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CHRISTINE BESSENRODT, JIPING ZHANG

Abstract. We investigate the separation of characters by blocks at dif-
ferent primes and the inclusions of q-blocks in p-blocks (viewed as sets of
characters), and use these notions to prove results on the structure of the
corresponding groups. In particular, we provide a new criterion for the
nilpotence of a finite group G based on the separation by principal blocks,
and we show that a condition on block unions has strong structural conse-
quences.

1. Introduction

In one of his last papers [B], Richard Brauer explicitly stated the problem

that had interested him for a long time and had been the motivation for the

development of a large part of the p-modular representation theory of finite

groups:
Given a prime p. We wish to find the relations between the properties of

the p-blocks of characters of a finite group G and structural properties of G.
In the p-modular theory, only the case is of interest where the prime p divides

the order |G| of G.

Now, when one is interested in obtaining results on the structure of G, one

may also choose different primes dividing the group order and study the cor-

responding local situations. While a lot of theory has been developed for the

situation of a fixed prime p, the comparison of the behavior at different primes

has not received so much attention; only in more recent times this topic has

been studied in more depth, and the present paper contributes to this. In

[BMO], the idea of separability of characters by blocks at different primes has

Date: December 6, 2007.
Supported by the Sino-German Center for Research Promotion, National 973 program

(2006CB805904) and NSFC (10631010).
1991 Mathematics Subject Classification 20C15, 20C20.

1



2 CHRISTINE BESSENRODT, JIPING ZHANG

been introduced. This has motivated and initiated subsequent investigations

by several authors and a number of deep results have already been obtained.

If G is a finite group, we denote by Irr(G) the set of irreducible complex

characters of G, and by π(G) the set of primes dividing the order of G. As

defined in [BMO], for p ∈ π(G), we call two characters in Irr(G) p-separated if

they are contained in different p-blocks of G; we denote by Bp(χ) the p-block

of G to which χ ∈ Irr(G) belongs. If π is a subset of π(G) we say that Irr(G)

is π-separated if any two irreducible characters are p-separated for some prime

p ∈ π, i.e., we have⋂
p∈π

Irr(Bp(χ)) = {χ} , for all χ ∈ Irr(G) .

We denote as usual by B0(G)p = Bp(1G) the principal p-block of G. Then we

say that Irr(G) is principally π-separated if⋂
p∈π

Irr(B0(G)p) = {1G} .

If π = π(G), we just call Irr(G) separated or principally separated, respectively.

It is evident that if Irr(G) is π-separated then Irr(G) is principally π-separated,

but it is not clear when the converse holds (see the final section).

This trivial intersection property is a crucial phenomenon. In the spirit of

Brauer’s problem, we will prove the following nilpotency criterion using the

concept of separation:

Theorem 4.1. A finite group G is nilpotent if and only if Irr(G) is principally

{p, q}-separated for any two different primes p, q ∈ π(G).

In fact we prove something more general from which this theorem follows.

We will also investigate the phenomenon of principal block inclusions and the

stronger condition of the bigger block being a union of smaller blocks for an-

other prime. This leads to the following structure theorem:

Theorem 5.1. Let G be a finite group and p and q two different prime divisors

of the order of G. If Irr(B0(G)p) = ∪iIrr(Bq(G)i), where B0(G)p is the principal

p-block of G and Bq(G)i’s are q-blocks of G, then the following hold true for G:

(1) Op′(G) ≤ Oq′(G),
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(2) each component of G/Op′(G) is either of q′-order or of type L with p = 2

or 3 where L is among 8 sporadic simple groups (see section 5 for the details).

2. Some preliminary results

In this section we collect some results that will be needed later. For some

required results on the relationship between blocks of a group and certain

factor groups or normal subgroups, respectively, we refer to the book [NT].

Proposition 2.1. Let G be a finite solvable group, π ⊆ π(G). Then Irr(G) is

principally π-separated if and only if G = Πp∈πOp′(G).

