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Abstract. Külshammer, Olsson and Robinson conjectured that a certain set of numbers

determined the invariant factors of the `-Cartan matrix for Sn (equivalently, the invariant

factors of the Cartan matrix for the Iwahori-Hecke algebra Hn(q), where q is a primitive

`th root of unity). We call these invariant factors Cartan invariants.

In a previous paper, the second author calculated these Cartan invariants when ` =

pr, p prime, and r ≤ p and went on to conjecture that the formulae should hold for

all r. Another result was obtained, which is surprising and counterintuitive from a block

theoretic point of view. Namely, given the prime decomposition ` = pr11 · · · p
rk
k , the Cartan

matrix of an `-block of Sn is a product of Cartan matrices associated to pri
i -blocks of Sn.

In particular, the invariant factors of the Cartan matrix associated to an `-block of Sn
can be recovered from the Cartan matrices associated to the pri

i -blocks.

In this paper, we formulate an explicit combinatorial determination of the Cartan

invariants of Sn–not only for the full Cartan matrix, but for an individual block. We

collect evidence for this conjecture, by showing that the formulae predict the correct

determinant of the `-Cartan matrix. We then go on to show that Hill’s conjecture implies

the conjecture of Külshammer, Olsson and Robinson.

1. Introduction

The theory of generalized blocks of symmetric groups was initiated by Külshammer,
Olsson and Robinson in [11]. Using character-theoretic methods, they showed that many
invariants of the usual block theory of symmetric groups over a field of characteristic p do
not depend on p being a prime. This led the authors to define ‘`-blocks’ of symmetric groups
and a related `-modular representation theory. They defined an appropriate analogue of
the Cartan matrix associated to Sn for this theory and even conjectured that a certain
set of numbers determined the invariant factors of this matrix [11, Conjecture 6.4]. In a
related paper [2], Bessenrodt and Olsson conjectured a formula for the determinant of the
Cartan matrix.

Using a new method developed in [12, 1, 7, 10], Brundan and Kleshchev [4] calculated an
explicit formula for the determinant of the Cartan matrix of a block of the Iwahori-Hecke
algebra, Hn, with parameter q a primitive `th root of unity. Donkin [5] showed that there
is a direct link between `-blocks of Sn and blocks of Hn. In particular, their respective
Cartan matrices have the same determinant and invariant factors. Using this, together
with the results of [4] and [2], Külshammer, Olsson and Robinson [11] verified the formula
conjectured by Bessenrodt and Olsson [2] (see also the remarks at the end of [2]). It should
also be noted that in [3], Bessenrodt, Olsson and Stanley obtained a more elementary proof
of the formula for the determinant of the full Cartan matrix.
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In [8], Hill investigated the invariant factors of the Cartan matrix associated to an
individual block of Hn using the methods developed in [4]. When ` = pr is a power of a
prime satisfying r ≤ p these numbers were computed (see [8, Theorem 1.3]). Moreover, he
conjectured that the same formula held for arbitrary r.

In [8] also another result was obtained, which is surprising and counterintuitive from a
block theoretic point of view. Namely, given the prime decomposition ` = pr11 · · · p

rk
k , the

Cartan matrix of an `-block of Sn is a product of Cartan matrices associated to prii -blocks
of Sn. Indeed, the invariant factors of the Cartan matrices of the prii -blocks are nothing
but the elementary divisors of the Cartan matrix of the associated `-block. In particular,
the invariant factors of the Cartan matrix associated to an `-block of Sn can be recovered
from the Cartan matrices associated to the prii -blocks (see [8, Theorem 1.1, 1.2]). For
the convenience of the reader, we explain exactly how to obtain this result in Remark 3.6
below.

We want to emphasize that – going beyond the conjecture in [11] – we conjecture here
an explicit combinatorial determination of the invariants not only for the full `-Cartan
matrix of Sn, but even for the Cartan matrices of the `-blocks, see Conjecture 5.4. In our
context this is a very natural refinement. In principle, it should also be possible to obtain
a block version of the conjecture in [11] by using [11, Theorem 6.1] and methods similar
to the ones applied in [2]; an explicit combinatorial sorting of the invariants given by [11]
into blocks has not been described so far, though.

In the remainder of the paper, we collect evidence for this conjecture (and the conjecture
in [8], respectively), by showing that the formulae predict the correct determinant for the
`-Cartan matrices. We then go on to show that the conjecture in [8] implies the conjecture
in [11]. Thus, in particular, the results in [8] mentioned above imply that the latter
conjecture holds when any prime divisor p in ` occurs in ` with exponent at most p. For
the convenience of the reader, we also calculate [11, Examples 6.5, 6.6, 6.7] using our
methods (see Examples 3.11-3.13).

We would like to point out that a lot of the machinery required for the proofs in this
article has already been developed in [2]. We find this striking, and hope that the exposition
here will help to elucidate the relationship between this new approach to the representation
theory of symmetric groups and the classical block and character theoretic methods.

2. Background and preliminaries

2.1. Kac-Moody Algebras, Iwahori-Hecke algebras and Cartan Matrices. In this
section we give a brief description of the connection between highest weight representations
of Kac-Moody algebras and the representation ring of Iwahori-Hecke algebras. We refer
the reader to [4] for details in this case, and [10] for the general theory.

