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1 Introduction

Kronecker or inner tensor products of representations of symmetric groups (and many

other groups) have been studied for a long time. But even for the symmetric groups

no reasonable formula for decomposing Kronecker products of two irreducible complex

representations into irreducible components is available (cf. [7, 5]). An equivalent problem

is to decompose the inner product of the corresponding Schur functions into a linear

combination of Schur functions.

In recent years, a number of partial results have been obtained. For example, the

products of characters labelled by hook partitions or by two-row partitions [3, 8] have been

computed, and special constituents, in particular of tensor squares, have been considered

[10, 11, 12]. For general products, Dvir [2] and Clausen-Meier [1] determined the largest

part and the maximal number of parts in a constituent of a product (this result is crucial

in this paper).

In general, Kronecker products of irreducible representations have very many irre-

ducible constituents (see e.g. [4, 2.9]). In this paper, we �rst consider the simple question:

`when is the Kronecker product of two irreducible S

n

-characters again irreducible?' We

prove that in fact such a product is always reducible, and even inhomogeneous, except

for the obvious exception where one of the characters is of degree 1. Then we turn to

the same question for the representations of the alternating group A

n

. Here one can eas-

ily construct examples of non-trivial irreducible tensor products (actually, we observed

this �rst using calculations with the MAPLE packages SF (by Stembridge) and ACE (by

Veigneau et al.)). It turns out that the problem for A

n

reduces to the classi�cation of cer-

tain products of S

n

-characters with 2 constituents. So we classify in general the Kronecker

products of S

n

-characters with 2 constituents, and even more generally, with two homoge-

neous components. We also obtain some partial results for products with 4 homogeneous

components and conjecture a complete classi�cation of the pairs (L

1

; L

2

) of irreducible

complex S

n

-representations such that L

1


 L

2

has at most 4 homogeneous components.

2 Preliminaries

We denote by N the set f1; 2; : : :g of the natural numbers.

If G and H are two groups, L is a CG-module andM is a CH-module we write L�M

for the outer tensor product of L and M (which is a module over G�H). If N is another

CG-module we w rite L 
 N for the inner tensor (or Kronecker) product of L and N

(which is a G-module).
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A CG-module is called homogeneous if it is isomorphic to a direct sum of copies of

one simple module. Every CG-module can be (uniquely) decomposed into a direct sum of

its homogeneous components. Similarly we speak of the homogeneous characters and the

homogeneous components of the characters.

We use the notions and notation of the representation theory of S

n

and A

n

and refer

the reader to [4] for the most basic ones. In particular, we write � = (�

1

; : : : ; �

k

) ` n if �

is a partition of n; in this case we also write j�j for n. We often gather together equal parts

of a partition and write, for example, (5

2

; 3

3

) for (5; 5; 3; 3; 3). The partition conjugate to

� is denoted by �

0

. If � = �

0

we say that � is symmetric. We do not distinguish between a

partition � and its Young diagram � = f(i; j) 2 N�N j j � �

i

g. Elements (i; j) 2 N�N are

called nodes. If � = (�

1

; �

2

; : : :) and � = (�

1

; �

2

; : : :) are two partitions we write �\ � for

the partition (min(�

1

; �

1

);min(�

2

; �

2

); : : :) whose Young diagram is just the intersection

of those for � and �. A node (i; �

i

) 2 � is called removable (for �) if �

i

> �

i+1

. A node

(i; �

i

+ 1) is called addable (for �) if i = 1 or i > 1 and �

i

< �

i�1

. We denote by

�

A

= � n fAg = (�

1

; : : : ; �

i�1

; �

i

� 1; �

i+1

; : : :)

a partition of n� 1 obtained by removing a removable node A = (i; �

i

) from �. Similarly

�

B

= � [ fBg = (�

1

; : : : ; �

i�1

; �

i

+ 1; �

i+1

; : : :)

is a partition of n+ 1 obtained by adding an addable node B = (i; �

i

+ 1) to �.

