the proof of (1b) above, m− 1,m(m− 3)/2 and (m− 1)(m− 2)/2
are degrees of G. We see that m− 1 ≥ d1 = n− 1 so m ≥ n ≥ 14. If m− 1 ≥ d2, then

m ≥ d2 + 1 = d3 = (n− 1)(n− 2)/2

and so as n ≥ 14, we have d3 ≥ 2n, and thus m ≥ 2n > n. By Lemma 2.1, there is a prime
p such that n < p ≤ 2n ≤ m. It follows that p ∈ π(S) \ π(An), which is a contradiction.
This shows that m− 1 < d2 and hence m− 1 = d1 = n− 1. Thus m = n as required. �

6. Finite perfect groups

In this section, we prove some properties of the character degree set of a finite perfect
group having a special normal structure. Recall that k(G) and b(G) denote the number of
conjugacy classes and the largest degree, respectively, of a finite group G. We begin with
the following result.

Lemma 6.1. Let G be a finite perfect group and let M be a minimal normal elementary
abelian subgroup of G. Suppose that CG(M) = M and G/M ∼= An with n ≥ 17. Then
b(G) > b(An).

Proof. Suppose by contradiction that b(G) ≤ b(G/M). Form the semidirect product TM
with T ∼= G/M ∼= An acting on M as inside G. It follows from [8, Proposition 2.4] that
k(G) ≤ k(TM). Since n ≥ 17, by [8, Theorem 1.4] we have that k(TM) ≤ |M |/2 and
hence k(G) ≤ k(TM) ≤ |M |/2. We have that

|G| =
∑

χ∈Irr(G)

χ(1)2 ≤ k(G)b(G)2 ≤ 1

2
|M |b(G/M)2.

Since |G| = |G/M | · |M |, we deduce that

|G/M | · |M | ≤ 1

2
|M |b(G/M)2.

After simplifying, we obtain that

|G/M | ≤ 1

2
b(G/M)2 < b(G/M)2,

which is impossible. Therefore, b(G) > b(G/M) as wanted. �
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We will need the following result whose proof is similar to the proof of Step 3 in [17,
Section 5]. So we only give a sketch.

Lemma 6.2. Let n ∈ {14, 15, 16}. Let G be a finite perfect group and M be a minimal
normal elementary abelian subgroup of G such that G/M ∼= An, and CG(M) = M . Then
some degree of G divides no degree of An.

Proof. Suppose by contradiction that every degree of G divides some degree of An. Let
1M 6= θ ∈ Irr(M). We claim that θ is G-invariant; if this is true, then by [9, Lemma 6],
we have [M,G] = 1, which implies that CG(M) = G, a contradiction.

By way of contradiction, assume that 1M 6= θ ∈ Irr(M) is not G-invariant and let
I = IG(θ). Let U be a subgroup of G such that I/M ≤ U/M and U/M is a maximal
subgroup of G/M ∼= An. Let t = |U : I| = |U/M : I/M | and write

θI =
∑̀
i=1

eiφi, where φi ∈ Irr(I|θ).

By Clifford Correspondence, for each i, we have

φGi (1) = |G : U | · |U : I|φi(1) = t|G : U |φi(1) ∈ cd(G)

and thus it divides some degree of An. Let A be the set consisting of all the numbers
χ(1)/|G : U | where χ ∈ Irr(An) with |G : U | | χ(1). Then tφi(1) divides some number in
A for each i. Furthermore, as the index |G : U | divides some degree of An, the possibilities
for U/M are given in Tables 3 - 5. From these lists, U/M is isomorphic to (S5 o S3)∩A15,
U/M ∼= (Am ×Ak) : 2, k +m = n,m > k or (Am ×Am) : 22 with n = 2m.

(1) U/M ∼= (Am×Ak) : 2, k+m = n,m > k. Let L/M ∼= Am. Then L�U so L∩I�I.