Proof. Set N = Πp∈πOp′(G). As G is solvable, Irr(G/N) is contained in

Irr(B0(G)p) for any prime divisor p of the order of G. By definition, Irr(G) is

not principally π-separated if and only if there exists 1 6= χ ∈
⋂

p∈π Irr(B0(G)p),

which is equivalent to N being a proper subgroup of G. We are done. �

Lemma 2.2. Let G be a finite simple group of Lie type of characteristic p and

x an automorphism of G of p′-order. If x centralizes a Sylow p-subgroup U

of G then x = 1.

Proof. Since G is a finite simple group of Lie type of characteristic p, G has a

split (B, N)-pair. If necessary replace x by its conjugate we may assume that

B = UH and B ∩N = H where H is the so-called Cartan subgroup of G. Let

` be the rank of the (B, N)-pair. Then G has ` minimal parabolic subgroups

Pi’s containing B, i = 1, 2, ..., `.

Suppose first that ` ≥ 2. Then by [G, Prop. 2.18, p. 78] Pi is a proper subgroup

of G and G = 〈P1, P2, ..., P`〉. Set Ui = Op(Pi) then Pi = UiLi where Li is the

Levi subgroup such that Ui ∩ Li = 1 and Li/Z(Li) is a group of Lie type of

characteristic p with rank 1. Since Ui is a nontrivial normal subgroup of U , the

normalizer NG(Ui) of Ui in G is an x-invariant parabolic subgroup of G con-

taining Pi and thus B, with F ∗(NG(Ui)) = Op(NG(Ui)) (where F ∗ of a group

denotes its generalized Fitting subgroup). Thus CNG(Ui)〈x〉(Op(NG(Ui))) =

Z(Op(NG(Ui)))×〈x〉. It follows that 〈x〉 is normal in NG(Ui)〈x〉 and NG(Ui)∩
〈x〉 = 1 which imply that [x, NG(Ui)] = 1 and [x, Pi] = 1 for any i, so [x, G] = 1

and x = 1.

For ` = 1, by [G, Theorem 3.39, p. 168] G is isomorphic to one of following

groups: PSL(2, pn), PSU(3, pn), Sz(2m) or 2G2(3
m) where m is odd at least 3.



4 CHRISTINE BESSENRODT, JIPING ZHANG

The Cartan subgroup H is now a self-centralizing subgroup of G such that

N = NG(H) and N/H is the Weyl group (of order 2). Note that NG(U) ≥ B

is x-invariant and thus x centralizes B by noticing that U is self-centralizing in

G, then N is x-invariant and centralized by x. Finally we see that G = BNB

is centralized by x and therefore x = 1, we are done. �

Lemma 2.3. Let G be a finite group and p, q two different primes in π(G). If

Irr(B0(G)q) ⊆ Irr(B0(G)p) then Irr(B0(G/N)q) ⊆ Irr(B0(G/N)p) where N is a

p-subgroup of G contained in the center of G.

Proof. Note that Irr(B0(G)q) = Irr(B0(G/N)q). For any χ ∈ Irr(B0(G)q),

N ≤ Ker (χ), so χ ∈ Irr(B0(G/N)p) and Irr(B0(G/N)q) ⊆ Irr(B0(G/N)p). �

The following observation will later be useful:

Lemma 2.4. Let H and K be two finite groups such that H ∩K is contained

in Z(H) ∩ Z(K) and is cyclic of p-power order. Set G = (H × K)/Z where

Z = {(y, y) : y ∈ H ∩ K}, i.e., G is a central product of H and K. If

Irr(B0(H)p) = ∪1≤i≤mIrr(Bq(H)i) and Irr(B0(K)p) = ∪1≤i≤nIrr(Bq(K)i), then

Irr(B0(G)p) = ∪s,tIrr(Bq(H)s ⊗ Bq(K)t) where s, t are integers with 1 ≤ s ≤
m, 1 ≤ t ≤ n such that Z is contained in the kernel of the q-block Bq(H)s ⊗
Bq(K)t, i.e., Bq(H)s ⊗Bq(K)t is a q-block of G.