We denote by

h

ij

= h

�

ij

= �

i

� j + �

0

j

� i+ 1

the (i; j)-hook length. If a partition � has r nodes on the main diagonal and there are �

i

(resp., �

i

) nodes to the right of (resp., below) the node (i; i) then we may write � in the

Frobenius notation (cf. [6]):

F (�) =

�

�

1

� � � �

r

�

1

� � � �

r

�

:

If H

�

�

=

S

�

1

� S

�

2

� : : : < S

n

is a Young subgroup we write M

�

for the permutation

module C S

n




CH

�

1

H

�

. The Specht module S

�

is explicitly de�ned as a submodule of

M

�

(cf. [4]). The set fS

�

j � ` ng is a complete set of irreducible C S

n

-modules (up to

isomorphism). We write [�] (or [�

1

; �

2

; : : :]) for the character of S

�

. Thus, f[�] j � ` ng

is a complete set of the irreducible characters of S

n

. It is well known that S

�

is self-

dual. Another fact (to be used without comment) is that S

(1

n

)

is the 1-dimensional sign

representation and S

�


 S

(1

n

)

�

=

S

�

0

. The standard inner product on the class functions

on a group (symmetric or alternating, depending on the context) is denoted by h�; �i. If �

and  are two class functions we write � � for the function [g 7! �(g) (g)]. The character

of S

�


 S

�

is [�] � [�]. For �; �; � ` n we de�ne the numbers d(�; �;�) via

[�] � [�] =

X

�

d(�; �;�)[�]:

If � = (�

1

; �

2

; : : :) and � = (�

1

; �

2

; : : :) are two partitions then we write � � � if

�

i

� �

i

for all i. In this case we also consider the skew partition �=�. We do not

distinguish between �=� and its Young diagram, which is the set of nodes � n �.
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If �=� is a skew Young diagram and A = (i; j) is some node we say A is connected

with �=� if at least one of the nodes (i � 1; j); (i; j � 1) belongs to �=�. Otherwise A is

disconnected from �=�.

If � ` m; 
 ` n; � ` m + n we write c

�

�


for the corresponding Littlewood-Richardson

coe�cient, which may be de�ned as the multiplicity of S

�

in the induced module

S

�

^


S




:= (S

�

� S




) "

S

m+n

S

m

�S

n

:

The character of this module will be denoted [�]

^


[
]. The Littlewood{Richardson rule

[4, 6] gives a combinatorial description of the coe�cients c

�

�


and will be repeatedly used

in this paper. It says that c

�

�


is the number of semistandard tableaux of skew shape �=�

and content 
, which give a lattice permutation when the entries are read from right to

left along the rows starting from the top row.

Let � and � be two partitions. Then the skew character [�=�] is de�ned to be the sum

[�=�] =

X




c

�

�


[
]:

Note that [�=�] = 0 unless � � �.

The following four results will be used repeatedly.

Theorem 2.1 [2, 1.6], [1, 1.1]. Let �, � be partitions of n. Then

maxf�

1

j d(�; �;�) 6= 0 for some � = (�

1

; �

2

; : : :)g = j� \ �j

and

maxfm j d(�; �;�) 6= 0 for some � = (�

1

� : : : � �

m

> 0)g = j� \ �

0

j

Since the skew characters can in principle be decomposed into the irreducible charac-

ters, the following theorem provides a recursive formula for the coe�cients d(�; �;�).

Theorem 2.2 [2, 2.3]. Let �, � and � = (�

1

; �

2

; : : :) be partitions of n, and set

^

� =

(�

2

; �

3

; : : :). De�ne

Y (�) = f� j � ` n; �

i

� �

i+1

� �

i+1

for all i � 1g

Then

d(�; �;�) =

X

�`�

1

���\�

h[�=�] � [�=�]; [

^

�]i �

X

�2Y (�)

� 6=�

�

1

�j�\�j

d(�; �; �) :

Corollary 2.3 [2, 2.4], [1, 2.1(d)]. Let �; � and � = (�

1

; �

2

; : : :) be partitions of n, and

set

^

� = (�

2

; �

3

; : : :), 
 = � \ �. Assume that �

1

= j� \ �j. Then

d(�; �;�) = h[�=
] � [�=
]; [

^

�]i :

Corollary 2.4 [2, 2.4']. Let � and � be partitions of n, and m = j� \ �

0

j. Let � be a

partition of n with m non-zero parts. De�ne

�

� = (�

1

� 1; �

2

� 1; : : : ; �

m

� 1). Then

d(�; �;�) = h[�=(� \ �

0

)] � [�=(�

0

\ �)]; [

�

�]i:
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3 Homogenous S

n

-products

Lemma 3.1 Let �, �, a, b be positive integers. Then

min(�+ � + 1; a+ b+ 1) < min(�; a) + min(�; b) + min(�; b) + min(�; a): (1)

Proof. We may assume that � � �, a � b and �+ � � a+ b. So the left hand side in (1)

is �+ � + 1.

