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CHRISTINE BESSENRODT AND JIPING ZHANG

Abstract. We investigate the separation of irreducible characters by blocks at different

primes and the covering of irreducible characters by blocks (viewed as sets of characters);

these notions are used to prove results on the group structure. The covering of all char-

acters of a group by principal blocks is only possible when already one principal block

suffices or the generalized Fitting subgroup has a very special structure.

1. Introduction

In [BZ] we have investigated the separation of characters by blocks at different primes and

the inclusions of q-blocks in p-blocks (viewed as sets of characters), and we have used these

notions to prove results on the structure of the corresponding groups. In particular, we

had provided a criterion for the nilpotency of a finite group G based on the separation by

principal blocks, and we had shown that a condition on block unions has strong structural

consequences.

Here, we investigate further such separation properties and improve on the earlier charac-

terization result. Furthermore, we study the covering of the set of irreducible characters

by principal blocks and related covering properties. The main result (Theorem 3.7) shows

that if the set of all irreducible characters is covered by principal blocks then the characters

belong to one principal p-block for some prime p, or the structure of the generalized Fitting

subgroup is rather restricted.

2. Separation

For a finite group G, we denote by �(G) the set of primes dividing the group order.

The following result is a slight generalization of a result in [BZ] which we have used there

to provide a new criterion for the nilpotence of a finite group G based on the separation

by principal blocks; in particular, the more general result allows to provide a criterion for

p-nilpotency, as pointed out below.

Proposition 2.1. Let G be a finite group, �(G) = �1 ∪ �2 a disjoint decomposition.

Then Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G} for any prime p ∈ �1, q ∈ �2 if and only if

G = O�1(G)×O�2(G).
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Proof. If G = O�1(G)×O�2(G) then for any � ∈ Irr(B0(G)p1)∩ Irr(B0(G)p2), pj ∈ �j, both

O�1(G) and O�2(G) are contained in the kernel of �. Hence � = 1.

Now we prove the “only if” part. If the result is not true letG be a minimal counterexample.

For any minimal normal subgroup N of G we see that G/N shares the separation property

of G, and the minimality of G implies that G/N = KH/N where K and H are normal

in G containing N such that H/N = O�1(G/N), K/N = O�2(G/N) with N = H ∩ K.

Furthermore N is the only minimal normal subgroup of G and F (G) is an r-group for

some prime r.

We claim that F ∗(G) = N is the direct product of subgroups isomorphic to a nonabelian

simple group S. First we consider the case where either H = N or K = N . We may

assume that H = N , thus �1 ⊆ �(N). If N is solvable then �1 contains only one prime

and the claim is true. Thus N is not solvable. Note that now F (G) = 1 and since N is

the only minimal normal subgroup of G, F ∗(G) = N , as claimed.

Now we consider the case where N is a proper subgroup of H and K. Without loss of

generality we may assume that r ∈ �1. If F ∗(G) = F (G) then G has only one r-block,

the principal r-block B0(G)r and thus Irr(B0(G)p2) ⊆ Irr(B0(G)r) for any p2 ∈ �2. This

is contradictory to the assumption on G. So F ∗(G) ∕= F (G). Let E be the layer of G

then F ∗(G) = EF (G). Note that Z(E) = E ∩ F (G) and E/Z(E) is the direct product of

nonabelian simple groups. If Z(E) ∕= 1, then note that r ∈ �1 and N ≤ Z(E), we see from

the decomposition of G/N that 2 and r are contained in �1 and K is solvable containing a

Hall �2-subgroup L of G such that [L,E] ≤ Z(E). Since N is normal in G, and is contained

in the Frattini subgroup of E and thus that of G, F (L)N is a nilpotent normal subgroup

of G, contradicting that N is the only minimal normal subgroup of G. Therefore Z(E) = 1

and F ∗(G) = E × F (G). Since G has only one minimal normal subgroup, F (G) = 1 and

thus F ∗(G) = N is the direct product of subgroups isomorphic to a nonabelian simple

group S.

Suppose S is a simple group of Lie type of characteristic r. Let q be any prime divisor

of ∣S∣ not equal to r. Then by [Br] ∣Irr(B0(S)r) ∩ Irr(B0(S)q)∣ ≥ 2. Note that B0(N)r is

covered only by the principal r-block of G. Now suppose that r ∈ �i, where i = 1 or 2.

If there is a prime q in �(S) ∖ �i, then ∣Irr(B0(G)p) ∩ Irr(B0(G)r)∣ ≥ 2, a contradiction.

Thus �i ⊆ �(S). For any q ∈ �j where j = 1 or 2 with j ∕= i, since Irr(B0(G)q covers the

principal r-block of N we see that Irr(B0(G)q ⊆ Irr(B0(G)r), a contradiction.

Suppose that S is isomorphic to either An (n ≥ 5) or a sporadic simple group. Then we have

∣Irr(B0(S)2)∩ Irr(B0(S)q)∣ ≥ 2 for any odd prime q∣∣S∣. Note that B0(N)2 is covered only

by the principal 2-block of G. Now suppose that 2 ∈ �i, where i = 1 or 2. If there is a prime

q in �(S) ∖ �i, then ∣Irr(B0(G)2) ∩ Irr(B0(G)q)∣ ≥ 2, a contradiction. Thus �(S) ∖ �i = ∅.
For any q ∈ �j where j = 1 or 2 with j ∕= i, we see that Irr(B0(G)q) ⊆ Irr(B0(G)r), a

contradiction. We are done. □

A special case is the following result which is contained in [BZ]:
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Corollary 2.2. Let G be a finite group, p ∈ �(G). Then Irr(B0(G)p)∩Irr(B0(G)q) = {1G}
for any prime q ∕= p if and only if G = P ×Op′(G) where P ∈ Sylp(G).

Proposition 2.1 also immediately yields the following Theorem:

Theorem 2.3. Let G be a finite group. Then the following are equivalent:

(i) G is p-nilpotent.

(ii) B0(G)p is nilpotent.

(iii) Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G} for any q ∈ �(G), q ∕= p, where G = G/Op′(G).

From now on, we want to consider blocks of a finite group G always as sets of characters

of G. Thus, we will be using the block notation always in this sense of a character set

(as long as there cannot be a misunderstanding), e.g., we write just B0(G)p instead of

Irr(B0(G)p).

For any � ∈ Irr(G) and p ∈ �(G) we let B(�)p be the p-block of G to which � belongs.

For � ⊆ �(G) we then set

B(�)� =
∩
p∈�

B(�)p and B0(G)� = B(1G)� =
∩
p∈�

B0(G)p .

If B0(G)� = {1G}, we call Irr(G) (or just G) principally �-separated.

When a character � ∈ Irr(G) is of p-defect 0 for some prime p ∈ �(G), it is called isolated.