(1a) Assume that L ≤ I. Since L � U , we have L � I. Hence if λ ∈ Irr(L|θ), then
λ(1) divides some φj(1) for some j, so λ(1) divides some number in A. If θ extends to
θ0 ∈ L, then θ0µ ∈ Irr(L|θ) for all µ ∈ Irr(L/M). If θ does not extend to I, then the set of
ramification indices {fj}`j=1, where θL = f1µ1 + · · ·+ fsµs, where µi ∈ Irr(L|θ) coincides
with the set of the degrees of all faithful irreducible characters of the Schur cover 2 · Am
by the theory of character triple isomorphisms. In both cases, if one can find λ ∈ Irr(L|θ)
with λ(1) divides no element in A, then we are done.

(1b) Assume that L � I. Then I ≤ IL ≤ U so |L : I ∩L| = |IL : I| divides t = |U : I|.
Since L � I, L ∩ I � L so L ∩ I ≤ R ≤ L, where R/M is maximal in L/M whose index
|L : R| divides some number in A. As maximal subgroups of L/M ∼= Am are known, we
can obtain a list of such maximal subgroups R/M of L/M . Then |R : I ∩ L|φi(1) divides
some number in B with

B = { a

|L : R|
: |L : R| | a ∈ A}.

Let R1 � R such that R1/M is a nonabelian simple group (if exists). We now repeat the
process as above again.

Assume that R1 ≤ I∩L. Applying the same argument as in case (1a), we will eventually
obtain a contradiction.

Assume that R1 � I ∩ L and let I ∩ L ≤ T ≤ R1 be such that T/M is maximal in
R1/M . Then |T : R1 ∩ I|φi(1) divides one of the number in C with

C = { b

|R1 : T |
: |R1 : T | | b ∈ B}.

Repeat the process until we obtain a contradiction by using Lemma 2.5.

(2) U/M ∼= (Am × Am) : 22, n = 2m. Let L/M = L1/M × L2/M , where Li � L and
Li/M ∼= Am. Then L � U so L ∩ I � I. The maximal subgroups of L/M are known. In
fact, every maximal subgroup of L/M is either the diagonal subgroup generated by (a, a)



HUPPERT’S CONJECTURE 15

with a ∈ Am or has the form L1/M ×K2 or K1×L2/M , where Ki is maximal in Li/M . If
L � I, then we can argue as in (1b) above. If L ≤ I, then M�L1�L�I. If λ ∈ Irr(L1|θ),
then λ(1) must divide φj(1) for some j, by the transitivity of character induction. From
this, one can get a contradiction by finding λ ∈ Irr(L1|θ) of large degree.

(3) U/M ∼= (S5 o S3) ∩ A15. This case only occurs when n = 15. For this case, we
have that |U : I|φi(1) = 1 for all i, which implies that I/M = U/M is nonsolvable and
φi(1) = 1 for all i. The latter implies that I/M is abelian, which is impossible.

We demonstrate this strategy by giving a detailed proof for the case n = 14. The
remaining cases can be dealt with similarly.

Table 3. Maximal subgroups of small index of A14

Subgroup Structure Index
A13 14
S12 91
(A11 × Z3) : 2 364
(A10 ×A4) : 2 1001
(A9 ×A5) : 2 2002
(A8 ×A6) : 2 3003
(A7 ×A7) : 22 1716

Table 4. Maximal subgroups of small index of A15

Subgroup Structure Index
A14 15
S13 105
(A12 × Z3) : 2 455
(A11 ×A4) : 2 1365
(A10 ×A5) : 2 3003
(A9 ×A6) : 2 5005
(A8 ×A7) : 2 6435
(S5 o S3) ∩A15 126126

Table 5. Maximal subgroups of small index of A16

Subgroup Structure Index
A15 16
S14 120
(A13 × Z3) : 2 560
(A12 ×A4) : 2 1820
(A11 ×A5) : 2 4368
(A10 ×A6) : 2 8008
(A9 ×A7) : 2 11440
(A8 ×A8) : 22 6435