Let ĝ be the affine Kac-Moody algebra of type A(1)
`−1, working always over the field C

of complex numbers. Let e0, . . . , e`−1, and f0, . . . , f`−1 be the Chevalley generators of ĝ,
and τ : U(ĝ)→ U(ĝ) the Chevalley anti-involution defined by τ(ei) = fi (i = 0, . . . , `− 1).
We are interested in the basic representation V = V (Λ0) of ĝ. It is the irreducible highest
weight representation with highest weight satisfying Λ0(hi) = δi0 (hi = [ei, fi]), see [9].
Fix a nonzero highest weight vector v+ ∈ V . The Shapovalov form (·, ·)S : V × V → C is
the unique Hermitian form on V satisfying (v+, v+)S = 1 and (xv, v′)S = (v, τ(x)v′)S for
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all x ∈ U(g) and v, v′ ∈ V . The weights of V are of the form wΛ0 − dδ, where w is an
element of the affine Weyl group, d ∈ Z≥0, and δ is the null root (see [9, §12.6]). Let UZ

be the Kostant-Tits Z-subalgebra of U(ĝ) generated by the divided powers e(n)
i := eni /n!

and f
(n)
i := fni /n! (0 ≤ i ≤ `− 1, n ≥ 1) in the Chevalley generators. Define VZ = UZv+.

The Shapovalov form restricts to a symmetric bilinear form (·, ·)S : VZ × VZ → Z.
The lattice VZ is related to the Iwahori-Hecke algebra of the symmetric group Sn with

parameter q ∈ F×, Hn = Hn(q), over an algebraically closed field F (CharF = p ≥ 0) and
with finite quantum characteristic `. The quantum characteristic of Hn is defined to be
the number

` = min{ e ≥ 2 | 1 + q + · · ·+ qe−1 = 0 }
if it exists, and ` =∞ otherwise. For finite `, q = 1 implies ` = p andHn(1) = FSn and q 6=
1 implies q is a primitive `th root of unity. The algebra Hn is not semisimple. The simple
Hn-modules are labeled by the set Par∗` (n) of `-regular partitions (see section 2.2), and the
same is true for their projective covers (i.e., the projective indecomposable modules). The
main problem is to describe the composition multiplicities [Pλ : Lµ] of the simple module
Lµ inside the projective cover Pλ of Lλ, λ, µ ∈ Par∗` (n).

Let Kn = K(Hn) be the Grothendieck group of the category of finitely generated pro-
jective Hn-modules. The Cartan pairing (·, ·)C : Kn×Kn → Z is defined on the projective
indecomposable modules by (Pλ, Pµ)C = [Pµ : Lλ]. The Grothendieck group Kn decom-
poses into blocks, and two irreducibles are in the same block if, and only if, the partitions
labeling them have the same `-core and `-weight, see [14], and the blocks of Kn are or-
thogonal with respect to the Cartan pairing. The Cartan matrix

C`(n) := ([Pµ : Lλ])λ,µ∈Par∗` (n)

is the Gram matrix of this form. The matrix C`(n) is block diagonal with blocks corre-
sponding to the blocks of Kn.

Now, by [1, 7, 10], we have
VZ ∼=

⊕
n≥0

Kn =: K

as UZ-modules, with the action of the e(n)
i (resp. f

(n)
i ) are described in terms of certain

restriction functors (resp. induction functors). Under this isomorphism, the Shapovalov
form corresponds to the Cartan pairing and the (wΛ0−dδ)-weight space of VZ corresponds
to the block of K with `-core associated to wΛ0 and `-weight d, see [12, §5.3] for details.

2.2. Partitions and Multipartitions. Let Par(d) be the set of all partitions of d, and
p(d) = |Par(d)|. Given an integer ` ≥ 1, we say that λ ∈ Par(d) is `-class regular if no part
of λ is divisible by `, and we say λ is `-regular if no part of λ is repeated ` (or more) times.
Let Par`(d) (resp. Par∗` (d)) denote the set of all `-class regular (resp. `-regular) partitions
of d, and p`(d) = |Par`(d)| (p∗` (d) = |Par∗` (d)|, resp.). Finally, define

Par =
⋃
d≥0

Par(d), Par` =
⋃
d≥0

Par`(d), and Par∗` =
⋃
d≥0

Par∗` (d).

It is well known that the generating function P (q) =
∑

d≥0 p(d)qd is given by

P (q) =
∏
i≥1

1
1− qi

.
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The generating function P`(q) for the numbers p`(d) is

P`(q) =
P (q)
P (q`)

.(1)

There is a bijection G : Par`(d) → Par∗` (d) known as the Glashier bijection [6]. Hence,
P`(q) is the generating function for p∗` (d) as well.

Define the set of `-multipartitions of d to be

M`(d) = {λ = (λ(1), . . . , λ(`)) |λ(i) ∈ Par(di) for 1 ≤ i ≤ ` and d1 + · · ·+ d` = d}.

and set M` =
⋃
d≥0M`(d). The generating function for the numbers k(`, d) = |M`(d)|, i.e.,∑

d≥0 k(`, d)qd, is just P (q)`.

2.3. Divisors, the Total Length Function, and Cartan Matrices. In this section,
we review some facts about generating functions that will be used in calculations below;
these are mostly contained in [2].

First, observe that the generating function for the number of divisors of an integer d is

T (q) =
∑
i≥1

qi

1− qi
.