If � � b, then the right hand side of (1) equals

min(�; a) + � + �+min(�; a)

which is greater than �+ � + 1 since all numbers in this expression are positive integers.

If b < �, then the right hand side of (1) is

min(�; a) + b+min(�; b) + a � min(�; a) + min(�; b) + �+ � > �+ � + 1;

as claimed. �

Lemma 3.2 Let �, � be partitions of n, both di�erent from (n) and (1

n

). Then

min(h

�

11

; h

�

11

) < j� \ �j+ j� \ �

0

j � 2:

Proof. We write � and � in the Frobenius notation:

F (�) =

�

�

1

� � � �

r

�

1

� � � �

r

�

; F (�) =

�

a

1

� � � a

s

b

1

� � � b

s

�

:

We may assume that r � s. Then

h

�

11

= �

1

+ �

1

+ 1 ; h

�

11

= a

1

+ b

1

+ 1;

j� \ �j = r +

r

X

i=1

(min(�

i

; a

i

) + min(�

i

; b

i

));

j� \ �

0

j = r +

r

X

i=1

(min(�

i

; b

i

) + min(�

i

; a

i

)):

Since r � 1, it su�ces to prove that

min(�

1

+ �

1

+ 1; a

1

+ b

1

+ 1) < min(�

1

; a

1

) + min(�

1

; b

1

) + min(�

1

; b

1

) + min(�

1

; a

1

):

But this follows from Lemma 3.1 since our assumption on the partitions ensures that

�

1

; �

1

; a

1

; b

1

> 0. �

Theorem 3.3 Let �, � be partitions of n, both di�erent from (n) and (1

n

). If [�] is a

constituent of [�] � [�], then h

�

11

< j� \ �j+ j� \ �

0

j � 1.
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Proof. Put ` = j�\�j+ j�\�

0

j�1 : Take � to be an `-cycle in S

n

. By Lemma 3.2, either

� or � does not have a hook of length `. Hence, by the Murnaghan-Nakayama Rule [4,

2.4.7], either [�](�) = 0 or [�](�) = 0. So

([�] � [�])(�) = 0: (2)

By Theorem 2.1, any constituent [�] of [�] � [�] satis�es

�

1

� j� \ �j and �

0

1

� j� \ �

0

j

where � = (�

1

; : : :), �

0

= (�

0

1

; : : :). So the maximal possible hook length in � is `. Moreover,

� contains a hook of length ` if and only if �

1

= j�\�j and �

0

1

= j�\�

0

j, in which case this is

the (1; 1)-hook whose leg length is j�\�

0

j�1. In this case, using the Murnaghan-Nakayama

Rule again, we get

[�](�) = (�1)

j�\�

0

j�1

[� nH

11

](1) 6= 0

where � n H

11

is the partition obtained from � by removing the (1; 1)-hook H

11

. Hence

for every constituent [�] of [�] � [�] containing an `-hook we get a contribution on � of the

same sign, and so no cancellation can occur. But this contradicts equation (2). �

Theorem 3.4 Let �, � be partitions of n, both di�erent from (n) and (1

n

). Then [�] � [�]

is not homogenous.

Proof. By Theorem 2.1, [�] � [�] has a constituent [�] with �

1

= j�\ �j and a constituent

[�] with �

0

1

= j� \ �

0

j. If � = �, then h

�

11

= j� \ �j + j� \ �

0

j � 1, which is impossible by

Theorem 3.3. �

Corollary 3.5 A product [�] � [�] is irreducible if and only if one of the two characters

[�], [�] is of degree 1.