3. Blocks of simple groups

3.1. Alternating groups. As usual, we denote the complex irreducible char-

acter of Sn labelled by a partition λ by [λ]. Restricting this to An, we obtain two

associate irreducible characters or one selfassociate character of An, depend-

ing on λ being symmetric or not, respectively. We denote the corresponding

irreducible (self-associate) character of An labelled by a non-symmetric parti-

tion λ by {λ} resp. the pair of associate irreducible characters labelled by a

symmetric partition λ by {λ}±.

We quote the following useful result from [Be] which we will use throughout in

the subsequent arguments without further mentioning.

Lemma 3.1. Let n ≥ 4, p be a prime, p ≤ n.
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(i) Let λ = (n−k, k) be a two-part partition of n. Then {λ}(±) ∈ Irr(B0(An)p)

if and only if p | (n − k + 1)k or we have: n ≡ 2, and n − k ≡ k or

k − 2, and k 6≡ 0 6≡ n− k + 1 (mod p).

(ii) Let λ = (n−k, 1k) be a hook partition of n. Then {λ}(±) ∈ Irr(B0(An)p)

if and only if p | nk(n− k − 1).

For later purposes, we will need a special case of the following result; note

that the corresponding result for the symmetric groups was already proved in

[BMO].

Proposition 3.2. Let n ≥ 4. Let p, q ≤ n be two different primes. Then

Irr(B0(An)p) ∩ Irr(B0(An)q) 6= {1An}.

Proof. Write n = sp + a = tq + b with a ∈ {0, 1, ..., p− 1}, b ∈ {0, 1, ..., q − 1}.
We may assume that a ≥ b; note that then 0 < b + 1 ≤ p. We claim that

also b + 1 ≤ n − p. Indeed, if b + 1 > n − p, then a ≥ b ≥ n − p ≥ a implies

a = b = n − p and thus p = n − a = n − b = tq, a contradiction. Hence we

can consider the character χ = {n− p, b + 1, 1p−(b+1)}(±); this belongs to both

B0(An)p and B0(An)q. Furthermore, χ is non-principal except in the case where

n = p + 1 = tq. In this latter case we choose the character {n− q, 2, 1q−2}(±);

note here that n ≥ q + 2 since q = n = p + 1 leads to the contradiction

n = 3. �

Remark 3.3. Note that on the other hand, as a consequence of [BMO, Cor.

2.7] the irreducible characters of all alternating groups An, n ≥ 5, are princi-

pally separated.

For the principal block containment for the symmetric and alternating groups

we have the following result:

Proposition 3.4. Let n ≥ 3, and let p, q ≤ n be two different primes.

(i) Then Irr(B0(Sn)q) ⊆ Irr(B0(Sn)p) if and only if we have (n, q, p) =

(3, 2, 3) or (n, q, p) = (4, 3, 2).

(ii) Then Irr(B0(An)q) ⊆ Irr(B0(An)p) if and only if we have (n, q, p) =

(3, 2, 3) or (n, q, p) = (4, 3, 2).

Proof. (i) By [OS], such a nontrivial block inclusion only occurs when the

smaller block is of weight 1, and its q-core is “good” with respect to p. As
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the q-core is of the form (a), with n = rq + a, a ∈ {0, 1, . . . , q − 1}, using the

abacus we see that it is p-good only in the stated cases. In fact, in these cases,

the bigger block is the whole set Irr(G).

(ii) In the stated cases we clearly have a block inclusion. Now we have to show

the converse, and we may assume that n ≥ 5. If p = 2, then the assertion

follows from the result for Sn, as in this case each 2-block of An is covered by

exactly one 2-block of Sn. Thus we can now assume that p > 2.