From Table 3, we consider the following cases:

Case 1: U/M ∼= A13. We have that A consists of the following numbers:

40, 143, 312, 352, 429, 546, 858, 975,1001,
1144,1456, 1664, 2002, 3003, 3432, 3575, 4576
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Assume first that t = 1. Then I/M ∼= A13. If θ extends to θ0 ∈ Irr(I), then by Gallagher’s
Theorem, θ0τ ∈ Irr(I|θ) for all τ ∈ Irr(I/M). Choose τ ∈ Irr(A13) with τ(1) = 21450, we
obtain a contradiction as θ0(1)τ(1) divides no number in A. Similarly, if θ is not extendible
to I, then one can find γ ∈ Irr(I|θ) with γ(1) = 20800 and γ(1) divides no elements in
A. Notice that in the latter case 20800 is the degree of a faithful irreducible character of
2 ·A13. Assume that t > 1. Then I ≤ R ≤ U and R/M is maximal in U/M . Since |U : R|
divides some number in A, the possibilities for R/M are given in Table 6.

Table 6. Maximal subgroups of small index of A13

Subgroup Structure Index
A12 13
S11 78
(A10 × Z3) : 2 286
(A9 ×A4) : 2 715
(A7 ×A6) : 2 1716

(1a) R/M ∼= A12. As |U : R| = 13 | t, |R : I|φi(1) divides one of the numbers in B with

B = {11, 24, 33, 42, 66, 75, 77, 88, 112, 128, 154, 231, 264, 275, 352}.

(i) Assume I = R. Whether θ extends to R or not, we can find λ ∈ Irr(I|θ) such
that λ(1) does not divide any number above, a contradiction. Indeed, one can choose
λ(1) = 5775 if θ is extendible to I and λ(1) = 7776 if θ is not extendible.

(ii) Assume that I � R. Then I ≤ J ≤ R where J/M is maximal in R/M . As the
maximal index |R : J | divides one of the number in B, J/M ∼= S10 or A11. If the first
case holds, then |J : I|φi(1) divides 4 and if the latter case holds, then |J : I|φi(1) divides
22. Assume that the former case holds. Investigating the maximal subgroups of S10, as
|J : I| | 4, we deduce that |J : I| = 1 or 2 so I/M ∼= S10 or A10, in particular, I/M is
nonsolvable. However, as φi(1) | 4 for all i, each φi(1) is a power of 2. By Lemma 2.5,
I/M is solvable, which is a contradiction. So J/M ∼= A11. Again, as |J : I| | 22, |J : I| = 1
or 11. In both cases, I/M is nonsolvable. Now if I 6= J , then |J : I| = 11 and φi(1) | 2 for
all i and I/M ∼= A10, we obtain a contradiction as above. So, I/M ∼= A11. This case also
leads to a contradiction as we can always find λ ∈ Irr(I|θ) with λ(1) > 22.

(1b) R/M ∼= S11. Since |U : R| = 78, for each i, |R : I|φi(1) divides 7 or 44. Let
M �R1 �R be such that R1/M ∼= A11.

Assume that R1 ≤ I. Then R1 � I and so for each λ ∈ Irr(R1|θ), λ(1) divides some
φj(1) and so divides 7 or 44. Since R1/M ∼= A11, one can choose λ ∈ Irr(R1|θ) with
λ(1) > 44. So, assume that R1 � I. Since R1 �R, we have I � IR1 ≤ R. Thus |R : I| is
divisible by |IR1 : I| = |R1 : I ∩R1|. As I ∩R1 � R1 and R1/M ∼= A11, |R1 : I ∩R1| and
so |R : I| is divisible by the index of some maximal subgroup of A11. So some maximal
index of A11 divides 7 or 44, which implies that 11 | |R : I| and hence φi(1) | 4 for all i.
Let M �K ≤ R1 such that K/M ∼= A10. Then I ∩ R1 ≤ K and |K : I ∩ R1| | 4. As the
smallest index of A10 is 10, K = I ∩R1, so I/M is nonsolvable. But then this contradicts
Lemma 2.5 as all φi(1)′s are 2-powers.