More generally, when B̂(�)� = {�} we call � weakly �-isolated.

If B̂(�)� = {�} for all � ∈ Irr(G), we call Irr(G) (or just G, if no confusion can arise in

the context) �-separated (see [BMO], [BZ] for this notion).

If no set � is mentioned, we tacitly assume � = �(G), i.e.,

B̂(�) =
∩

p∈�(G)

B(�)p and B̂0(G) = B̂(1G) =
∩

p∈�(G)

B0(G)p .

There are a number of natural questions: For which groups G is B̂0(G) = {1G}? How big

can B̂0(G) be? Which special properties do the characters in the set B̂0(G) have? What

is the connection between the set B̂0(G) and the sets B̂(�)?

We note the following (see [F, Chap. X, Theorem 1.5]):

Proposition 2.4. Let G be a solvable group, � ⊆ �(G). Set N =
∏

p∈� Op′(G). Then

B̂0(G)� = Irr(G/N) .

In particular, G is principally �-separated if and only if G =
∏

p∈� Op′(G).

More generally, let Op∗(G) denote the generalized p′-core of G. Then we have:

Proposition 2.5. Let G be a finite group, � ⊆ �(G). Set N =
∏

p∈� Op∗(G). Then

B̂0(G)� ⊇ Irr(G/N) .
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Even for solvable groups, the connection between the intersections discussed above is in

general not clear; Turull and Wolf [TW] have recently shown:

Theorem 2.6. Let � ⊆ � two sets of primes such that ∣�∣ ≥ 2, ∣�∣ ≥ 3. Then there

is a finite solvable �-group G such that G is principally �-separated, but not �-separated.

Furthermore, G can be chosen such that for any two primes p, q ∈ � any two irreducible

characters in B0(G)p lie in distinct q-blocks.

Using [Gap] we had already checked that for almost all sporadic simple groups the irre-

ducible characters can be separated [BMO]; more precisely:

Proposition 2.7. Apart from two irreducible characters (of degree 16) of M11 which can-

not be separated, all other irreducible characters of any sporadic simple group are weakly

isolated.

Remark 2.8. For the simple groups G of Lie type there are only a few exceptions (of small

Lie rank) where we have irreducible characters which are not weakly isolated, see [BMO,

Theorem 4.1]. The condition B̂0(G) = {1G} does not hold only when the group is ±L3(q),

q = 2f ∓ 1 or S4(q), q = 2f ± 1 (see [BMO, Cor. 4.4]). For example, for U4(2) = S4(3), B̂0

contains besides the principal character two characters of degree 6 and 24, respectively.

Note that these examples also show that in general B̂0(G)� is not equal to Irr(G/N), where

N =
∏

p∈� Op∗(G).

Towards weak isolation for the symmetric and alternating groups and their double covers

we recall the following results from [BMO]. Note that for the double cover groups, for

primes p > 2 the p-blocks are not “mixed” and hence B0(S̃n)p = B0(Sn)p (on the character

level), and for p = 2, the principal 2-blocks contain the same linear characters (similarly

for the alternating groups).

Theorem 2.9.

(i) For G = Sn, we have B̂0(S2) = {[2], [12]}, B̂0(S3) = {[3], [13]}, B̂0(S4) = {[4], [14], [22]},
B̂0(S6) = {[6], [16]}; all irreducible characters of symmetric groups not appearing

in these sets are weakly isolated.

(ii) Let n ≥ 3. For G = An, B̂0(A3) = {{3}, {2, 1}±}, B̂0(A4) = {{4}, {22}±}; all

irreducible characters of alternating groups not appearing in these sets are weakly

isolated.

(iii) For G = S̃n, n ≥ 4, we have B̂0(S̃n) = B̂0(Sn).

Furthermore, B̂(⟨4⟩±) = {⟨4⟩±, ⟨3, 1⟩}, B̂(⟨6⟩±) = {⟨6⟩±, ⟨3, 2, 1⟩±}; all irreducible

self-associate spin characters not appearing here are weakly isolated, all irreducible

non-self-associate spin characters ⟨�⟩± not appearing here are either isolated or

they satisfy B(⟨�⟩±) = {⟨�⟩±}.
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(iv) For G = Ãn, n ≥ 4, we have B̂0(Ãn) = B̂0(An).

Furthermore, B̂(⟨⟨4⟩⟩) = {⟨⟨4⟩⟩, ⟨⟨3, 1⟩⟩±}, B̂(⟨⟨6⟩⟩) = {⟨⟨6⟩⟩, ⟨⟨3, 2, 1⟩⟩}; all ir-

reducible self-associate spin characters not appearing here are weakly isolated, all

irreducible non-self-associate spin characters ⟨⟨�⟩⟩± not appearing here are either

isolated or they satisfy B(⟨⟨�⟩⟩±) = {⟨⟨�⟩⟩±}.

3. Principal covering

In the following, G always denotes a finite group. By F ∗(G) we denote the generalized

Fitting subgroup of G.

We recall that the groups G with Irr(G) = B0(G)p have been characterized by Harris [Ha];

see also [Zh] for a generalization of this to the situation where all p-blocks are of the highest

defect.

Theorem 3.1. [Ha] Let G be a finite group. Then the following holds:

(i) If p is an odd prime, then Irr(G) = B0(G)p if and only if F ∗(G) = Op(G).

(ii) If p = 2, then Irr(G) = B0(G)2 if and only if O2′(G) = 1, and all components of G

are of type M22 or M24.

Here, we want to consider a more general situation.

Definition 3.2. Let � ⊆ �(G). We say that Irr(G) (or just: G) is principally �-covered

if we have

Irr(G) =
∪
p∈�

B0(G)p .

For � = �(G), we just say that G is principally covered.

We first make an easy observation:

Lemma 3.3. Let G be a nilpotent group. Then the following are equivalent:

(i) G is principally covered.

(ii) Irr(G) = B0(G)p for some prime p.

(iii) G is a p-group.

Proof. Observe that if G is not a p-group, for some prime p, then G has an irreducible

character  which is non-trivial on two subgroups Oq(G), q ∈ �(G). Hence the kernel

of  cannot contain any subgroup Op′(G), p ∈ �(G), and thus  does not belong to any

principal block. □

Proposition 3.4. If G is solvable then principal covering of G implies Irr(G) = B0(G)p
for some p ∈ �(G).

Proof. First assume that the Fitting subgroup F (G) is not a p-group, for any prime p ∈
�(G). Then F (G) has an irreducible character  which is non-trivial on at least two non-

trivial subgroups Oq(G), q ∈ �(G). If � ∈ Irr(G) lies over  , then � does not belong to
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any principal block of G, since otherwise its kernel contains Op′(G) for some p ∈ �(G) – a

contradiction. Hence the Fitting subgroup F (G) is a p-group, for some p ∈ �(G). As G is

solvable, CG(F (G)) ⊆ F (G) [A, (31.10)], and hence Op′(G) = 1; since G is solvable, this

implies Irr(G) = B0(G)p. □

We will prove our main covering theorem with a slightly stronger condition.