We claim that q > p. If this is not the case then q < p. If pq|n then {n −
q, q} ∈ Irr(B0(An)q) \ Irr(B0(An)p) , which is a contradiction. So pq does not

divide n. If p - n(n − q − 1), then {n − q, 1q} ∈ Irr(B0(An)q) \ Irr(B0(An)p),

a contradiction. Now suppose that p does not divide n. So p|(n − q − 1). If

q|n then {n− q − 1, 1q+1} ∈ Irr(B0(An)q) \ Irr(B0(An)p) , which is impossible.

Thus q does not divide n. Since p|(n − q − 1), q < p ≤ n − q − 1, n > 2q + 1.

Now {n− 2q, 12q} ∈ Irr(B0(An)q) \ Irr(B0(An)p), again a contradiction.

Thus p|n and q - n. Since p > q, n − q > 1. If n < 2q, then q ≥ 3 and we see

that {(n− q)2, 12q−n} ∈ Irr(B0(An)q) \ Irr(B0(An)p). So n ≥ 2q. Note that p|n
and p - (n − q + 1), then {n − q, q} ∈ Irr(B0(An)q) \ Irr(B0(An)p), which is a

contradiction. The contradiction proves the claim. Thus q > p.

We assume first that p - n. Note that p > 2. If p - (n−q−1), then Irr(B0(An)q)\
Irr(B0(An)p) is not empty, so p|(n − q − 1). If q|n then {n − q − 1, 1q+1} ∈
Irr(B0(An)q) \ Irr(B0(An)p), which contradicts the assumption. Thus q - n. If

q|(n−p−1) and n ≥ 2p+4 then {n−p−2, p+2} ∈ Irr(B0(An)q)\Irr(B0(An)p),

a contradiction. So if q|(n − p − 1) then n ≤ 2p + 3 and so n = p + q + 1.

If n = q + p + 1 let λ = {4, 2, 1q−2} for p = 3 and {p + 1, d, 1q−d} for p > 3

where 0 < d < p such that d = 2 if q ≡ 1 and d ≡ q(mod p) otherwise, then

λ ∈ Irr(B0(An)q)\Irr(B0(An)p) , which is a contradiction. Thus q - (n−p−1). If

n > 2q then {n−2q, 12q} ∈ Irr(B0(An)q)\Irr(B0(An)p) (note that p|(n−q−1)),

a contradiction. So n < 2q since q - n. Let q = tp + r with 1 ≤ r ≤ p − 1

then n = (u + t)p + r + 1. Now {n− q, r, 1q−r} ∈ Irr(B0(An)q) \ Irr(B0(An)p)

if 2 ≤ r ≤ p − 1 and {n − q, 2, 1q−2} ∈ Irr(B0(An)q) \ Irr(B0(An)p) if r = 1, a

contradiction.

Thus p|n. Now we have n 6= 2q, q > p > 2. If n = q + 1 then {n − 2, 2} ∈
Irr(B0(An)q) \ Irr(B0(An)p). So we assume in the following that n > q +1. We

see now that {n−q, 2, 1q−2} ∈ Irr(B0(An)q)\Irr(B0(An)p) (note that n−q 6= q),

which is a contradiction. �
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Note that in all the exceptional cases above, the bigger block is the whole set

of irreducible characters.

3.2. Sporadic groups. We collect a number of block separation and block

inclusion properties.

Proposition 3.5. All instances of a sporadic simple group S and a trivial

intersection Irr(B0(S))p ∩ Irr(B0(S))q = {1S} are listed in the following cases:

(a) J1 with p = 3, q = 5.

(b) J4 with p = 5, q = 7.

Proof. This was checked using [Gap] . �

Remark 3.6. Note that on the other hand, as in the case of the simple alter-

nating groups one finds with [Gap] for all sporadic simple groups S:⋂
p∈π(S)

Irr(B0(S)p) = {1S} .