For a partition λ, let l(λ) denote its length, i.e., the number of its (non-zero) parts. Then
l(d) =

∑
λ∈Par(d) l(λ) is the total length function, with corresponding generating function

L(q) :=
∑

d≥0 l(d)qd. This is related to the number of divisors of d by the equation (see
[2, Proposition 2.1])

L(q) = P (q)T (q).(2)

More generally, these functions have `-class regular versions. Indeed,

T (q) = T (q`) + T`(q)(3)

where T`(q) is the generating function for the number of divisors of d which are not divis-
ible by `. Let l`(d) =

∑
λ∈Par`(d) l(λ) be the total length function for the class `-regular

partitions, and L`(q) :=
∑

d≥0 l`(d)qd. Then one has (see [2, Proposition 2.2])

L`(q) = P`(q)T`(q).(4)

Now, one easily concludes (see [2, Corollary 2.3])

L(q) = P`(q)L(q`) + P (q`)L`(q).(5)

We now turn our attention to some facts about the determinant of the Cartan matrix
C`(n) for the Iwahori-Hecke algebra Hn with quantum characteristic `. As explained in
the introduction, this matrix encodes the composition multiplicities of simple modules
inside projective indecomposable modules. In [4], Brundan and Kleshchev proved that the
determinant of a given block of C`(n) is a specific power of `. Combining the result from
[4], together with results of Bessenrodt and Olsson (see the remarks at the end of [2]) and
Donkin, [5], Külshammer, Olsson and Robinson, [11], described the exponents of detC`(n)
as follows (see [2, Theorem 3.3]). Let detC`(n) = `c`(n) and C`(q) :=

∑
n≥0 c`(n)qn.

Theorem 2.1. We have
C`(q) = P`(q)T (q`) .
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A more direct proof of this result (the so-called strengthened Mathas’ Conjecture), based
on the theory of Hall-Littlewood symmetric function was given later by Bessenrodt, Olsson
and Stanley, [3]. We also note that this result can easily be recovered from [8] (see Remark
3.3 below).

For later purposes we note that from this result and (1) we may immediately deduce the
following, perhaps surprising, reduction formula:

Corollary 2.2. Let a, b ∈ N. Then

Cab(q) = Pa(q)Cb(qa) .

Since we usually work with a block version of this determinant, we explain how to
reconstruct the full determinant from this data. Blocks of C`(n) are labeled by `-cores
in Par(n − `w), 0 ≤ w ≤ bn` c. Here, w is the associated `-weight of the block. Let
d0
` (n) be the number of `-cores in Par(n). Then the corresponding generating function
D0
` (q) :=

∑
n≥0 d

0
` (n)qn is given by

D0
` (q) =

P (q)
P (q`)`

(6)

(see [16]). Let `b`(w) be the determinant of a Cartan matrix of a block of weight w, and
let B`(q) be the associated generating function for the numbers b`(w). The connection
between the generating functions for the full Cartan determinant and the block Cartan
determinant is then given by

C`(q) = B`(q)D0
` (q).(7)

Now [2, Theorem 3.4], together with the remarks at the end of [2] and (2) give

B`(q) = P (q)`−1T (q) = P (q)`−2L(q).(8)

3. The Invariants

The invariant factors of the Cartan matrix for Hn are determined by the Shapovalov
form on the lattice VZ as described in the introduction. To explain the structure of VZ,
consider the simple finite dimensional Lie algebra g (over C), with (Lie) Cartan matrix
A = (aij)`−1

i,j=1, simple roots {α1, . . . , α`−1}, and root system Q =
⊕

i Zαi. Then, as UZ-
modules,

VZ ∼= Z[Q]⊗ Λ

where Z[Q] is the group algebra of Q and where

Λ =
`−1⊗
i=1

Λ(i), and Λ(i) = lim←
k

Z[x(i)
1 , . . . , x

(i)
k ]Sk

is the ring of symmetric functions in the variables colored by i. The ring Λ(i) is principally
graded and the dth graded component Λ(i)

d is spanned over Z by the complete homoge-
neous symmetric functions, hλ(x(i)), and the monomial symmetric functions, mλ(x(i)),
λ ∈ Par(d). See [4, Theorem 4.5] and [8, §3] for details.

Identifying VZ via this isomorphism, the highest weight vector is then e0 ⊗ 1 ∈ VZ, and
a basis for VZ is given by

{ eα ⊗ hλ |α ∈ Q, λ ∈M`−1(d)},
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where hλ = hλ(1)(x(1)) · · ·hλ(`−1)(x(`−1)) if λ = (λ(1), . . . , λ(`−1)).
It was shown in [4, Lemma 4.1], that in this basis the Shapovalov form is given by

(eα ⊗ hλ, eβ ⊗ hµ)S = δαβ〈hλ, hµ〉S ,

where 〈·, ·〉S is the Shapovalov form on Λ. To describe this form more explicitly, let

XA,d = (〈mλ, hµ〉S)λ,µ∈M`−1(d) and XA =
⊕
d≥0

XA,d,

(here mλ = mλ(1)(x(1)) · · ·mλ(`−1)(x(`−1))). The matrix XA,d can be regarded as a linear
transformation via the mapping

ϕA : Λd → Λd, ϕA(hλ) =
∑

µ∈M`−1(d)

(XA)λµhµ

for all λ ∈M`−1(d). Let
Cart(A, d) = Λd

/
ϕA (Λd)

denote the corresponding finite group. Note that XA,d has the same invariant factors as a
submatrix of C`(n) corresponding to an `-block of weight d, and that these also give the
orders of the cyclic factors of the finite abelian group Cart(A, d).

We now describe the matrix XA. Let λ ∈ Par and let

Ω(λ) = {i = (i1, . . . , il(λ))|1 ≤ ik ≤ `− 1 for 1 ≤ k ≤ l(λ) and ij ≤ ij+1 if λj = λj+1}.