Definition 3.5. Let � ⊆ �(G). We say that irreducible characters of G belonging to the

same (principal) p-block for some p ∈ � are (principally) �-glued. If any two irreducible

characters of G belong to the same (principal) p-block, for some prime p ∈ �, we say that

Irr(G) (or just G) is strongly (principally) �-covered.

For � ∈ Irr(G), we call G �-block �-covered if

Irr(G) =
∪
p∈�

B(�)p .

If � is not mentioned, we tacitly assume � = �(G).

Remark. Clearly, G is �-block covered for all � ∈ Irr(G) if and only if G is strongly

covered (in the sense of the definition above). We will thus also call G strongly covered in

this case.

Here is an indication on what the strong covering may yield:

Lemma 3.6. Let G be a strongly {p, q}-covered group. Then Irr(G) = B0(G)p or Irr(G) =

B0(G)q.

Proof. Clearly, the definition implies Irr(G) = B0(G)p ∪ B0(G)q. Assume that Irr(G) ∕=
B0(G)p. Take any � ∈ B0(G)p, � ∕∈ B0(G)p; then � ∈ B0(G)q and thus {�, �} ⊆ B0(G)q.

Hence Irr(G) = B0(G)q. □

It is our main aim to prove the following result:

Theorem 3.7.

(1) If G is principally covered, then Irr(G) = B0(G)p for some p ∈ �(G), or F ∗(G) is

either non-abelian simple or isomorphic to S × S for S one of A5, A6, M11, M23,

Co2, J4, McL, PSL2(5), PSL2(7), PSL2(8), PSL2(17), PSL3(3), PSL3(4), PSU3(3),

PSU4(2), PSU4(3), Sz(8), Sz(32), 2F4(2)′, or A5 × A6, A5 × U4(2), A6 × U4(2),

M11×M22, M22×M23, M22×M24, M22×Co2, M23×Co2, M22×U5(2), McL×U4(2),

PSL2(7)×PSL2(8), PSL2(7)×PSU3(3), PSL2(7)×PSU3(3) or M22×G(2n), where

G(2n) is a simple group of Lie type of characteristic 2 with {2, 3, 5, 11, ℓ} ⊆ �(G) for

some prime ℓ > 13, such that the Steinberg character is contained in the principal

r-blocks of G(2n) for r ∈ {3, 5, 11}.
(2) If G is strongly principally covered, then Irr(G) = B0(G)p for some p ∈ �(G), or

F ∗(G) is isomorphic to one of the simple groups A5, A6, M11, M23, McL, Co2,

J4, PSL2(5), PSL2(7) ∼= PSL3(2), PSL2(8), PSL2(17), PSL3(3), PSL3(4), PSU3(3),

PSU4(2) = PSp4(3), PSU4(3), Sz(8), Sz(32) or 2F4(2)′.
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Remark. For the specifically listed simple groups and products of simple groups occurring

in the Theorem, the stated covering properties do indeed hold; this is investigated in the

next sections and uses the data provided by [Gap]. We point out that we do not have an

explicit list of the simple groups G(2n) of Lie type occurring in principally covered groups

M22 ×G(2n).

We will first study covering properties of simple groups and of products of simple groups

in the next sections and then present the proof in the final section. We start here with

some useful results that will be needed later.

Proposition 3.8. If G is a strongly covered group then Irr(G) = B0(G)p for some p ∈
�(G) or F (G) = 1.

Proof. We need only prove that if F (G) ∕= 1 then G has only one p-block for some prime p.

So suppose that Op(G) ∕= 1 for some prime p. Then for any two irreducible characters �

and � of G such that Op(G) ≤ Ker (�) and Op(G) ∕≤ Ker (�), � and � can not be contained

in the same q-block of G for any prime q ∕= p (use [N, Theorem (6.10)]); in particular, � ∈
B0(G)p. Since G is strongly covered it follows that Irr(G/Op(G)) ⊂ Irr(Bp(�)) = B0(G)p,

and hence Irr(G) = B0(G)p. □

For products we have the following easy properties:

Lemma 3.9. Let G = S × T . If G is principally �-covered, then either Irr(G) = B0(G)p
for some prime p ∈ �, or for any p ∈ �, one of the factors is principally (� ∖ p)-covered.

If S = T , then G = S × S is principally �-covered if and only if S is strongly principally

�-covered.

Proof. Note that B0(G)p = B0(S)p ⊗ B0(T )p (∗). Assume that Irr(G) ∕= B0(G)p for all

p ∈ �. Then for any p ∈ �, there is �p ∕∈ B0(G)p, say �p = �S⊗�T . W.l.o.g., �S ∕∈ B0(S)p.

But then, �S ⊗  ∈
∪
p ∕=q∈� B0(G)q, for all  ∈ Irr(T ), and hence Irr(T ) =

∪
p ∕=q∈� B0(T )q.

The second assertion follows directly from (∗) and the definitions. □

The lemma above motivates to consider the question: When is Irr(G) covered by n − 1

principal blocks, for any choice of an (n− 1)-set � ⊂ �(G), where n = ∣�(G)∣?
If Irr(G) is not principally covered, we may still consider covering properties which focus

on the characters which are principally covered.

For a nilpotent group G with ∣�(G)∣ ≥ 2, and any p ∈ �(G), the principal p-block of G is

never contained in the union of all other principal blocks.

For a non-nilpotent finite group, for which primes p ∈ �(G) do we have

B0(G)p ⊆
∪
q ∕=p

B0(G)q ?

In particular, we will investigate this question for simple groups.
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4. Principal covering for sporadic groups

Using the block distribution obtained from [Gap] we can state the following properties.

Proposition 4.1. All sporadic simple groups are principally covered.

Exactly the following sporadic groups are strongly covered:

M11, M22, M23, M24, J4, Co2, McL.

These groups are even strongly principally covered.

For products of sporadic groups we have:

Proposition 4.2. Let S, T be sporadic simple groups. Then S × T is principally covered

only in the following cases:

(i) S = T ∈ {M11,M22,M23,M24, J4, Co2,McL}.
(ii) The product is one of: M11 ×M22, M22 ×M23, M22 ×M24, M22 × Co2, M23 × Co2.
Apart from the products M22×M22, M24×M24 and M22×M24 no product of two sporadic

groups is strongly principally covered.

Proposition 4.3.

(i) For S ∈ {M22,M24}, we have Irr(S) = B0(S)2 and hence

Irr(Mk
22 ×M l

24) = B0(M
k
22 ×M l

24)2 for all k, l ∈ ℕ0.