Proposition 3.7. All instances of a sporadic simple group S and primes

p 6= q dividing the order of S where an inclusion Irr(B0(S))q ⊂ Irr(B0(S))p

holds, are listed in the following table; moreover, all instances of equalities⋃
i Irr(B(S))i

q = Irr(B0(S))p are marked by a star.

group (q, p)

M11 (5, 3)∗

M22 (3, 2)∗, (5, 2)∗, (7, 2)∗

M23 (7, 2)∗

M24 (3, 2)∗, (5, 2)∗, (7, 2)∗

J3 (5, 2)

J4 (3, 2)∗, (5, 2)∗, (7, 2)∗, (7, 11)

Co1 (11, 2)

Co2 (7, 2)∗

Fi23 (5, 3)

F3+ (11, 3)

Ly (11, 5)

B (11, 2), (23, 2)∗

M (23, 2)∗

Proof. This was computed using [Gap] . �
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3.3. Finite simple groups of Lie type.

Proposition 3.8. Let T be a finite simple group of Lie type and of character-

istic r. Then, for any prime divisor q 6= r of |T | we have

Irr(B0(T )r) ∩ Irr(B0(T )q) 6= {1T} .

Proof. By [Br], B0(T )q contains at least three different irreducible characters;

but then the result follows as B0(T )r contains all irreducible characters except

the Steinberg character. �

Remark 3.9. In contrast to the previous situations, [BMO, Cor. 4.4] gives

the (few) simple groups G of Lie type where the irreducible characters are not

principally separated (and corresponding non-principal characters not separa-

ble from the principal character).

Proposition 3.10. Let T be a finite simple group of Lie type. Then no prin-

cipal p-block of T is a union of q-blocks of T , for different primes p, q ∈ π(T ).

Proof. Let r be the characteristic of T . As proved in [BN, Theorem 3.3], we see

that Irr(B0(T )s) is not contained in Irr(B0(T )t) for any two different primes s,

t ∈ π(T ) with s 6= r 6= t. Thus p = r or q = r. Since T has only two r-blocks,

one principal and another of defect zero containing only the Steinberg character

St of r-power degree, and note that T has more than one q-block, we have p = r.

Let Bq be a q-block of T such that St ∈ Irr(Bq) then Bq is not of defect zero and

thus |Irr(Bq) ∩ Irr(B0(T )p)| ≥ 1. But Irr(Bq) is not contained in Irr(B0(T )p),

which contradicts the assumption that Irr(B0(T )p) = ∪iIrr(Bq(T )i). �

4. Nilpotence and separation

As explained in the introduction, obtaining information on the structure of a

group in terms of its representations is very much in the tradition of R. Brauer.

A celebrated result of this type is the theorem by Thompson on the p-nilpotence

of a finite group [Th]. We provide here a characterization theorem:

Theorem 4.1. A finite group G is nilpotent if and only if Irr(G) is principally

{p, q}-separated for any two different primes p, q ∈ π(G), i.e.,

Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G}

for any two different prime divisors p, q of the order of G.
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The theorem is a direct corollary of the following proposition.

Proposition 4.2. Let G be a finite group and p a prime divisor of the order

of G. Then Irr(B0(G)p) ∩ Irr(B0(G)q) = {1G} for any prime q 6= p with q||G|
if and only if G = P ×Op′(G) where P ∈ Sylp(G).

Proof. If G = P × Op′(G) then P ≤ Oq′(G), where q 6= p, thus for any χ ∈
Irr(B0(G)p)∩ Irr(B0(G)q) both P and Op′(G) are contained in the kernel of χ.

Hence χ = 1.

Now we prove the “if only” part. If the result is not true let G be a minimal

counterexample. For any minimal normal subgroup N of G we see that G/N

shares the separation property of G, and the minimality of G implies that

G/N = (PNH)/N where both PN and H are normal subgroups of G, and

N = H∩(PN). Furthermore N is the only minimal normal subgroup of G and

the Fitting subgroup F (G) is an r-group for some prime r. If F ∗(G) = F (G)

then G has only one r-block, the principal r-block B0(G)r, which in turn implies

either Irr(B0(G)q) ⊆ Irr(B0(G)p) if p = r or Irr(B0(G)p) ⊆ Irr(B0(G)r) if

p 6= r, where prime q||G| and q 6= p. This is contradictory to the assumption

on G. So F ∗(G) 6= F (G). Let E be the layer of G then F ∗(G) = EF (G).