(1c) R/M ∼= (A10 × Z3) : 2. As |U : R| = 286, |R : I|φi(1) divides 7, 12 or 16. Let
M�R1�R be such that R1/M ∼= A10. If R1 ≤ I, then by considering the character degree
sets of A10 and 2 ·A10, we obtain a contradiction as in the previous case. So, assume that
R1 � I. As in the proof of the previous case, |IR1 : I| = |R1 : R1 ∩ I| is divisible by the
index of some maximal subgroup of A10, and so A10 has some maximal subgroup whose
index divides 7, 12 or 16, which is impossible.
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(1d) R/M ∼= (A9 × A4) : 2 or (A7 × A6) : 2 As |U : R| = 715 or 1716, |R : I|φi(1)
divides 5 or 2, respectively. It follows that for each i, φi(1) is a power of a fixed prime and
I/M is nonsolvable, contradicting Lemma 2.5.

Case 2: U/M ∼= S12. Let M �L�U be such that L/M ∼= A12. In this case, the largest
element in A is 704. If L ≤ I, then one can find λ ∈ Irr(L|θ) with λ(1) = 5775 or 7776
according to whether θ extends to L or not and we get a contradiction as λ(1) > 704,
the largest number in A. So, we assume that L � I. Then |U : I| is divisible by
|IL : I| = |L : L ∩ I| with L ∩ I � L. Let M � R ≤ L be such that R/M is maximal in
L/M and I ∩ L ≤ R. It follows that the maximal index |L : R| divides some number in
A. Then one of the following cases holds.

(i) R/M ∼= A11. Then |L : R| = 12 and |R : I ∩ L|φi(1) divides 7 or 44. Assume that
R = I ∩ L. Since L � U , R = I ∩ L � I. So, for every λ ∈ Irr(R|θ), λ(1) divides some
φj(1) for some j, and hence divides 7 or 44. However, this is impossible as R/M ∼= A11.

Assume that I ∩ L � R. Let M � T ≤ R be such that I ∩ L ≤ T and T/M is maximal
in R/M . Then |R : T | divides 7 or 44 which implies that T/M ∼= A10 and |R : T | = 11.
Hence |T : I ∩ L|φi(1) | 4 for all i. This implies that all φi(1) are powers of 2 and I/M is
nonsolvable, a contradiction.

(ii) R/M ∼= S10. Then |L : R| = 66 and |R : I ∩L|φi(1) divides 7 or 8. Let R1 �R such
that R1/M ∼= A10. We can check that R1 ≤ I as the smallest index of A10 is 10 which is
larger than 8. But then one can find λ ∈ Irr(R1|θ) such that λ(1) > 8.

(iii) R/M ∼= (A6 × A6) : 22. Then |L : R| = 462 and |R : I ∩ L|φi(1) = 1. This case
obviously cannot happen as I/M contains R/M which is nonsolvable and all φi(1) = 1.

Table 7. Maximal subgroups of small index of S12

Subgroup Structure Index
A12 2
S10 × S2 66
S11 12
S6 o S2 462

Case 3: U/M ∼= (A11 × Z3) : 2. We have L/M ∼= A11 and |U : I|φi(1) divides one of
the numbers

12, 21, 33, 44, 56, 64, 77, 132, 176.

Arguing as before, we can assume that L � I. So I � IL ≤ U and |U : I| is divisible
by |L : R| with I ∩ L ≤ R ≤ L and R/M maximal in L/M . It follows that R/M ∼= A10

and |R : I ∩ L|φi(1) divides 7, 12 or 16. Observe that I ∩ L 6= R as Irr(R|θ) possesses
irreducible character of degree strictly larger than 16. Thus I ∩ L ≤ K ≤ R with K/M
maximal in R/M ∼= A10 and |R : K| divides 7, 12 or 16. However, this is impossible by
investigating the maximal subgroups of A10.