(ii) Apart from the products in (i), no product of three (or more) sporadic simple groups

is principally covered.

Remark 4.4. From the block distribution one may derive explicitly a description of the

principally covered products with sporadic groups of the following type:

Let G be any finite group. Then G×M11 is principally covered if and only if

Irr(G) = B0(G)2 ∪B0(G)3 = B0(G)2 ∪B0(G)11 = B0(G)3 ∪B0(G)5 ∪B0(G)11.

(Similarly for the other sporadic groups.) We will make use of this later.

As mentioned earlier, we want to investigate the covering property given by the condition:

B0(G)p ⊆
∪
q ∕=p

B0(G)q (∗)p .

Again, the block distribution available from [Gap] provides the following result:

Proposition 4.5. Let G be a simple sporadic group.

(i) For G = M24, Co1, F i22, HS,B, (∗)p is satisfied for all p ∕= 2.

(ii) For G = Co3, F i23, (∗)p is satisfied for all p ∕= 3.

(iii) For all other simple sporadic groups, (∗)p is satisfied for all p.

5. Principal covering for alternating and symmetric groups

We collect some information on the block distribution of the characters of the alternating

groups; this may be obtained by using [Gap] or by using the combinatorics of p-cores (see

[JK, Section 6.1]).
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Proposition 5.1. Let n ∈ {3, . . . , 14}.
(i) An is principally covered unless n = 11 or n = 13.

In fact, Irr(A3) = B0(A3)3, Irr(A4) = B0(A4)2.

(ii) Only A3, A4, A5, A6 are strongly covered, and in fact strongly principally covered.

For the proof of the Theorem below we consider for a number of partitions for which primes

the corresponding characters belong to a principal block.

Proposition 5.2. Let n ∈ ℕ.
(1) Let n ≥ 8. Then {n− 5, 3, 2}(±) belong to B0(An)p if and only if p = 2, n even, or

p = 3, n ≡ 0 mod 3.

(2) Let n ≥ 10. Then {n − 7, 32, 1}(±) belong to B0(An)p if and only if either p = 2,

n even, or p = 3, n ≡ 1 mod 3, or p = 5, n ≡ 1, 2 mod 5.

(3) Let n ≥ 13. Then {n− 9, 4, 2, 13}(±) belong to B0(An)p if and only if either p = 2,

n even, or p = 5, n ≡ 3 mod 5.

(4) Let n ≥ 13. Then {n− 9, 4, 22, 1}(±) belong to B0(An)p if and only if either p = 2,

n odd, or p = 5, n ≡ 0 mod 5, or p = 7, n ≡ 0, 3 mod 7.

(5) Let n ≥ 17. Then {n − 11, 6, 5}(±) belong to B0(An)p if and only if either p = 2,

n odd, or p = 3, n ≡ 0 mod 3, or p = 5, n ≡ 0, 2 mod 5, or p = 7, n ≡ 3 mod 7.

(6) Let n ≥ 17. Then {n− 11, 6, 3, 12}(±) belong to B0(An)p if and only if either p = 2,

n odd, or p = 3, n ∕≡ 0 mod 3, or p = 5, n ≡ 0, 2 mod 5.

(7) Let n ≥ 17. Then {n− 11, 6, 22, 1}(±) belong to B0(An)p if and only if either p = 2,

n odd, or p = 3, n ≡ 0 mod 3, or p = 7, n ≡ 0, 5 mod 7.

(8) Let n ≥ 15. Then {n− 11, 4, 3, 22}(±) belong to B0(An)p if and only if either p = 2,

n odd, or p = 3, n ∕≡ 0 mod 3, or p = 5, n ≡ 3 mod 5, or p = 7, n ≡ 1, 4 mod 7.

(9) Let n ≥ 15. Then {n− 11, 42, 2, 1}(±) belong to B0(An)p if and only if either p = 2,

n odd, or p = 3, n ≡ 0 mod 3, or p = 5, n ≡ 2 mod 5, or p = 7, n ≡ 2 mod 7.

(10) Let n ≥ 19. Then {n−13, 6, 4, 2, 1}(±) belong to B0(An)p if and only if either p = 2,

n odd, or p = 3, n ≡ 2 mod 3, or p = 7, n ≡ 2 mod 7.

(11) Let n ≥ 33. Then {n−23, 10, 52, 3}(±) belong to B0(An)p if and only if either p = 2,

n odd, or p = 3, n ≡ 0 mod 3, or p = 5, n ≡ 4 mod 5.

Proof. Consider the representation of the partitions on the p-abacus (see [JK, Section 2.7]).

For the computation of the p-core we put all beads except for the highest on their runner

and slide them up, and then we only have to discuss on which runner the last bead can be

put to produce a p-core belonging to the principal p-block. For An, the latter may be at

most of two types, associated to a p-core (r) or (1r), with r < p (possibly r = 0, i.e., the

core is empty). This gives the conditions occurring above, e.g., n ≡ 0 mod 3 at p = 3 in

the first case arises from the condition that the bead to n− 3 has to be on runner 0 of the

3-abacus. □

Theorem 5.3. Let n ∈ ℕ, n > 2. Then the following holds:

(i) An is principally covered only for n ∈ {3, . . . , 10, 12, 14}.
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(ii) Sn is principally covered only for n ∈ {3, . . . , 8, 10, 12}.

Proof. (i) For n ≤ 14 we use the computed data. For all n ≥ 15, we find explicit irreducible

characters which are not in any principal block by using the information given in Propo-

sition 5.2. This is seen as follows. Let U denote the union of the partitions associated to

the principal p-blocks of An, p ≤ n.

Assume first that n is odd. If n ∕≡ 0 mod 3, then (n − 5, 3, 2) ∕∈ U , n ≥ 8. If n ≡ 0

mod 3, but n ∕≡ 1, 2 mod 5, then (n− 7, 32, 1) ∕∈ U for n ≥ 10, and if n ∕≡ 3 mod 5, then

(n− 9, 4, 2, 13) ∕∈ U for n ≥ 13.

Assume now that n is even. Suppose n ≡ 0 mod 3. If n ∕≡ 0, 2 mod 5, then (n −
11, 6, 3, 12) ∕∈ U , for n ≥ 17. If n ∕≡ 3 mod 5 and n ∕≡ 1, 4 mod 7, then (n− 11, 4, 3, 22) ∕∈
U , for n ≥ 15. But if n ∕≡ 2 mod 7, we have (n− 13, 6, 4, 2, 1) ∕∈ U , for n ≥ 19 (indepen-

dent of the residue modulo 5).

Next we suppose n ≡ 1 mod 3. If n ∕≡ 0, 5 mod 7, then (n− 11, 6, 22, 1) ∕∈ U , for n ≥ 17.