Given a multipartition λ = (λ(1), . . . , λ(`−1)) ∈ M`−1(d), associate a pair (λ, i), where
λ ∈ Par(d) and i ∈ Ω(λ) as follows. Write λ as a single partition λ = (λ1 ≥ λ2 ≥ · · · ).
Each part λk belongs to some λ(ik). Hence, we obtain a sequence i = (i1, i2, . . .) ∈ Ω(λ) by
following the rule that ij ≤ ij+1 if λj = λj+1. The map λ 7→ (λ, i) is a bijection, see [8,
Notation 3.1 and 3.2] for details. For any integer r, let mr(λ) denote the multiplicity of r
as a part of λ, and set

zλ =
∏
r≥1

rmr(λ) ·mr(λ)! .

In this notation, the Shapovalov form on Λ is defined on the power sum symmetric functions
by

〈pλ, pµ〉S = δλµai1j1ai2j2 · · · ai`−1j`−1
zλ

where λ 7→ (λ, i) and µ 7→ (λ, j) (see [13, VI §10]).
Given a k × k matrix Y = (yij)ki,j=1, define its mth symmetric power Sm(Y ) to be the

matrix with rows (resp. columns) labeled by m-tuples (i1 ≤ i2 ≤ · · · ≤ im) =: i, and with
(i, j) entry equal to

yi1j1yi2j2 · · · yimjm .

Define
BA,d =

⊕
λ∈Par(d)

Sm1(λ)(A)⊗ · · · ⊗ Smd(λ)(A), BA =
⊕
d≥0

BA,d.

Notice that the rows and columns of the matrix BA,d are naturally labeled by M`−1(d) via
the bijection λ↔ (λ, i) above. Let Λ denote the (uncolored) ring of symmetric functions,
and Λd its dth graded component (i.e., the span of all symmetric functions of homogeneous
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degree d). Let M(p,m) be the transformation matrix between the power sum basis and
the monomial basis of Λ, i.e., given by pλ =

∑
µ∈ParM(p,m)λµmµ. We have, by [8, §3],

XA = (M(p,m)⊗`−1)−1BAM(p,m)⊗`−1(9)

where M(p,m)⊗`−1 is the matrix given by pλ =
∑

µ∈M`−1
M(p,m)λµmµ.

Define a bilinear pairing 〈·, ·〉` : Λ× Λ→ Z on the power sum symmetric functions by

〈pλ, pµ〉` = δλµ`
l(λ)zλ .

Define the matrix X`,d = (〈mλ, hµ〉`)λ,µ∈Par(d), and X` =
⊕

d≥0X`,d. The matrix X` re-
sembles the matrix XA (they even agree when ` = 2). In fact, the matrix X` is constructed
in the same manner as XA, with the matrix A replaced by the 1 × 1 matrix (`). Indeed,
let

B`,d = diag{`l(λ)|λ ∈ Par(d)} and B =
⊕
d≥0

B`,d.(10)

We have (see [8, §3])

X` = M(p,m)−1B`M(p,m) .(11)

As above, the matrix X`,d can be regarded as a linear transformation via the map ϕ` : Λ→
Λ, ϕ`(hλ) =

∑
µ(X`,d)λµhµ. Let Cart(`, d) = Λd/ϕ`(Λd) denote the corresponding finite

group.
Finally, we relate the matrix X` to XA. To this end, recall that the Smith normal form

Σ(X) of a matrix X is a diagonal matrix with entries equal to the elementary divisors
of X. Let U and V be unimodular matrices (i.e., integer matrices of determinant ±1)
transforming the Lie Cartan matrix A to its Smith form, i.e.,

UAV = Σ(A) = diag{1, 1, . . . , 1, `}.

Define the matrix BU by the formulae

BU,d =
⊕

λ∈Par(d)

Sm1(λ)(U)⊗ · · · ⊗ Smd(λ)(U), ; BU =
⊕
d≥0

BU,d

and similarly forBV . Then, by [8, Proposition 3.3], the matricesXU = M(p,m)−1BUM(p,m)
and XV = M(p,m)−1BVM(p,m) are unimodular. Moreover, the matrix

XU,dXA,dXV,d = (I ⊗X`)d

=
⊕

0≤s≤d
Id−s ⊗X`,s(12)

where I is the identity matrix on Λ⊗`−2 (resp. Id−s is the identity on the degree d − s
component of Λ⊗`−2). It follows that the matrix Id−s has rows and columns labeled by
M`−2(d− s). Finally, we observe that this matrix has the same invariant factors as XA,d.
Hence, we have the following:

Theorem 3.1. ([8, Theorem 1.1]) Let b1,s, . . . , bh,s be the invariant factors of X`,s (h =
p(s)), so Cart(`, s) is a finite abelian group with cyclic factors of these orders. The finite
abelian group Cart(A, d) is a direct sum of k(` − 2, d − s) copies of Cart(`, s) for each
0 ≤ s ≤ d.
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In particular, the coefficient of qd−s in the generating series P (q)`−2 gives the number
of cyclic factors Z/bi,sZ that each bi,s contributes to Cart(A, d).

Remark 3.2. In [8], the statement of the theorem above was (slightly) incorrect. The
theorem stated that the invariant factors of XA,d were the diagonal entries of the matrix⊕

0≤s≤d
Id−s ⊗ Σ(X`,s).

In general, these are not equal to the diagonal entries of

Σ(XA,d) = Σ

 ⊕
0≤s≤d

Id−s ⊗ Σ(X`,s)


unless ` is a power of a prime (though there is an easy algorithm for going from the first
set of diagonal entries to the second in any specific case).