Note that Z(E) = E ∩ F (G) and E/Z(E) is the direct product of nonabelian

simple groups. If Z(E) 6= 1 then P is normal in G, as Z(E) is contained in

the Frattini subgroup of E and thus that of G. It follows immediately that

G = P ×K where K is the complement of P in G, a contradiction. Therefore

Z(E) = 1 and F ∗(G) = E × F (G), Since G has only one minimal normal

subgroup, F (G) = 1 and thus F ∗(G) = N is the direct product of subgroups

Si isomorphic to a nonabelian simple group S.

Suppose S is a simple group of Lie type of characteristic r. Let q be any prime

divisor of |S| not equal to r. Then by [Br] |Irr(B0(S)r)∩Irr(B0(S)q)| ≥ 2. Since

blocks of N are the tensor product of blocks of Si’s, Irr(B0(N)r)∩Irr(B0(N)q) 6=
{1N}. Thus N is a proper subgroup of G. For any r-block B of G covering

B0(N)r a Sylow r-subgroup R of F ∗(G) is contained in the defect group D of

B. Now there exists an r′-element x in G such that D ∈ Sylr(CG(x)). From

[x, R] = 1 we see that x normalizes each normal subgroup of N isomorphic

to S, then by Lemma 2.2, x = 1. Therefore D is a self-centralizing Sylow r-

subgroup of G and B0(G)r is the only r-block covering B0(N)r. So, if p = r then

|Irr(B0(G)p) ∩ Irr(B0(G)q)| ≥ 2 with q 6= p and q||S|, and if p 6= r, then either



10 CHRISTINE BESSENRODT, JIPING ZHANG

Irr(B0(G)p) ⊆ Irr(B0(G)r) for p prime to |N | or |Irr(B0(G)p)∩Irr(B0(G)r)| ≥ 2

for p||N |, all are contradictory to the separation assumption on Irr(G).

Suppose S ∼= An(n ≥ 5). In fact we have |Irr(B0(An)2)∩ Irr(B0(An)q)| ≥ 2 for

any prime 2 < q ≤ n: Let λ = (qm) if n = mq, let λ = ((d + 1)2, 1n−2(d+1)) if

n = mq+d with 0 < d < q, then 1 6= {λ}(±) ∈ Irr(B0(An)2)∩Irr(B0(An)q). Now

|Irr(B0(G)p)∩ Irr(B0(G)2)| ≥ 2 if p 6= 2 and |Irr(B0(G)q)∩ Irr(B0(G)2)| ≥ 2 for

p = 2 and any q with 2 < q ≤ n. If p > 2 with (p, |N |) = 1 then Irr(B0(G)p) ⊆
Irr(B0(G)2), since Irr(B0(G)2) is the only 2-block covering Irr(B0(N)2).

Now we consider the case where S is a sporadic simple group. Then the

Sylow 2-subgroup of S is self-centralizing in S. For a Sylow 2-subgroup R

of N , CG(R) is a 2-group. Thus B0(G)2 is the only 2-block of G covering

B0(N)2. If (p, |N |) = 1 then p > 2 and Irr(B0(G)p) ⊆ Irr(B0(G)2), which is

contradictory to the assumption. Thus p||N |. By Proposition 3.5, we see that

|Irr(B0(N)2) ∩ Irr(B0(N)q)| ≥ 2 where q is a prime divisor of |N | such that

q > 2 if p = 2 and q = p if p > 2. Thus we have |Irr(B0(G)2)∩Irr(B0(G)q)| ≥ 2,

again contradictory to the assumption. We are done. �

The following corollary is immediate.

Corollary 4.3. A finite group G is nilpotent if and only if Irr(G) is {p, q}-
separated for any two different prime divisors p and q of the order of G.