For n = 16, we use the partition (n− 9, 4, 22, 1) = (7, 4, 22, 1) which does not belong to U .

If n ∕≡ 2 mod 7, then again we have (n− 13, 6, 4, 2, 1) ∕∈ U , for n ≥ 19.

Finally suppose n ≡ 2 mod 3. If n ∕≡ 4 mod 5, then (n − 23, 10, 52, 3) ∕∈ U , for n ≥ 33.

If n ∕≡ 2 mod 7, then we have (n − 11, 42, 2, 1) ∕∈ U , for n ≥ 15. If n ∕≡ 0 mod 5 and

n ∕≡ 0, 3 mod 7, then we have (n− 9, 4, 22, 1) ∕∈ U , for n ≥ 13.

It is easily seen that this covers all cases for n ≥ 15.

(ii) Of course, when An is not principally covered, then also Sn is not principally covered.

So we only need to check the few cases where An is principally covered to obtain the result

for Sn. Indeed, for n = 9 and n = 14, we find that Sn is not principally covered; for

example, the following characters are missing in the union of the principal blocks of S9

and S14, respectively: [4, 22, 1], [3, 23, 15]. □

Corollary 5.4. Let n ≥ 5. Then An is strongly covered only for n ∈ {5, 6}.
In fact, A5 and A6 are even strongly principally covered.

Theorem 5.3, together with the data for n ≤ 14 and the earlier remarks on strong principal

covering, shows also:

Proposition 5.5. Let G be a non-trivial finite group, n ≥ 5. Then G× An is principally

covered if and only if we have one of the following:

(i) n ∈ {5, 6, 7} and Irr(G) = B0(G)p ∪B0(G)q for any two different primes p, q ≤ n.

(ii) n = 8 and Irr(G) = B0(G)2 = B0(G)3 ∪B0(G)5 ∪B0(G)7.

(iii) n = 9 and Irr(G) = B0(G)3 = B0(G)p ∪ B0(G)q for any two different primes

p, q ∈ {2, 5, 7}.
(iv) n = 10 and Irr(G) = B0(G)2 = B0(G)p ∪ B0(G)q for any two different primes

p, q ∈ {3, 5, 7}.
(v) n = 12 and Irr(G) = B0(G)2 = B0(G)3 ∪B0(G)q = B0(G)5 ∪B0(G)7 ∪B0(G)11 for

any prime q ∈ {5, 7, 11}.
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Proof. This follows mostly directly from the distribution of characters of An into blocks.

For n = 14, we obtain Irr(G) = B0(G)2 = B0(G)3, but this only holds for the trivial group

by [BN]. □

Corollary 5.6. (i) Let n ≥ 5. Then An×An is principally covered if and only if n ∈ {5, 6}.
(ii) Let m > n ≥ 5. Then An × Am is principally covered if and only if (n,m) = (5, 6).

(iii) Let m ≥ n ≥ 5. Then An × Am is not strongly principally covered.

(iv) No product of three or more simple alternating groups is principally covered.

Corollary 5.7. (i) Let n ∈ ℕ, n ≥ 5, S be a sporadic simple group. Then An × S is

principally covered if and only if S = McL and n ∈ {5, 6}. No such product is strongly

principally covered.

(ii) No “mixed” product of three or more simple alternating and sporadic groups is princi-

pally covered.

Remarks 5.8. For n ≤ 9, one easily checks from the data that concerning the covering

property

B0(G)p ⊆
∪
q ∕=p

B0(G)q (∗)p

the following holds for G = An:

(i) For n ∈ {5, 6, 7}, (∗)p is satisfied for all p.

(ii) For n ∈ {4, 8}, (∗)p is satisfied for all p ∕= 2.

(iii) For n = 9, (∗)p is satisfied for all p ∕= 3.

Note that if n is even and n ∕≡ 0 mod 3, then {n − 5, 3, 2}(±) ∈ B0(An)2, but not in any

other principal block, for all n ≥ 8. If n is odd and n ≡ 0 mod 3, then {n− 5, 3, 2}(±) ∈
B0(An)3, but not in any other principal block, for all n ≥ 9.

For n ≥ 10, considering the p-abacus easily shows that {n − 6, 4, 2} ∈ B0(An)2, but it is

not in any other principal block, hence (∗)p is not satisfied for p = 2.

Proposition 5.9. For G = An, n ≥ 4, (∗)p holds for all primes p such that n
2
< p ≤ n.

Proof. Let n = p + r, with r < n
2
. Note that p > 2 and that p = 3 only occurs for n = 4

and n = 5, where the property is easy to check. So we may assume that p > 3.

Since p > n
2
, B0(An)p is of defect 1, and we only have to consider the characters to the

(few) non-trivial partitions with p-core (r). We will consider these partitions �, and in each

case we will find a suitable prime q ∕= p such that the character {�}(±) belongs to B0(An)q.

For r ≤ p − 2, we have to consider the partition � = (p − 1, r + 1); if r = 0, we choose

a prime divisor q of p − 2, if r > 0, we choose a prime divisor q of r + 1 (≤ p − 1).

Furthermore, for r ≤ p−2, we also have to consider the partitions � = (p−(k+1), r+1, 1k),

1 ≤ k ≤ p− (r + 2); then choose a prime divisor q of ℎ21 = r + k + 1 (< p).

For any r > 0 (i.e., also for r = p− 1) we have to consider the partitions � = (r, p− k, 1k),
where p− r ≤ k ≤ p− 1; here, choose q as a prime divisor of ℎ11 = r + k + 1 > p. □
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Remarks 5.10. Similarly as above, one may check condition (∗)p for Sn for all primes

p ≤ n and small n.

For n = 3, (∗)p is satisfied only for p = 2.

For n ∈ {4, 5}, (∗)p is satisfied only for p = 3.

For n = 6, (∗)p is satisfied for all p.

For n = 7, (∗)p is satisfied only for p = 5.

For n ≥ 10, (∗)p is not satisfied for p = 2.

Proposition 5.11. For G = Sn, n ≥ 3, (∗)p holds for all primes p such that n
2
< p < n.

Proof. Let n = p+r; now 0 < r < n
2
< p. We have to check the p partitions with p-core (r).

Going through the proof for An, one sees that in all cases with r > 0, the prime q was

chosen in such a way that the character [�] was actually in B0(Sn)q. □

6. Principal covering for groups of Lie type

Our investigations of covering properties led us to the question on when the p-Steinberg

character St of a finite simple group of Lie type of characteristic p belongs to all principal

q-blocks for q ∕= p. In answer to this, Hiss [H2] proved the following result:

Theorem 6.1. [H2] Let G be a finite simple group of Lie type of characteristic p. Then

Stp ∈
∩
ℓ∕=pB0(G)ℓ if and only if G is one of the groups in the following list:

(1) PSL2(q), q ≥ 4; PSL3(q); PSL4(q).