Remark 3.3. We now briefly indicate how to recover Theorem 2.1 from [8]. To do this
we deduce equation (8) directly from (12). We have detX`,s = `l(s) as can easily be seen
from (10) and (11). So (12) implies that detXA,d = `b`(d) where b`(d) is the coefficient of
qd in the generating series P (q)`−2L(q), which gives (8). Theorem 2.1 may now be deduced
from (6) and (7).

Theorem 3.4. ([8, Theorem 1.2]) Let a, b ∈ Z≥2. Then, Xab,d = Xa,dXb,d. Moreover, if
(a, b) = 1, then Σ(Xab,d) = Σ(Xa,d)Σ(Xb,d).

Proof: Using equations (10) and (11), it is easy to see that Xab,d = Xa,dXb,d. The second
statement follows immediately by [15, Theorem II.15] since

(detXa,d,detXb,d) = 1.

�
Therefore, it is enough to compute the invariant factors of the matrices Xpr,d = (Xp,d)r

for every prime p and r ≥ 1. In [8], these numbers were calculated in the case when r ≤ p.
Indeed, let νp : Z → Z≥0 be the p-adic valuation map (i.e., νp(n) = k if n = pkq with
(q, p) = 1). For a positive integer a, define the number

dp(a) =
∑
j≥1

⌊
a

pj

⌋
.(13)

Note that by the Legendre formula, it is known that pdp(a) = (a!)p is the p-part of a!. Let
λ = (1m1(λ)2m2(λ) . . .) and define the p-defect of λ to be

dp(λ) =
∑
n≥1

dp(mn(λ))(14)

By a well-known result of Brauer on the invariants of the p-Cartan matrix of a finite group,
together with [5], we have

cp(n) =
∑

λ∈Parp(n)

dp(λ) .(15)
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Furthermore, we define for λ = (1m1(λ)2m2(λ) . . .):

ϑpr(λ) =
∏
n≥1

0≤νp(n)<r

p(r−νp(n))mn(λ)+dp(mn(λ)).(16)

Defining, for any integers `, k ≥ 1, `k = `/(`, k), we may then also write the numbers
ϑpr(λ) in the form

ϑpr(λ) =
∏
n≥1

0≤νp(n)<r

(pr)n
mn(λ)(mn(λ)!)p.(17)

Note that this clearly implies that

ϑpr(1d) = prd(d!)p

is the unique largest p-power among all ϑpr(λ), λ ∈ Par(d).

The following was proved in [8, Theorem 1.3]:

Theorem 3.5. Let r ≤ p. Then, the invariant factors of Xpr,d are the numbers

ϑpr(λ) , λ ∈ Par(d).

In particular, ϑpr(1d) = prdd!p is the unique largest invariant factor of Xpr,d.

Remark 3.6. To recover the invariant factors of the matrix XA,d, let ` = pr11 · · · prmm be
the prime decomposition of `, and for 1 ≤ i ≤ m, let Ei = {Ei(λ)|λ ∈ M`−1(d)} be the
(multi)set of invariant factors of the matrix ⊕

0≤s≤d
Id−s ⊗ Σ(Xp

ri
i ,s

)

 .

Evidently, E = E1 ∪ · · · ∪ Em is the set of elementary divisors of the matrix XA,d.
There is an easy algorithm to determine the invariant factors from E . Indeed, let

k = k(` − 1, d) and for each 1 ≤ i ≤ m, label λi,1, λi,2, . . . , λi,k ∈ M`−1(d) so that
Ei(λi,1)|Ei(λi,2)| · · · |Ei(λi,k). For 1 ≤ j ≤ k, set dj = E1(λ1,j)E2(λ2,j) · · ·Em(λm,j). Then,
d1| · · · |dk are the invariant factors of XA,d.

Note that if ri ≤ pi for all i, then we may take Ei(λ) = ϑprii
(λ(`−1)). Of course, we

conjecture that this should work for arbitrary `.

We now make the following crucial definition.

Definition 3.7. Let ` =
∏r
i=1 p

ri
i be the prime decomposition of `. For λ ∈ Par(d) we set

ϑ`(λ) =
r∏
i=1

ϑprii
(λ).

Then, the graded invariant factors of X`,d are defined to be the numbers

ϑ`(λ) , λ ∈ Par(d) .

If λ ∈ Par(d), we say that ϑ`(λ) has degree d.

The next Theorem follows immediately from Theorems 3.4 and 3.5, and the previous
definition.



10 CHRISTINE BESSENRODT AND DAVID HILL

Theorem 3.8. Let ` =
∏
prii be the prime decomposition of ` and assume ri ≤ pi for all

i. Then, the finite group Cart(`, d) is a direct product of cyclic groups with orders given
by the graded invariant factors of X`,d.

Now, for r > p, we conjecture that the numbers ϑpr(λ), λ ∈ Par(d) are the invariant
factors of Xpr,d. Hence, from Theorem 3.4 and the previous definition, we arrive at the
following conjecture.

Conjecture 3.9. For any `, the finite group Cart(`, d) is a direct product of cyclic groups
with orders given by the graded invariant factors of X`,d.

In the remaining sections we build evidence for this conjecture. But first, we determine
the multiplicity of a graded invariant factor in C`(n), and compute an example.

Proposition 3.10. Let mn
` (d) be the coefficient of qn−`d in the generating series

P`(q)
P (q`)

.

Then, each λ ∈ Par(d), d ≤
⌊
n
`

⌋
, contributes mn

` (d) graded invariant factors ϑ`(λ) to C`(n).