4 Kronecker products of S

n

-representations with few com-

ponents

The main result of this section is a description of the products of S

n

-representations with

two homogeneous components. First we need to know the product of any character with

the character [n� 1; 1]:

Lemma 4.1 Let n � 3 and � be a partition of n. Then

[�] � [n� 1; 1] =

X

A

X

B

[(�

A

)

B

]� [�]

where the �rst sum is over all removable nodes A for �, and the second sum runs over all

addable nodes B for �

A

.

Proof. This follows from the isomorphismsM

(n�1;1)

�

=

S

(n�1;1)

�S

(n)

and S

�


M

(n�1;1)

�

=

(S

�

#

S

n�1

) "

S

n

. �

Corollary 4.2 Let n � 3 and � be a partition of n. Then
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(i) [�] � [n�1; 1] has exactly one homogeneous component if and only if � is (n) or (1

n

).

(ii) [�] � [n�1; 1] has exactly two homogeneous components if and only if � is a rectangle

(a

b

) for some a; b > 1. In this case we have

[a

b

] � [n� 1; 1] = [a+ 1; a

b�2

; a� 1] + [a

b�1

; a� 1; 1]:

(iii) [�] � [n � 1; 1] has exactly three homogeneous components if and only if n = 3 and

� = (2; 1). In this case we have

[2; 1] � [2; 1] = [3] + [2; 1] + [1

3

]:

(iv) [�] � [n � 1; 1] has exactly four homogeneous components if and only if one of the

following happens:

(a) n � 4 and � = (n� 1; 1) or (2; 1

n�2

);

(b) � = (k + 1; k) or (2

k

; 1) for k � 2.

We then have:

[n� 1; 1] � [n� 1; 1] = [n] + [n� 1; 1] + [n� 2; 2] + [n� 2; 1

2

];

[k + 1; k] � [2k; 1] = [k + 2; k � 1] + [k + 1; k] + [k + 1; k � 1; 1] + [k

2

; 1];

and the remaining products are obtained by conjugation.

Proof. The \if" parts and the decompositions of the products follow from Lemma 4.1.

We now prove the \only if" directions. We are going to use Lemma 4.1 again. First,

observe that [�] appears as a constituent in the product [�] 
 [n � 1; 1] unless � is a

rectangle. Also note that (�

A

)

B

= (�

A

0

)

B

0

for two di�erent pairs (A;B), (A

0

; B

0

) if and

only if A = B and A

0

= B

0

, in which case (�

A

)

B

= (�

A

0

)

B

0

= �.

A partition with r removable nodes has exactly r + 1 addable nodes. So if � has at

least 2 removable nodes, say A

1

and A

2

, then �

A

1

and �

A

2

both have at least 2 addable

nodes, which gives 4 composition factors in the product with the only common constituent

[�]. This proves the \only if" part of (i) and (ii). If � has at least 3 removable nodes, then

a similar argument shows that [�] � [n � 1; 1] has at least 5 non-isomorphic constituents.

So we may assume that � has exactly two removable nodes: A

1

and A

2

. For [�] � [n� 1; 1]

to have exactly 3 components, both �

A

1

and �

A

2

should have only one removable node.

This is only possible if n = 3 and � = (2; 1). Finally, for [�] � [n� 1; 1] to have exactly 4

components, one of �

A

1

and �

A

2

should have only one removable node and the other one

should have two. This occurs exactly if � or �

0

is (n� 1; 1), n � 4, or (k + 1; k), k � 2. �

Lemma 4.3 Let � be a partition of n. Then the square [�]

2

has at most 4 homogeneous

components if and only if one of the following holds:

(i) � = (n) or (1

n

), when [�]

2

= [n];

(ii) n � 4, � = (n� 1; 1) or (2; 1

n�2

), when [�]

2

= [n]+ [n� 1; 1]+ [n� 2; 2]+ [n� 2; 1

2

];

(iii) n = 3, � = (2; 1), when [�]

2

= [3] + [2; 1] + [1

3

];
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(iv) n = 4, � = (2

2

), when [�]

2

= [4] + [2

2

] + [1

4

];

(v) n = 6, � = (3

2

) or (2

3

), when [�]

2

= [6] + [4; 2] + [3; 1

3

] + [2

3

].

Proof. The \if" part follows from Corollary 4.2 and [4, Tables I.I].