(2) PSU3(q), q ≥ 3; PSU4(q).

(3) PSp4(q), q > 2.

(4) PΩ+
8 (q).

(5) G2(q), q > 2.

(6) F4(q).

(7) 3D4(q).

(8) 2B2(q), q = 22m+1 > 2.

(9) 2G2(q), q = 32m+1 > 3.

(10) 2F4(q), q = 22m+1 > 2.

Remarks 6.2. (i) Hiss also noted that the non-simple groups belonging to the series of

groups above for small q also satisfy the property.

(ii) For the groups 2F4(2)′, PSp4(2)′, which have two characters of 2-defect 0, these also

belong to all principal q-blocks for q ∕= 2.

Proposition 6.3. All finite simple groups of Lie type are principally covered.

Proof. Let G = G(pn) be a simple group of Lie type. Then any irreducible character of G

different from the p-Steinberg character St belongs to B0(G)p.

By Theorem B and Remark (1) of [H1] and Theorem 6.1, we see that if p > 2 or G is not
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isomorphic to 2An(2m)(n ≥ 3), 2Dn(2m)(n ≥ 4) or 2E6(2
m) then the p-Steinberg character

St lies in the principal r-block of G for some prime r ∕= p. Thus we assume now that p = 2

and G ∼= 2An(2m)(n ≥ 3), 2Dn(2m)(n ≥ 4) or 2E6(2
m). Now let r be a prime divisor of

2m + 1. In order to prove that St lies in the principal r-block of G we may replace G by a

suitable central extension without loss of generality. Let x be a non-central semisimple r-

regular element of CG(R) where R ∈ Sylr(G), we see that St(x) = ∣CG(x)∣2 = f(2m) < ∣P ∣
where P ∈ Syl2(G) and f is a polynomial with integral coefficients. Hence r always divides

∣G : CG(y)∣(∣P ∣ − St(y)), thus by Brauer’s criterion St is in the principal r-block of G. □

Proposition 6.4. Let G = G(pn) be a group of Lie type, let q ∈ �(G), q ∕= p.

Then there exists � ∈ Irr(G) such that � ∈ B0,p ∩ B0,q and � ∕∈ B0,r for all other primes

r ∕= p, q.

Proof. See [BN], proof of Theorem 3.3. □

Proposition 6.5. Let G be a finite simple group of Lie type, of characteristic p. Then G

is strongly principally covered if and only if the following two conditions hold:

(1) The p-defect 0 characters belong to
∩
q ∕=pB0(G)q.

(2) Irr(G) =
∪
q ∕=pB0(G)q.

Equivalently, this holds if (1) and (∗)p are satisfied.

Proof. Assume first that G is strongly principally covered. Let q ∈ �(G), q ∕= p. By the

above, there exists � ∈ Irr(G) which only belongs to the principal p-block and the principal

q-block. As  ∕∈ B0(G)p, for a p-defect 0 character  , the principal gluing property implies

that  must be in B0(G)q, and thus we have (1). Moreover,  ∕∈ B0(G)p and the principal

gluing property imply that any � ∈ Irr(G) must belong to a principal q-block for some

q ∕= p, and thus we obtain (2).

Conversely, by (2) and (1) any � ∈ Irr(G) is principally glued to any p-defect 0 character.

Since any two irreducible characters not of p-defect 0 belong to B0(G)p, G is strongly

principally covered. □

Of the Lie groups on the list in Theorem 6.1, not all have property (2) (or property (∗)p,
respectively); in fact, this property rarely holds for simple groups of Lie type (the following

result is based in part on a personal communication by P. H. Tiep).

Theorem 6.6. Let G be a finite simple group of Lie type of characteristic p.

Then Irr(G) =
∪
q ∕=pB0(G)q if and only if (G, p) is one of the cases in the following list:

(1) PSL2(4) ∼= PSL2(5), p = 2 or p = 5;

(2) PSL2(7) ∼= PSL3(2), p = 7 or p = 2;

(3) PSL2(8), p = 2;

(4) PSL2(9) ∼= PSp4(2)′, p = 3 or p = 2;

(5) PSL2(17), p = 17;
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(6) PSL3(3), p = 3;

(7) PSL3(4), p = 2;

(8) PSU3(3), p = 3;

(9) PSU4(2) ∼= PSp4(3), p = 2 or p = 3;

(10) PSU4(3), p = 3;

(11) 2B2(8), p = 2;

(12) 2B2(32), p = 2;

(13) 2F4(2)′, p = 2.

All these groups are strongly principally covered. Hence the list above gives a complete list

of strongly principally covered simple groups of Lie type.

Proposition 6.7. Let G1, G2 be simple groups of Lie type, of characteristic p1, p2, respec-

tively.

(i) If G1 × G2 is principally covered, then �(G1) = �(G2), and if p1 ∕= p2, then

∣�(G1)∣ = 3.

(ii) Assume that �(G1) = �(G2), and that ∣�(G1)∣ = 3 if p1 ∕= p2. If both G1, G2 are

strongly principally covered, then G1 ×G2 is principally covered.

(iii) G1 ×G2 is not strongly principally covered.

Proof. Set G = G1 ×G2.

(i) We have St1×St2 ∈ B0(G)q for some prime q ∈ �1∩�2, and we must have p1 ∕= q ∕= p2.

Now let qj ∈ �j ∖ {pj, q}, j = 1, 2 (as G1, G2 are simple, we always find such primes).

According to Proposition 6.4, we find �2 ∈ B0(G2)p2 ∩ B0(G2)q2 which does not belong

to any other principal block of G2. Now we use that St1 × �2 ∈ B0(G)s for some prime

s ∈ �1 ∖ p1 ∩ {p2, q2}.
If p1 = p2, we deduce q2 ∈ �1 ∖ p1; as q2 was an arbitrary prime in �2 ∖ {p2, q}, this implies

�2 ⊆ �1, and by symmetry we obtain �1 = �2.

Now assume p1 ∕= p2. Again by 6.4, we find �1 ∈ B0(G1)p1 ∩ B0(G1)q which does not

belong to any other principal block of G1, and we take �2 as above. As �1 × �2 belongs

to some principal block of G, we deduce {p1, q} ∩ {p2, q2} ∕= ∅; since q2 ∕= q ∕= p2, we must

have p1 = q2. As q2 was an arbitrary prime in �2 ∖ {p2, q}, this yields �2 = {p2, q, p1}, and

by symmetry we also obtain �2 = �1.

Thus (i) is proved.

In case (ii), if p1 = p2 =: p, �2 ∈ Irr(G2), then St1 × �2 ∈ B0(G)q whenever �2 ∈ B0(G2)q,

q ∈ �2 ∖ {p} (there always is such a prime); similar for products �1 × St2. If �j ∕= Stj for

j = 1, 2, then clearly �1 × �2 ∈ B0(G)p.