Proof: The number of blocks at n of weight w is the number of `-cores in Par(n −
`w). This is the coefficient of qn−`w in the generating series P (q)/P (q`)` by equation (6).
Therefore, by Theorem 3.1 and equation (1), each λ ∈ Par(d) contributes the number ϑ`(λ)
as a graded invariant factor of C`(n) mλ times, where mλ is the coefficient of qn−`d in the
generating series

P (q)
P (q`)`

P (q`)`−2 =
P`(q)
P (q`)

.

�

Example 3.11. Let n = 8, ` = 4. We calculate the (graded) invariant factors of the
(principal) `-block of weight 2 as given by the ϑ4(λ), where λ runs over all partitions of
d ≤ 2. These are ϑ4(∅) = 1,ϑ4((1)) = 4, ϑ4((2)) = 2, and ϑ4((12)) = 32 of degrees 0, 1, 2
and 2, respectively. Finally, their respective multiplicities are k(2, 2−0) = 5, k(2, 2−1) = 2,
k(2, 2− 2) = 1, and k(2, 2− 2) = 1.

In summary, the graded invariant factors are 321, 42, 21, 15; here the exponents denote
multiplicity. Observe that these graded invariants coincide with the numbers in [11, Ex-
ample 6.5].

Example 3.12. Let n = 18, ` = 6. We give the graded invariant factors of C6(18) in the
table below, writing the number of contributions in each degree towards the invariants of
C6(18) in the form∑

w

(mult. of a graded inv. factor in a block of weight w)× (# of `-cores of n− `w).

Therefore, the graded invariant factors of C6(18) are: 1222, 21, 39, 654, 181, 729, 12961;
the exponents denote multiplicity.

Example 3.13. Let n = 24, ` = 6. We give the graded invariant factors of C6(24) in the
table below, writing the number of contributions in each degree towards the invariants of
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Degree d Graded Invariant Factors Multiplicity in degree d
0 1 40× 1 + 14× 5 + 4× 20 + 1× 32 = 222
1 6 14× 1 + 4× 5 + 1× 20 = 54
2 3, 72 4× 1 + 1× 5 = 9
3 2, 18, 1296 1× 1 = 1

Table 1. Graded Invariant Factors of C6(18)

C6(24) in the form∑
w

(mult. of a graded inv. factor in a block of weight w)× (# of `-cores of n− `w).

Degree d Graded Invariant Factors Multiplicity in degree d
0 1 105× 1 + 40× 5 + 14× 20 + 4× 32 + 1× 38 = 751
1 6 40× 1 + 14× 5 + 4× 20 + 1× 32 = 222
2 3, 72 14× 1 + 4× 5 + 1× 20 = 54
3 2, 18, 1296 4× 1 + 1× 5 = 9
4 3, 9, 12, 216, 31104 1× 1 = 1

Table 2. Graded Invariant Factors of C6(24)

Therefore, the graded invariant factors of C6(24) are: 1751, 29, 354+1, 6222, 9, 12, 189,
7254, 216, 12969, 31104; the exponents denote multiplicity.
The graded invariants of the Cartan matrix of the (principal) 6-block of weight 4 are given
by 1105, 24, 314+1, 640, 9, 12, 184, 7214, 216, 12964, 31104.

It is instructive to observe that most of the calculations required for this example are
already done in Example 3.12.

Again, note that the graded invariants computed above for the full Cartan matrix are
precisely the numbers r`(λ), λ ∈ Par`(n), in [11, Examples 6.6, 6.7]. This is true in general,
as will be proved in section 5.

4. The Determinant

In this section we show that
∏
λ∈Par(d) ϑpr(λ) = detXpr,d. Because of equations (10)

and (11), we know that

detXpr,d = (pr)l(d) .

Therefore, it is enough to prove the following:

Proposition 4.1. ∑
λ∈Par(d)

logp ϑpr(λ) = r l(d).
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Proof: Let λ = (1m1(λ)2m2(λ) . . .). Recall from (16) that

logp ϑpr(λ) =
∑
n≥1

0≤νp(n)<r

(r − νp(λ))mn(λ) + dp(mn(λ))

=
∑
n≥1

(n,p)=1

r−1∑
i=0

(r − i)mpin(λ) + dp(mpin(λ)).

Now, given λ ∈ Par(d), let λ = λ(0) + pλ(1) + · · ·+ pNλ(N) be the p-adic decomposition of
λ (i.e., λ(i) is a p-class regular partition, for all i). Then,

logp ϑpr(λ) =
∑
n≥1

r−1∑
i=0

(r − i)mn(λ(i)) + dp(mn(λ(i)))

=
r−1∑
i=0

(r − i)l(λ(i)) + dp(λ(i)) .

Hence,∑
λ∈Par(d)

logp ϑpr(λ) =
∑

λ∈Par(d)

r−1∑
i=0

(r − i)l(λ(i)) + dp(λ(i))

=
∑

λ∈Par(d)

(
r−2∑
i=0

(r − 1− i)l(λ(i)) + dp(λ(i))

)
+

∑
λ∈Par(d)

(
r−1∑
i=0

l(λ(i)) + dp(λ(r−1))

)
.

Therefore,∑
λ∈Par(d)

logp ϑpr(λ) =
∑

λ∈Par(d)

logp ϑpr−1(λ) +
∑

λ∈Par(d)

(
r−1∑
i=0

l(λ(i)) + dp(λ(r−1))

)
,(18)

where we interpret ϑ1(λ) = 1. The Proposition follows easily by induction once we have
proved the following equation for all r ≥ 1:∑

λ∈Par(d)

(
r−1∑
i=0

l(λ(i)) + dp(λ(r−1))

)
= l(d) .