Case 4: U/M ∼= (A10 × A4) : 2. The largest element in A is 64. Let L/M ∼= A10. As
above, we deduce that L � I and if I ∩ L ≤ R ≤ L with R/M maximal in L/M , then
R/M ∼= A9 and |R : I ∩ L|φi(1) | 5. Clearly, this case cannot happen.

Case 5: U/M ∼= (A9 ×A5) : 2. Then

A = {1, 3, 6, 7, 8, 14, 21, 24, 25, 32}.
Let L/M ∼= A9. As above, we have L � I but no maximal index of L/M divides a number
in A.

Case 6: U/M ∼= (A8 ×A6) : 2. Let L/M ∼= A8. We have

A = {2, 3, 4, 5, 7, 9, 14, 16, 21}.
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So, L � I and if I ∩ L ≤ R ≤ L with R/M is maximal in L/M , then R/M ∼= A7 and
|R : I ∩ L|φi(1) | 2 for all i.

Case 7: U/M ∼= (A7 ×A7) : 22. Let L/M ∼= A7 ×A7. We have

A = {1, 7, 9, 20, 28}.
Every maximal subgroup of L/M = L1/M × L2/M,Li/M ∼= A7, is either the diagonal
subgroup generated by (a, a) with a ∈ A7 or has the form L1/M × K2 or K1 × L2/M ,
where Ki is maximal in Li/M . If L � I, then I ∩ L ≤ R ≤ L with R/M ∼= A6 × A7 or
A7 × A6 and |R : I ∩ L|φi(1) | 4. Clearly, this case cannot happen. Thus L� I � U with
|U : L| = 4. Since L1 is subnormal in I and there exists λ ∈ Irr(L1|θ) with λ(1) > 28, so
one can find j such that φj(1) > 28, a contradiction. �

Theorem 6.3. Let n ∈ N, n ≥ 14. Let G be a finite perfect group and M be a minimal
normal elementary abelian subgroup of G such that G/M ∼= An, and CG(M) = M . Then
some degree of G divides no degree of An.

Proof. Clearly, if 14 ≤ n ≤ 16, then the theorem follows from Lemma 6.2. Now assume
that n ≥ 17. By Lemma 6.1, the largest degree of G is strictly larger than b(An), so this
degree divides no degree of An as wanted. �

7. Proof of the main theorems

We now prove our main results. In the first theorem, we obtain the structure of the
finite groups G under the assumption that cd(G) = cd(An) with n ≥ 14 using the results
we have proven so far. Our main theorem will follow by combining this with the result
due to Debaene [6].

Theorem 7.1. Let n ∈ N, n ≥ 14. Let G be a finite group such that cd(G) = cd(An).
Then G has a normal abelian subgroup A such that one of the following holds:

(i) G ∼= An ×A (so Huppert’s Conjecture is confirmed).
(ii) G ∼= (An ×A) · 2 and G/A ∼= Sn.

Proof. Let R be the solvable radical of G and let L be the last term of the derived series
of G. By Theorem 4.3, G is nonsolvable and thus L is a nontrivial normal perfect subgroup
of G. Let D/R be a chief factor of G. Clearly, D/R is nonabelian and thus D/R ∼= An

by Theorem 5.1. Now let C be a normal subgroup of G such that C/R = CG/R(D/R).
Then G/C is almost simple with simple socle DC/C ∼= An. Since n ≥ 14, Aut(An) ∼= Sn
and thus G/C ∼= An or Sn. We see that

DC/R = D/R× C/R ∼= An × C/R.
We claim that C/R is abelian. If this is not the case, let χ ∈ Irr(D/R) with χ(1) =

b(An) and λ ∈ Irr(C/R) with λ(1) > 1 then χλ ∈ Irr(DC/R) with degree χ(1)λ(1) =
b(An)λ(1) > b(An). Since DC�G, χ(1)λ(1) divides some degree of G, which is impossible.
Thus C/R is abelian as claimed and so C = R. Since LR/R is a perfect normal subgroup
of the almost simple group G/R with simple socle D/R ∼= An, we deduce that LR/R =
D/R ∼= An, and G/R ∼= An or Sn, hence |G : LR| ≤ 2.