If p1 ∕= p2, say �(G1) = �(G2) = {p1, p2, q}, then the claim follows since any character in

Irr(Gj), j = 1, 2, belongs to at least two principal blocks.

(iii) By (i) we know that �(G1) = �(G2). First we assume that p1 = p2 = p. We have

 = St1 × St2 ∕∈ B0(G)p. Choose q1 ∕= q2 in �(G1) = �(G2). Then by Lemma 6.4 there

are characters �j ∈ B0(Gj)p ∩B0(Gj)qj , but in no other principal block of Gj, for j = 1, 2.

Then � = �1 × �2 ∈ B0(G)p, but it is in no other principal block of G. Hence G is not
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strongly principally covered.

Now assume p1 ∕= p2, and then �(G1) = {p1, p2, q} = �(G2) by (i). Now St1×St2 ∈ B0(G)q,

but not in the other principal blocks. Let �2 ∈ B0(G2)p1 ∩ B0(G2)p2 , �2 ∕∈ B0(G2)q. Then

St1 × �2 ∈ B0(G)p2 only. Hence again, G is not principally covered. □

Remark. The simple groups with exactly 3 prime divisors are known (see [G]); they are

the following 8 groups, also called simple K3-groups:

A5, A6,PSL2(7),PSL2(8),PSL2(17),PSL3(3),PSU3(3),PSU4(2).

They are of order

22 ⋅ 3 ⋅ 5, 23 ⋅ 32 ⋅ 5, 23 ⋅ 3 ⋅ 7, 23 ⋅ 32 ⋅ 7, 24 ⋅ 32 ⋅ 17, 24 ⋅ 33 ⋅ 13, 25 ⋅ 33 ⋅ 7, 26 ⋅ 34 ⋅ 5,

respectively.

Checking the block data for these groups [Gap] we see:

Proposition 6.8. The simple K3-groups are strongly principally covered.

Proposition 6.9. Let G1, G2 be simple groups of Lie type, of characteristic p1, p2, respec-

tively; assume that both are not alternating groups. Then G1×G2 is principally covered if

and only if either G1
∼= G2 is strongly principally covered (hence on the list in Theorem 6.6)

or the groups G1, G2 are non-isomorphic and both among PSL2(7), PSL2(8), PSU3(3).

Proof. Set G = G1×G2. The case where G1
∼= G2 follows from Lemma 3.9. Thus we may

assume that G1, G2 are non-isomorphic. If the product has two different factors among

PSL2(7), PSL2(8), PSU3(3), then G is principally covered by Proposition 6.7(ii).

Conversely, if G is principally covered, then by Proposition 6.7 we have �(G1) = �(G2),

and if p1 ∕= p2, then ∣�(G1)∣ = 3. In the case p1 ∕= p2, G1, G2 are simple K3-groups of

Lie type with the same prime divisors. Hence, by the remark above, these are among

PSL2(7), PSL2(8), PSU3(3). Next we assume that p1 = p2 =: p. Since StG1 ∕∈ B0(G1)p,

the principal covering of G implies that Irr(G2) =
∪
q ∕=pB0(G2)q; similarly, StG2 ∕∈ B0(G2)p

implies Irr(G1) =
∪
q ∕=pB0(G1)q. Hence G1, G2 are on the list in Theorem 6.6. Next we

have to check for which pairs of the same characteristic p on this list the prime divisor

set is the same. Since the groups are assumed to be not alternating, the only such pair is

PSL3(2) ∼= PSL2(7) and PSL2(8) which we have already listed. □

Proposition 6.10. A product of three or more simple groups of Lie type is never princi-

pally covered.

Proof. Write G = G1×G2×T , G1, G2 simple Lie groups, T a product of simple Lie groups,

and assume that G is principally covered. By Proposition 6.4, there is � ∈ Irr(G1 × G2)

that belongs to at most one principal p-block. Then Irr(T ) = B0(T )p, but this never

happens. □

Proposition 6.11. Let n ≥ 5, G a simple group of Lie type, not isomorphic to an alter-

nating group. Then An ×G is principally covered if and only if the product is A5 × U4(2)

or A6 × U4(2). These products are not strongly principally covered.
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Proof. This follows using Theorem 5.3, Proposition 6.4 and the block data. □

Based on the results of this section and the previous section we easily deduce:

Proposition 6.12. A mixed product of three or more simple alternating groups and simple

groups of Lie type is never principally covered.

The following may be obtained from the classification of finite simple groups by using

Zsigmondy primes (an explicit list may also be found in [V]); it is stated here for the

convenience of the reader:

Proposition 6.13. The simple groups of Lie type whose prime divisors are at most 13,

and with at least 4 prime divisors, are given in the following list of groups (together with

their orders):
L2(11) : 22.3.5.11 L2(13) : 22.3.7.13 L2(25) : 23.3.52.13

L2(27) : 22.33.7.13 L3(4) : 26.32.5.7 Sz(8) : 26.5.7.13

L2(49) : 24.3.52.72 U3(4) : 26.3.52.13 U3(5) : 24.32.53.7

L2(64) : 26.32.5.7.13 S6(2) : 29.34.5.7 U4(3) : 27.36.5.7

G2(3) : 26.36.7.13 S4(5) : 26.32.54.13 L4(3) : 27.36.5.13

U5(2) : 210.35.5.11 2F4(2)′ : 211.33.52.13 L3(9) : 27.36.5.7.13

S4(7) : 28.32.52.74 O+
8 (2) : 212.35.52.7 3D4(2)′ : 212.34.72.13

G2(4) : 212.33.52.7.13 S4(8) : 212.34.5.72.13 S6(3) : 29.39.5.7.13

O7(3) : 29.39.5.7.13 U6(2) : 215.36.5.7.11 U4(5) : 27.34.56.7.13

L5(3) : 29.310.5.112.13 O+
8 (3) : 212.312.52.7.13 L6(3) : 211.315.5.7.112.132.

Proposition 6.14. Let G be a simple Lie type group in characteristic p, not isomorphic

to an alternating group, and S a sporadic simple group. Then S×G is principally covered

if and only if p = 2 and the product is one of McL×U4(2), M22×U5(2), or M22×G, where

G satisfies {2, 3, 5, 11, ℓ} ⊆ �(G), for some prime ℓ > 13, and St2 ∈ B0(G)3 ∩ B0(G)5 ∩
B0(G)11. None of these products is strongly principally covered.

Proof. If S is one of M12, M24, J1, J2, J3, Co1, Co3, Fi22, Fi23, F3+, HS, Suz, Ru, He,

Ly, ON , HN , Tℎ, B, M using Proposition 6.4 we see from the data that we can never

have a principally covered product of these types.