First note that each λ ∈ Par(d) can uniquely be written as λ = µ+prµ′, where µ′ ∈ Par(j)
and µ ∈ Parpr(d − prj). In fact, if λ = λ(0) + pλ(1) + · · · + pNλ(N) as before, then µ =∑r−1

i=0 p
iλ(i) ∈ Parpr(d − prj); note that for µ, in the corresponding p-adic decomposition

we have µ(i) = λ(i), for i = 0, . . . , r − 1. Hence,∑
λ∈Par(d)

(
r−1∑
i=0

l(λ(i))

)
=

∑
j≥0

p(j)
∑

µ∈Parpr (d−prj)

l(µ)

=
∑
j≥0

p(j)lpr(d− prj).

Therefore,
∑

λ∈Par(d)

∑r−1
i=0 l(λ

(i)) is the coefficient of qd in

P (qp
r
)Lpr(q) = P (qp

r
)Ppr(q)Tpr(q) = P (q)Tpr(q) ,(19)

where we have used formulae (4) and (1).
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Obviously, ∑
λ∈Par(d)

dp(λ(r−1)) =
∑
j≥0

p(j)
∑

µ∈Parpr (d−prj)

dp(µ(r−1)) .

Let c̃pr(n) =
∑

µ∈Parpr (n) dp(µ
(r−1)), and C̃pr(q) =

∑
n≥0 c̃pr(n)qn. Thus,

∑
λ∈Par(d) dp(λ

(r−1))
is the coefficient of qd in the generating series

P (qp
r
)C̃pr(q),(20)

We now calculate the generating series C̃pr(q). Note that for µ ∈ Parpr(n), we may write
µ = η + pr−1ν, where η ∈ Parpr−1(n− pr−1j) and ν = µ(r−1) ∈ Parp(j). Therefore,

c̃pr(n) =
∑
j≥0

ppr−1(n− pr−1j)
∑

ν∈Parp(j)

dp(ν)

=
∑
j≥0

ppr−1(n− pr−1j)cp(j),

where for the second equation we have used (15). Hence, using Corollary 2.2 we obtain

C̃pr(q) = Ppr−1(q)Cp(qp
r−1

) = Cpr(q).

Now, by (20) and Theorem 2.1 we obtain that
∑

λ∈Par(d) dp(λ
(r−1)) is the coefficient of qd

in

P (qp
r
)Cpr(q) = P (qp

r
)Ppr(q)T (qp

r
) = P (q)T (qp

r
) .(21)

Hence, adding (19) and (21), and using formulae (3) and (2), we deduce that∑
λ∈Par(d)

(
r−1∑
i=0

l(λ(i)) + dp(λ(r−1))

)

is the coefficient of qd in

P (q)Tpr(q) + P (q)T (qp
r
) = P (q)T (q) = L(q) .

This proves the claim. �

5. `-Blocks of Symmetric Groups

In [11], Külshammer, Olsson, and Robinson developed the theory of `-blocks of symmet-
ric groups. The associated `-Cartan matrix for Sn is not unique. It depends on a choice of
Z-basis for the Z-span of the restriction of generalized characters of Sn to `-regular classes.
Fix such a choice and define the decomposition matrix D`(n) to be the transition matrix
expressing the restrictions of irreducible characters of Sn to the `-regular classes in terms
of the characters in the fixed Z-basis. The `-Cartan matrix is then C`(n) = D`(n)tD`(n).
Then it is shown in [11], that two irreducible characters belong to the same `-block exactly
when the partitions labeling them have the same `-core. The determinant and invariant
factors of the `-Cartan matrix of an `-block depend only on the `-weight of the block, and
not on its `-core. Donkin has shown in [5] that the invariant factors of this `-Cartan matrix
agree with those for the `-Cartan matrix of a block of the Iwahori-Hecke algebra. In partic-
ular, it follows that the graded invariant factors of the Cartan matrix for an `-block of the
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symmetric group are given by the ϑ`(λ)’s. For a positive integer k, let again `k = `/(`, k),
and let πk be the set of primes dividing `k. For a partition µ ∈ Par`(n), define

r`(µ) =
∏
k≥1

`
bmk(µ)

`
c

k · bmk(µ)
`
c!πk .

We have the following “KOR Conjecture” (see [11, Conjecture 6.4]):

Conjecture 5.1. The Cartan matrix C`(n) is unimodularly equivalent to a diagonal matrix
with entries r`(µ) where µ runs through the set of `-class regular partitions of n.

The goal of this section is to prove the following theorem:

Theorem 5.2. We have a multiset equality

{r`(µ) | µ ∈ Par`(n)} = {ϑ`(λ)m
n
` (d) | λ ∈ Par(d), d ≤

⌊n
`

⌋
}

(the exponent in the second multiset is to be read as a multiplicity).

This means that the explicit combinatorial descriptions for a unimodularly equivalent
diagonal form of the Cartan matrix C`(n) given by the KOR Conjecture and coming from
Conjecture 3.9, respectively, coincide.

By Theorem 3.5 we have thus the following contribution towards the KOR conjecture:

Corollary 5.3. Assume that in the prime decomposition ` =
∏r
i=1 p

ri
i we have ri ≤ pi for

all i = 1, . . . , r. Then the KOR conjecture is true at `.