In the other direction, let [�]

2

have at most 4 homogeneous components. We may

assume that � is not one of (n); (1

n

); (n � 1; 1); (2; 1

n�2

), and that n > 8 since for n � 8

the results hold by [4, Tables I.I].

Clearly [�]

2

always contains [n]. Furthermore, by [10, Lemmas 1-3] and [12, 4.3] or

by [11, 6.3], [�]

2

contains [n� 2; 2], and unless � is a rectangle, it also contains [n� 1; 1],

[n�2; 1

2

] and [n�3; 3]. So we only have to deal with the case where � = (a

b

) is a rectangle.

We already know that [�]

2

has the constituents [n] and [n� 2; 2]. If b > 2, then [�]

2

also

has the constituent [n� 3; 3] by [10, Lemma 3] or [11, 6.3]. If n > 12, then also [n� 4; 4]

occurs, see [10, Lemma 4]. Furthermore, by [11, 6.3], [n� 3; 1

3

] appears as a constituent.

Hence we can restrict ourselves to the cases � = (k; k) or � = (4

3

).

Suppose � = (k; k) (k � 5). By Corollary 2.4, the components [�] of [k; k]

2

with

�

0

1

= 4 = j�\ �

0

j are of the form (�

1

+1; �

2

+1; �

3

+ 1; �

4

+1), where [(�

1

; �

2

; �

3

; �

4

)], is a

constituent of [k � 2; k � 2]

2

. By what we have already proved, there are at least 3 such

constituents. Thus [k; k]

2

has at least 5 components.

Now, let � = (4

3

). We already know that [�]

2

contains [12], [10; 2], [9; 3] and [9; 1

3

].

But it also contains some [�] with �

0

1

= 9 = j�\�

0

j, thanks to Theorem 2.1. Alternatively,

one may calculate [4

3

]

2

on a computer and �nd 52 (!) homogeneous components. �

Lemma 4.4 Let �, 
 be partitions, 
 � �. Set I = fi j 


i

< �

i

g. Then the following

assertions are equivalent:

(i) [�=
] is homogeneous;

(ii) [�=
] is irreducible;

(iii) I = fj; j + 1; : : : ; kg for some j � k, and one of the following holds:

(a) 


j

= 


j+1

= � � � = 


k

;

(b) �

j

= �

j+1

= � � � = �

k

;

Moreover, in this case [�=
] = [�], where � is the partition with the parts �

i

� 


i

,

i 2 I, sorted in the weakly decreasing order.

Proof. This follows from the Littlewood-Richardson Rule. �

Remark. The situations described in (iii)(a) and (iii)(b) above correspond respectively

to the pictures




�=





�=


7



Lemma 4.5 In the notation of Lemma 4.4 (and under the same assumptions), let A be

a removable node of 
.

(1) If A is disconnected from �=
 then

[�=


A

] =

X

B

[�

B

]

where B runs over the addable nodes of �.

(2) Let A be connected with �=
.

In the case (iii)(a) we have

[�=


A

] =

X

B 6=B

0

[�

B

]

where B runs over the addable nodes of �, except for the bottom addable node B

0

.

In the case (iii)(b) we have

[�=


A

] = [�

B

]

where B is an addable node of �.

Proof. Again, this follows by the Littlewood-Richardson Rule. �

The following two lemmas will be used in the proof of the main theorem of this section.

Lemma 4.6 Let � 6= � be partitions of n, both di�erent from (n), (1

n

), (n � 1; 1) and

(2; 1

n�2

). Put 
 = � \ �, m = j
j. Assume that �=
 is a row and that [�=
] is an

irreducible character [�

1

; �

2

; : : :]. Then [m;�

1

; �

2

; : : :] appears in [�] � [�]. Moreover if an

S

n�m+1

-character [�

1

; �

2

; : : :] appears in

X

A removable for 


[�=


A

] � [�=


A

]�

X

B addable for �

[�

B

] (3)

with a positive coe�cient then [m� 1; �

1

; �

2

; : : :] appears in [�] � [�].