Remark. A variation of our original proof of Theorem 4.1 and a little bit of

p∗-theory was used by Wolfgang Willems (in an unpublished note) to show that

a trivial intersection of the principal p-block with all other principal q-blocks

implies p-nilpotency.

5. Block inclusions

In [BN] it was shown that for a finite group G and two primes p, q, the equality

Irr(B0(G)p) = Irr(B0(G)q) can only hold in the trivial case when p, q do not

divide the group order, thus confirming a conjecture by Navarro and Willems

[NW] in the case of principal blocks. While the general question of block

inclusions seems to be too broad (see section 3), we consider now the problem

when a principal p-block not only contains a principal q-block, but is in fact

a union of q-blocks. Here we obtain a lot of information about the group

structure.
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Theorem 5.1. Let G be a finite group and p, q two different primes in π(G).

If Irr(B0(G)p) = ∪iIrr(Bq(G)i) where the Bq(G)i’s are some q-blocks of G, then

the following holds:

(1) Op′(G) ≤ Oq′(G),

(2) F ∗(G/Op′(G)) = E(G/Op′(G))Op(G/Op′(G)) where E(G/Op′(G)) is the

product of all components of G/Op′(G) such that each of these components is

either of q′-order or of type

(a) M22, M24 or J4 with p = 2 and q = 3, 5 or 7, or

(b) M23 or Co2 with p = 2 and q = 7, or

(c) B or M with p = 2 and q = 23, or

(d) M11 with p = 3 and q = 5.

Proof. Since Irr(B0(G)p) = ∪i(Irr(Bq(G)i), we see that one of the Bq(G)i’s is

the principal q-block of G, say Bq(G)1 = B0(G)q. Also note that Op′(G) =

∩χ∈Irr(B0(G)p)Ker χ ≤ ∩χ∈Irr(B0(G)q)Ker χ = Oq′(G), so (1) is true.

To prove (2), we may now assume without loss of generality that Op′(G) = 1.

For any normal subgroup M of G, Irr(B0(G)p) covers only the principal p-

block of M . If bq is a q-block of M covered by some Bq(G)i then for any

φ ∈ Irr(bq) there exists an irreducible character χ ∈ Irr(Bq(G)i) such that

〈ResM(χ), φ〉 6= 0. It follows from χ ∈ Irr(B0(G)p) that Irr(bq) ⊆ Irr(B0(M)p).

Thus Irr(B0(M)p) = ∪iIrr(Bq(M)i). Furthermore this is also true for any

subnormal subgroup of G. If F ∗(G) is solvable then F ∗(G) = F (G) = Op(G)

and the theorem is true for G. If F ∗(G) is not solvable and E(G) is a q′-group,

we are done. Now let T be a normal subgroup of F ∗(G) which is nonabelian

and quasi-simple of order divisible by pq. So T is a component of G. Note

that the center Z(T ) = Op(T ) and Irr(B0(T )p) = ∪iIrr(Bq(T )i). Consider

Irr(B0(T/Z(T ))p) a subset of Irr(B0(T )p), then for any χ ∈ Irr(B0(T/Z(T ))p),

χ ∈ Irr(Bq(T )i) for some i. Let b be a q-block of T/Z(T ) such that χ ∈ Irr(b).

As Z(T ) ≤ Oq′(T ), Irr(b) = Irr(Bq(T )i). Therefore Irr(B0(T/Z(T ))p) is the

union of the sets of all irreducible characters in some q-blocks of T/Z(T ) and

for convenience we now may assume that Op(T ) = Z(T ) = 1.

In the case where T is a simple group of Lie type, or when T = An (n ≥ 5) we

have already seen in section 3 that we have no such block union for a principal

block of T . Therefore T is a sporadic simple group. In this case we have noted

in Proposition 3.7 that exactly the types listed from (a) to (d) occur. �
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Theorem 5.2. Let G be a finite group such that all components of G are

of order divisible by pq. Then Irr(B0(G)p) = ∪1≤i≤mIrr(Bq(G)i) if and only

if Op′(G) ≤ Oq′(G) and all components of G/Op′(G) are of type as listed in

Theorem 5.1(a) to (d).