Note also, that while the KOR conjecture is a conjecture about the full `-Cartan matrix
of Sn, we may now also formulate a block version:

Conjecture 5.4. Let C`(B) be the Cartan matrix of an `-block B of Sn of weight w.
Then C`(B) is unimodularly equivalent to a diagonal matrix with entries

ϑ`(λ)k(`−2,w−d) , λ ∈ Par(d), d ≤ w

where again exponents are to be read as multiplicities.

Note that the generating function for
∑w

d=0 p(d)k(`− 2, w− d) is just P (q)`−1, and thus
the size of the diagonal matrix is correct. As evidence for the conjecture, we first confirm
that also the determinant is correct. Indeed, by the result on the determinant shown in the
previous section, we know that the product of all the numbers above (taking multiplicities
into account) is

`
∑w
d=0 l(d)k(`−2,w−d) .

Now, by formula (8), we have
∑w

d=0 l(d)k(`− 2, w − d) = b`(w), and thus the conjectured
diagonal matrix has indeed the correct determinant.

Furthermore, the largest number in the set is

ϑ`(1w) = `ww!π(`)

where π(`) is the set of primes dividing `, and aπ(`) =
∏
p∈π(`) ap, for any integer a. In fact,

it was shown in [11, Theorems 6.1 and 6.2] that `ww!π(`) is the largest elementary divisor
of C`(B).

Towards the proof of Theorem 5.2, we first want to collect the partitions occurring for
the two multisets into subsets associated with a fixed `-class regular partition α of some



CARTAN INVARIANTS OF SYMMETRIC GROUPS AND IWAHORI-HECKE ALGEBRAS 15

a ≤ n, and then we will show that the corresponding contributed invariants coincide for
the two subsets.

Let µ ∈ Par`(n). As µ is `-class regular, we can write it uniquely in the form µ =
µ̂ + µ̌`, where µ̂ is both `-class regular and `-regular, and µ̌ is `-class regular; here µ̌` =
(1`m1(µ̌)2`m2(µ̌) . . .). Then clearly,

r`(µ) = r`(µ̌`) =
∏
k≥1

`
mk(µ̌)
k · (mk(µ̌)!)πk .

Also, given λ ∈ Par(d), decompose λ = λ(0) + `λ(1), where λ(0) is `-class regular. Then, by
definition,

ϑ`(λ) = ϑ`(λ(0)) =
∏

1≤i≤r

∏
k≥1

0≤νp(k)<ri

(prii )mk(λ(0))
k (mk(λ(0))!)pi

where ` =
∏r
i=1 p

ri
i is the prime decomposition of `.

Now, let mn
` (d) be the multiplicity of a graded invariant factor of degree d in C`(n) as in

Proposition 3.10, i.e., any partition λ ∈ Par(d) contributes mn
` (d) graded invariant factors

ϑ`(λ) to C`(n). We have the following lemma:

Lemma 5.5. Let a ≤ n and α ∈ Par`(a). Then

|{µ ∈ Par`(n)|µ̌ = α}| =
∑
d≥1

mn
` (d)|{λ ∈ Par(d)|λ(0) = α}|.

Proof: Let LHS be the left hand side of the equation above, and RHS the right hand
side. We prove their equality by comparing their associated generating series.

First, observe that the LHS is the number of partitions of n− `a that are both `-regular
and `-class regular. This is the coefficient of qn−`a in the generating series (see section 2.2)

P`(q)
P`(q`)

=
P`(q)
P (q`)

P (q`
2
).

We now turn to the right hand side. Observe that the λ appearing there are partitions
of a+ `j, where j ≥ 0. Counting each such λ with its multiplicity md

` (a+ `j), we deduce
that

RHS =
∑
j≥0

p(j)
∑

w≥a+`j

d0
` (n− `w)k(`− 2, w − (a+ `j)).

Now, ∑
w≥a+`j

d0
` (n− `w)k(`− 2, w − (a+ `j))

is the coefficient of qn−`(a+`j) in the generating series

P (q)
P (q`)`

P (q`)`−2 =
P`(q)
P (q`)

Hence, RHS is the coefficient of qn−`a in the generating series

P (q`
2
)
P`(q)
P (q`)

which proves the lemma. �
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We know that for all partitions µ ∈ Par`(n) with µ̌ = α we get the contribution r`(µ) =
r`(α`); on the other hand, all partitions λ ∈ Par(d) with λ(0) = α give mn

` (d) contributions
ϑ`(λ) = ϑ`(α). Thus, Theorem 5.2 follows from the next lemma:

Lemma 5.6. For α ∈ Par`,
r`(α`) = ϑ`(α).

Proof: By definition, we have

ϑ`(α) =
∏

1≤i≤r

∏
k≥1

0≤νpi (k)<ri

(prii )mk(α)
k (mk(α)!)pi .

and
r`(α`) =

∏
k≥1

`
mk(α)
k · (mk(α)!)πk .

Let k be a part of α. Since α ∈ Par`, it follows that ` - k. Write k =
(∏r

i=1 p
ki
i

)
k′, where

(`, k′) = 1; note that there is at least one j such that kj < rj . Then,

`k =
∏
i

p
ri−min(riki)
i =

∏
1≤i≤r
ki<ri

pri−kii(22)

and, therefore, ∏
k≥1

`
mk(α)
k =

r∏
i=1

∏
k≥1

0≤νpi (k)<ri

(prii )mk(α)
k .

Next, using (22), we deduce that πk = {pi|ki < ri}. Therefore,∏
k≥1

(mk(α)!)πk =
r∏
i=1

∏
0≤νpi (k)<ri

(mk(α)!)pi .

�
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