Proof. We have [�=
] = [n�m]. So Theorem 2.1 and Corollary 2.3 yield:

h[�] � [�]; [m;�

1

; �

2

; : : :]i = 1; (4)

and

if � 6= (m;�

1

; �

2

; : : :) and h[�] � [�]; [�]i 6= 0 then �

1

< m. (5)

If � is a partition of n with �

1

= m � 1, then in the notation of Theorem 2.2, we may

write

f� 2 Y (�) j � 6= �; �

1

� mg = f(m;�

2

; : : : ; �

i�1

; �

i

� 1; �

i+1

; : : :) j i � 1; �

i

> �

i+1

g:

So (4) and (5) imply

P

�2Y (�)

� 6=�

�

1

�m

d(�; �; �) = "; where

" =

�

1 if

^

� = �

B

for some addable node B of �

0 otherwise.

(6)
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Now, by Theorem 2.2, for a partition � of n with �

1

= m� 1 we have

h[�] � [�]; [�]i =

X

A

h[�=


A

] � [�=


A

]; [

^

�]i � ": (7)

where the sum is over all removable nodes A of 
.

Let [�] be a constituent of [�=


A

] � [�=


A

]. Then [�] is a constituent of [�] � [�] with [�]

a constituent of [�=


A

] and [�] a constituent of [�=


A

]. It follows from the de�nition of

skew characters that � � �, � � �. Hence � \ � � �\ � = 
. In view of Theorem 2.1, this

implies

�

1

� j� \ �j � j� \ �j = m :

If �

1

= m, then � \ � = 
, therefore � � 
 and � � 
. However, �=


A

is a union of a row

and a node, so either � = (n�m+1) or � = (n�m; 1). If � = (n�m+1), then �\ � � �

implies � \ � = (m). But then either � or � is (n), which contradicts the assumptions of

the lemma. If � = (n�m; 1), then we conclude similarly that � \ � = (m � 1; 1). Since

neither � nor � is equal to (n � 1; 1) or its conjugate and �=
 should be connected by

Lemma 4.4, then the only possibilities are: � = (m�1; n�m+1), � = (m�1; 1

n�m+1

) or

� = (n�2; 1

2

), � = (n�2; 2) (in the latter case n�m = 1). In both casesm�1 � n�m+1,

so �

1

� m� 1 since � is a partition of n�m+ 1. This contradiction shows that we may

assume that �

1

� m� 1 for any [�] appearing in [�=


A

] � [�=


A

].

This, together with (7), shows that any S

n�m+1

-character [�

1

; �

2

; : : :] appearing in (3)

gives rise to the character [m� 1; �

1

; �

2

; : : :] appearing in [�] � [�]. �

Lemma 4.7 Let � 6= � be partitions of n, both di�erent from (n); (1

n

); (n � 1; 1), and

(2; 1

n�2

). Put 
 = � \ �. Assume that �=
 is a row, [�=
] is irreducible, and [�] � [�] has

2 homogeneous components.

If there exists a removable node A

0

of 
, disconnected from �=
, then the following

condition holds:

(*) [�=


A

0

] is 1-dimensional, �=
 is connected with all removable nodes of 
, �=
 is

connected with all removable nodes of 
 except A

0

.

Proof. Let A

0

be a removable node of 
 disconnected from �=
, and put m = j
j. Since

� 6= �, we have n�m > 0. Let � be the partition of n�m de�ned by [�=
] = [�]: Note

that [�=
] = [n�m].

By Lemma 4.6, it su�ces to show that the expression (3) contains at least two distinct

irreducible characters unless the conditions (*) hold.

Since A

0

is disconnected from �=
, we have by Lemma 4.5(1):

[�=


A

0

] = [n�m+ 1] + [n�m; 1]: (8)

In view of Lemmas 4.4 and 4.5, we have three cases to consider: (a) when A

0

is

disconnected from �=
; (b) when A

0

is connected with �=
 and we are in the case (iii)(a)

of Lemma 4.4; (c) when A

0

is connected with �=
 and we are in the case (iii)(b) of

Lemma 4.4 (the cases (b) and (c) overlap when �=
 is a rectangle).

(a) In this case A

0

is disconnected from �=
. Then, by Lemma 4.5(1), we get

[�=


A

0

] =

X

B

[�

B

]

9



where the sum runs over all addable nodes B of �. So (3) contains

([n�m+ 1] + [n�m; 1]) �

�

X

B

[�

B

]

�

�

X

B

[�

B

] = [n�m; 1] �

�

X

B

[�

B

]

�

:

If there is a non-linear character among the [�

B

], we are done by Corollary 4.2(i). Other-

wise � = (1), but even in this case the expression above contains two di�erent characters:

[2] and [1

2

]. This completes the case (a).