Proof. By Theorem 5.1 we need only prove the “if” part. Since Op′(G) ≤
Oq′(G) we may assume that Op′(G) = 1. Set H = F ∗(G). It follows that

F (H) = F (G) = Op(G) and H = S0S1S2...Sf where S0 = Op(G) and each

Si (i > 0) is a quasisimple normal subgroup of H with Z(Si) cyclic of order

dividing 4 [CC].

We claim that Irr(B0(H)p) = ∪iIrr(Bq(H)i). If p = 3 then Si is isomorphic

to M11 for i > 0 and H = S0 × S1 × S2 × ... × Sf , so the claim holds. Now

p = 2 and Si(i > 0) is of type as listed in Theorem 5.1 (a) to (c). Note that

Irr(B0(Sj)p) = ∪iIrr(Bq(Sj)
i) for 0 ≤ j ≤ f by [Gap] . If f = 1 then H is

the central product of S0 and S1, and by Lemma 2.4 the claim holds. For

f > 1 we may assume by induction that Irr(B0(L)p) = ∪iIrr(Bq(L)i) where

L = S0S1S2...Sf−1, and then again by Lemma 2.4 for L and Sf we see that the

claim holds.

Note that the Sylow p-subgroup of each Si is a self-centralizing subgroup of

Si, the same is true for H. Let Bp be a p-block of G covering B0(H)p with

defect group D. We see that D ∩H ∈ Sylp(H) and CH(D ∩H) = Z(D ∩H).

For the defect group D, there exists an element x ∈ G of p′-order such that

D ∈ Sylp(CG(x)). Since x induces a permutation on the set {(SiS0)/S0 :

i = 1, 2, ..., f} and [x, D ∩ H] = 1, x fixes each (SiS0)/S0, thus x induces an

automorphism of each Si. If p = 3 then Si(i > 0) is of type M11 and from

Out(M11) = 1 we know that x induces an inner automorphism of Si. Note

that x centralizes a Sylow 3-subgroup of Si, x centralizes Si, so [x, H] = 1.

Since H = F ∗(G), x ∈ H and x ∈ CH(D ∩ H) = Z(D ∩ H), thus x = 1 and

D ∈ Sylp(G). In fact the argument for x works for any y ∈ O3′(CG(D)) and

we conclude that y = 1. For p = 2, note that Out(M) is of order at most 2

where M is an arbitrary sporadic simple group, we see that the argument for

p = 3 works also for p = 2. Hence B0(G)p is the only p-block of G covering

B0(H)p and the theorem follows immediately. �
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6. Some remarks and open questions

As mentioned at the beginning, clearly if Irr(G) is π-separated, then Irr(G)

is principally π-separated. Concerning the converse, we have the following

conjecture:

Conjecture For any finite solvable group G, Irr(G) is π-separated if and only

if Irr(G) is principally π-separated.

Note that the converse does not hold in general. For example, for the alter-

nating group A7 and π = {2, 3, 7}, the set Irr(A7) is not π-separated (the

two characters labelled by (4, 13) are not separated), but Irr(A7) is principally

π-separated.

We have seen in this paper that there is a large spectrum of behavior with

respect to intersections of principal blocks. For the alternating groups An

and the symmetric groups Sn, n ≥ 5, as well as for the sporadic groups the

intersection over all principal blocks is trivial, i.e., it only contains the principal

character. What can one say about this intersection for an arbitrary finite

group? What is its size and how is this related to group theoretical properties?

Any non-principal character in this intersection may be considered as “strongly

glued” to the principal character; we may also ask about “weak” gluing among

characters, which is given by the property that the characters belong to the

same p-block for some p dividing the group order. For example, when are all

irreducible characters of the group weakly glued to the principal character, i.e.,

when is every irreducible character contained in some principal block?
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