Case S = M11. Using the block data and Proposition 6.4 we deduce that p = 2, and

�(G) = {2, 3, 5, 11}. From the list above, the only simple Lie group of characteristic 2

with �(G) = {2, 3, 5, 11} is G = U5(2). But G = U5(2) has irreducible characters of degree

891 which only belong to B0(G)2 but to no other principal block. Hence S × G is not

principally covered.

Case S = M22. Again, the block data and Proposition 6.4 yields p = 2. Furthermore,

{2, 3, 5, 11} ⊆ �(G), and St2 ∈ B0(G)3 ∩ B0(G)5 ∩ B0(G)11. For �(G) = {2, 3, 5, 11} we

have already noticed that then G = U5(2). In fact, M22 × U5(2) is principally covered.

So we now have {2, 3, 5, 11} ⊂ �(G). From the list above, the only simple Lie group of
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characteristic 2 of this type is G = U6(2); but for this group St2 ∕∈ B0(G)5. Hence any

potential candidate for G must have a prime > 13 in its order.

Case S = M23. Using the data and Proposition 6.4 we deduce that p = 2, {2, 3, 11, 23} ⊆
�(G) ⊆ {2, 3, 5, 11, 23} and St2 ∈ B0(G)3 ∩B0(G)11 ∩B0(G)23.

In case {2, 3, 11, 23} = �(G), we can use Theorem 6.1 to reduce the number of groups to

be checked. In both cases, using the existence of Zsigmondy primes allows to show that

no simple group of Lie type with these properties exists.

Case S = J4. Using the data and Proposition 6.4 we deduce that p = 2, {2, 11, 23, 29, 37, 43} ⊆
�(G) ⊆ {2, 11, 23, 29, 31, 37, 43}.
Similar reasoning as in the previous cases shows that for both cases there is no simple Lie

group with this prime divisor set.

Case S = Co2. Using the data and Proposition 6.4 we deduce that p = 2, �(G) =

{2, 3, 5, 11, 23} and St2 ∈ B0(G)3 ∩B0(G)5 ∩B0(G)11 ∩B0(G)23.

Here we may use again Theorem 6.1 to reduce the number of groups to be checked; then,

using again Zsigmondy primes, we see that none of the cases can occur.

Case S = McL. Using the data and Proposition 6.4 we deduce that p = 2, �(G) =

{2, 3, 5}, and indeed, G = U4(2) gives a principally covered product. □

Proposition 6.15. No “mixed” product of three or more simple groups of Lie type and

sporadic groups is principally covered.

Proof. Based on Proposition 6.14, there are only a few critical remaining candidate cases:

McL×McL×PSU4(2), M22×M22×PSU5(2), M22×M22×G(2n), PSU4(2)×PSU4(2)×McL,

PSU5(2)×PSU5(2)×M22, M22×PSU5(2)×G(2n) (with G(2n) as in the Proposition); these

can easily be excluded using the block data. In all the cases above, the product of the first

two factors has an irreducible character which belongs to only one principal block. □

Proposition 6.16. A product of three or more simple groups is principally covered if and

only if the product is of the form G = Mk
22 × M l

24, k, l ∈ ℕ0, k + l ≥ 3. In this case,

Irr(G) = B0(G)2.

Proof. Based on the previous results on products, there are only two critical cases left to

consider: A5 ×McL × PSU4(2) and A6 ×McL × PSU4(2). In these cases, the product

of the first two factors has an irreducible character which belongs only to the principal 2-

block, hence the full product is not principally covered. Thus the only principally covered

products of three or more factors are the ones stated above which we encountered already

in section 4. □

Now we are in a position to prove Theorem 3.7.

Suppose G is principally covered. First we note that all normal subgroups of G are also

principally covered. By the proof of Proposition 3.4, we see that F (G) = Op(G) for some

prime p. Since G is principally covered, any irreducible character � of G with kernel not
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containing F (G) lies in a principal q-block B0(G)q of G for some prime q, thus Oq′(G) is

contained in the kernel of �, and it follows that p = q. If F (G) = 1 then by the results in

previous sections we see that F ∗(G) is either non-abelian simple or isomorphic to the listed

direct product of two non-abelian simple groups. So we need only consider the case where

F (G) is not trivial. Let E be the layer of G such that F ∗(G) = F (G)E. Note that E is

perfect and F (G) ∩ E = Z(E). Suppose toward a contradiction that Theorem 3.7(1) is

false and let G be a counterexample of minimal possible order. Then it is easily seen that

E is not trivial, and if p = 2 there exists at least one component of G of type neither M22

nor M24 by Theorem 3.1. So E has a non-principal p-block. We claim that F (G) = Z(E).

If this is not the case then F (G) is not contained in E, and for any nontrivial irreducible

characters � ∈ Irr(F (G)/Z(E)) and � ∈ Irr(E/Z(E)), �� is bound to lie in the principal

p-block of F ∗(G), as F ∗(G) is principally covered, thus � lies in the principal p-block of E,

which in turn implies that E has only one p-block, a contradiction. Thus the claim holds

and F (G) = Z(E). Note that now there exists a quasisimple normal subgroup of F ∗(G)

with non-trivial center. For any such quasisimple normal subgroup S of F ∗(G), S is also

principally covered and all irreducible characters of S with kernel not containing Z(S) lie

thus in the principal p-block of S. It follows that if S has a non-principal p-block B then

B contains only irreducible characters of S with kernel Z(S), hence B can be considered

as a p-block of S/Z(S) with smaller defect, which is a contradiction by [F, Theorem 4.16,

p.157]. Thus S has only one p-block with p = 2 and S/Z(S) ∼= M22 or M24 by Theorem 3.1.

Now E = N × L where N is a nontrivial group having only one 2-block and L is either

trivial or a direct product of non-abelian simple groups. If L = 1 then G has only one

2-block by Theorem 3.1, a contradiction. So L is not trivial. For � ∈ Irr(N) and any

� ∈ Irr(L) such that Z(N) is not contained in the kernel of �, F ∗(G) principally covered

implies that �� lies in the principal 2-block. As � is arbitrary, this implies that L has only

one 2-block, hence so does G by Theorem 3.1, which is again a contradiction, and now

part (1) of the theorem follows.

For part (2), let G be strongly principally covered and Irr(G) ∕= B0(G)p for any prime p.

By (1), F ∗(G) is either nonabelian simple or isomorphic to a direct product of two non-

abelian simple groups. By Proposition 4.2, Corollary 5.6 and 5.7, Proposition 6.9, 6.11

and 6.14, we see that F ∗(G) is non-abelian simple. By Proposition 4.1, Corollary 5.4 and

Theorem 6.6 we know that F ∗(G) is given as listed. We are done. □
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