Let V := R ∩ L. Then V � G and LR/R ∼= L/V ∼= An, so LR/V ∼= L/V × R/V ∼=
An ×R/V . Since LR�G, argue as above, we deduce that R/V is abelian. If V is trivial,
then An ×R = L×R ∼= LR�G, where R is abelian. Now if G/R ∼= An, then G = L×R
and conclusion (i) holds. If G/R ∼= Sn, then |G : LR| = 2 so G = (L × R) · 2, hence
conclusion (ii) holds. So, assume that V is nontrivial. Let V/U be a chief factor of L and
let L = L/U . Since V ≤ R, V is solvable and thus V is a minimal normal elementary
abelian subgroup of the perfect group L.

(a) V/U = Z(L/U) ∼= Z2 and L/U ∼= 2 · An. Let W = CL(V ). Then V �W � L.

As L/V ∼= L/V ∼= An, either W = L or W = V . Assume that the latter case holds.
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As cd(L) ⊆ cd(L) and L � G, every degree of L divides some degree of G, contradicting
Theorem 6.3. Thus W = L so V ≤ Z(L) ∩ (L)′. Hence |V | divides the order of the Schur
multiplier of L/V ∼= An (see the proof of [9, Lemma 6]). Since n ≥ 14, the Schur multiplier
of An is cyclic of order 2 and the universal covering group of An is the double cover 2 ·An.
As |V | > 1, we have V = Z(L) ∼= Z2 and L ∼= 2 ·An as wanted.

(b) U �G. Suppose that U is not normal in G. Clearly, the core of U in G defined by
UG := ∩g∈GUg is the largest normal subgroup of G contained in U . Let K � G be such
that K � U ≤ V and V/K is a chief factor of G. (Noting that K could be trivial).

For each g ∈ G, we have K = Kg ≤ Ug and so K ≤ UG ≤ V � G. Since V/K is a
chief factor of G, we deduce that K = UG. From (a), we know that V/U = Z(L/U), so
[L, V ] ≤ U . Since both L and V are normal in G, [L, V ] �G and thus [L, V ] ≤ UG = K.

Now L/K is a perfect group with a central subgroup V/K such that (L/K)/(V/K) ∼=
L/V ∼= An. It follows that L/K ∼= 2 · An and V/K ∼= Z2. Therefore K � U � V with
|V/U | = 2 and |V/K| = 2, which is impossible. Thus U �G as wanted.

(c) The final contradiction. By (a) and (b), U � G, V/U = Z(L/U) ∼= Z2 and L/U ∼=
2 · An. Since V/U � G/U and |V/U | = 2, V/U ≤ Z(G/U), so [G,V ] ≤ U . Recall that
R/V is abelian.

We have [L,R] = [R,L] ≤ L ∩R = V , hence

[L,R,L] ≤ [V,L] ≤ U and [R,L,L] ≤ [V,L] ≤ U.
By Three Subgroups Lemma, we have [L,L,R] = [L,R] ≤ U . It follows that LR/U =
L/U ◦R/U is a central product with L/U ∩R/U = V/U ∼= Z2.

Let α ∈ Irr(V/U) be a nontrivial irreducible character. Since (R/U)′ = R′U/U ⊆
V/U ⊆ Z(R/U), R/U is nilpotent. Then R/U = P/U × Q/U , where P/U is a Sylow
2-subgroup and Q/U is a normal 2-complement in R/U .