In particular, we now may assume that every removable node A of 
 disconnected from

�=
 is connected with �=
.

Note that [�=


A

0

] contains [�

B

1

] for some addable node B

1

, see Lemma 4.5. So, in

view of (8) and Lemma 4.1 , [�=


A

0

] � [�=


A

0

] contains

P

B

[�

B

]. Hence any removable

node A

1

6= A

0

of 
 yields a positive contribution of [�=


A

1

] � [�=


A

1

] to the expression (3).

If A

1

is disconnected from �=
 then [�=


A

1

] = [n�m; 1] + [n�m + 1], and the product

[�=


A

1

] � [�=


A

1

] is not homogeneous. If A

1

is connected with �=
 but disconnected from

�=
 then, by Lemma 4.5, [�=


A

1

] is not irreducible and [�=


A

1

] is [n�m; 1] or [n�m+1].

So the product [�=


A

1

] � [�=


A

1

] is not homogeneous again, thanks to Lemmas 4.1 and 4.5.

Thus we may always assume that

(**) �=
 is connected with all removable nodes of 
, and �=
 is connected with all

removable nodes of 
 di�erent from A

0

.

(b) In this case Lemma 4.5 yields

[�=


A

0

] =

X

B 6=B

0

[�

B

]

where the sum runs over all addable nodes B of � except for the bottom one B

0

. Consider

the constituent [�=


A

0

] � [�=


A

0

]�

P

B

[�

B

] of (3). By (8), it is equal to

([n�m+1] + [n�m; 1]) �

�

X

B 6=B

0

[�

B

]

�

�

X

B

[�

B

] = [n�m; 1] �

�

X

B 6=B

0

[�

B

]

�

� [�

B

0

]: (9)

Since � 6= ;, it has at least 2 addable nodes. Let B

1

be an addable node of �, di�erent

from B

0

, and let r be the number of removable nodes of �

B

1

. Then, using Lemma 4.1, we

can rewrite (9) as follows:

[n�m; 1] �

�

[�

B

1

] +

X

B 6=B

0

;B

1

[�

B

]

�

� [�

B

0

]

= (r � 1)[�

B

1

] + [�

B

0

] +

X

B 6=B

0

;B

1

[�

B

] +

X

C;D

[(�

B

1

)

C

D

]

+[n�m; 1] �

�

X

B 6=B

0

;B

1

[�

B

]

�

� [�

B

0

]

= (r � 1)[�

B

1

] + ([n�m+ 1] + [n�m; 1]) �

�

X

B 6=B

0

;B

1

[�

B

]

�

+

X

C;D

[(�

B

1

)

C

D

]

where the sum

X

C;D

is over all removable nodes C of �

B

1

, di�erent from B

1

, and over all

addable nodes D of (�

B

1

)

C

, di�erent from C.

10



If � is not a rectangle, then

P

B 6=B

0

;B

1

is non-empty, so our expression involves at

least two di�erent irreducible characters. Let � be a rectangle. If [�] is not of degree 1,

then �

B

1

is not a rectangle, so r > 1, and thus our expression involves [�

B

1

]. Moreover,

�

B

1

has a removable node C 6= B

1

, so for an addable node D 6= C of (�

B

1

)

C

we get the

contribution [(�

B

1

)

C

D

] 6= [�

B

1

]. Finally, let [�] = [�=
] be of degree 1. If [�

B

1

] is not of

degree 1, then it is [2; 1

(n�m�1)

]. So for n �m � 2, we have r = 2, and so [2; 1

n�2

] and

[3; 1

n�3

] appear in our expression. However, if n�m = 1, then [�=


A

0

] is of degree 1. So,

in view of (**), all the conditions in (*) hold.