Obviously V/U � P/U and V/U is centralized by Q/U . We can find λ0 ∈ Irr(P/U |α)
with λ0(1) = 2a for some a ≥ 0. Clearly, λ = λ0 × 1Q/U ∈ Irr(R/U |α) with λ(1) = 2a.

As L/U ∼= 2 ·An, by [3, Theorem 4.3], we can find ν ∈ Irr(L/U |α) with ν(1) = 2b(n−2)/2c.

By [12, Lemma 5.1], φ := ν · λ ∈ Irr(LR/U) of degree ν(1)λ(1) = 2a+b(n−2)/2c. Since
|G : LR| ≤ 2, if χ ∈ Irr(G|φ), then χ is an extension of φ or χ = φG. Hence either φ(1) or
2φ(1) is a degree of G.

Now [1, Theorem 5.1] yields

n− 1 = 2ε+a+b(n−2)/2c, (6)

where ε = 0 or 1. Since

ε+ a+

⌊
n− 2

2

⌋
≥ n− 2

2
− 1 =

n− 4

2
,

we deduce that n− 1 ≥ 2(n−4)/2. As n ≥ 14, by using induction on n the latter inequality
cannot occur, so (6) cannot happen. The proof is now complete. �

Finally, we can give the proof of Theorem 1.1. Let G be a finite group such that
cd(G) = cd(An), n ≥ 5. We may assume that n ≥ 14, as the result was already proved up
to n = 13. If we are in case (i) of Theorem 7.1, then Huppert’s Conjecture holds and we
are done. So assume case (ii) of the theorem occurs. It follows that cd(Sn) = cd(G/A) ⊆
cd(An). Now using the main result in [6] claiming that cd(Sn) 6⊆ cd(An) we obtain a
contradiction. Hence Theorem 1.1 now follows.
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[14] A. Moretó, An answer to a question of Isaacs on character degree graphs, Adv. Math. 201 (2006),

90–101.
[15] G. Navarro, The set of character degrees of a finite group does not determine its solvability, Proc.

Amer. Math. Soc. 143 (2015), no. 3, 989–990.
[16] G. Navarro, N. Rizo, Nilpotent and perfect groups with the same set of character degrees, J. Algebra

Appl. 13 (2014), no. 8, 1450061, 3 pp.
[17] H.N. Nguyen, H.P. Tong-Viet, T.P. Wakefield, On Huppert’s conjecture for alternating groups of low

degrees, Algebra Colloq. 22 (2015), no. 2, 293–308.
[18] S. Ramanujan, A proof of Bertrand’s postulate, Collected papers of Srinivasa Ramanujan, 208–209,

AMS Chelsea Publ., Providence, RI, 2000.
[19] R. Rasala, On the minimal degrees of characters of Sn, J. Algebra 45 (1977), 132–181.
[20] G.R. Robinson, The minimal degree of a nonlinear irreducible character of a solvable group, J. Algebra

146 (1992), no. 1, 242–249.
[21] H.P. Tong-Viet, Alternating and sporadic simple groups are determined by their character degrees,

Algebr. Represent. Theory 15 (2012), no. 2, 379–389.
[22] H.P. Tong-Viet, Symmetric groups are determined by their character degrees, J. Algebra 334 (2011)

no. 1, 275–284.

Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Han-
nover, Welfengarten 1, D-30167 Hannover, Germany

E-mail address: bessen@math.uni-hannover.de

Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
E-mail address: htongvie@kent.edu

Beijing International Center for Mathematical Research, Lmam, The School of Mathe-
matical Sciences, Peking University, Beijing, P. R. China

E-mail address: jzhang@pku.edu.cn

http://arxiv.org/abs/1602.02168

	1. Introduction
	2. Preliminaries
	3. Character degrees of the alternating groups
	4. Solvable groups
	5. Nonabelian composition factors
	6. Finite perfect groups
	7. Proof of the main theorems
	References