(c) In this case by Lemma 4.5 we have

[�=


A

0

] = [�

B

1

]

for some addable node B

1

of �. Then the constituent [�=


A

0

] � [�=


A

0

]�

P

B

[�

B

] of (3) is

([n�m+ 1] + [n�m; 1]) � [�

B

1

]�

X

B

[�

B

]

=

X

C;D

[(�

B

1

)

C

D

]�

X

B

[�

B

]

=

X

B

[�

B

] +

X

C;D; C 6=B

1

[(�

B

1

)

C

D

]�

X

B

[�

B

]

=

X

C;D; C 6=B

1

[(�

B

1

)

C

D

]: (10)

In the last sum C runs through the removable nodes of �

B

1

, di�erent from B

1

, and D

runs through the addable nodes of (�

B

1

)

C

. So (10) has at least two di�erent irreducible

constituents, unless it is empty. Hence we may assume that �

B

1

is a rectangle. If [�] is

of degree 1 then [�

B

1

] = [�=


A

0

] is also of degree 1, and, in view of (**), we are in the

exceptional case (*). So we may assume that � = (a

b�1

; a � 1) for some a > 1, b > 1,

and �

B

1

= (a

b

). This together with Lemma 4.4 implies that 
 has a removable node A

1

,

di�erent from A

0

. We know that it must be connected with �=
 and �=
, thanks to (**).

If there was a third removable node of 
 , A

2

say, then again by (**), both A

1

and A

2

would be connected with both �=
 and �=
. But this is impossible since 
 = � \ �. So

we may assume that 
 has exactly two removable nodes. Now, by Lemma 4.5(2), we have

[�=


A

1

] = [�

B

2

] with B

2

the top or the bottom, but not the middle, addable node of

�, and [�=


A

1

] is either [n�m; 1] or [n�m+ 1]. The corresponding pictures are:

�=


�=


A

1

A

0

�=


�=


A

1

A

0

In the �rst case, [�

B

2

] � [n�m; 1] contributes at least two constituents by Theorem 3.4.

In the second case � = (n� 1; 1). �

11



Theorem 4.8 Let �, � be partitions of n. Then [�] � [�] has exactly two homogenous

components if and only if one of the partitions �; � is a rectangle (a

b

) with a; b > 1, and

the other is (n� 1; 1) or (2; 1

n�2

). In these cases we have :

[n� 1; 1] � [a

b

] = [a+ 1; a

b�2

; a� 1] + [a

b�1

; a� 1; 1];

[2; 1

n�2

] � [a

b

] = [b+ 1; b

a�2

; b� 1] + [b

a�1

; b� 1; 1]:

Proof. The \if" part is proved in Corollary 4.2 (note that S

(2;1

n�2

)

�

=

S

(n�1;1)


 sign).

To prove the \only if" part, assume that

[�] � [�] = x[�] + y[�] for some x; y 2 N ;

with � > � in the lexicographic order. Clearly, �; � 62 f(n); (1

n

)g. If � or � is (n� 1; 1) or

(2; 1

n�2

) the result follows from Corollary 4.2. Assume �; � 62 f(n � 1; 1); (2; 1

n�2

)g. By

Theorems 2.1 and 3.3, we have

�

1

= j� \ �j; �

0

1

= j� \ �

0

j and �

1

< j� \ �j = �

1

:

By Lemma 4.3, � 6= �, and hence �

1

< n. Put 
 = � \ �, m = j
j. By Corollary 2.3, we

must have

[�=
] � [�=
] = x[�̂]

where �̂ = (�

2

; �

3

; : : :). So, in view of Theorem 3.4, one of the following happens:

(i) x = 1 and one of the characters [�=
], [�=
] is of degree 1, while the other is

irreducible;

(ii) one of the characters [�=
], [�=
] is equal to [�̂], the other is of the form z[n�m]+

w[1

n�m

] with some z; w 2 N , and �̂ = �̂

0

. By the Littlewood-Richardson rule, a skew

character contains both [n �m] and [1

n�m

] only if its diagram is a set of disconnected

nodes. So we must have n�m = 2, since otherwise such a skew character has more than

2 constituents. But there is no symmetric partition of 2, i.e. �̂ 6= �̂

0

. This contradiction

allows us to assume that we are in the case (i).

Without loss of generality, suppose that [�=
] is of degree 1 and [�=
] = [�] is irre-

ducible. Then the shape of �=
 is a row or a column. Passing, if necessary, from �, � to

�

0

, �

0

, we may assume that �=
 is a row. Now, by Lemma 4.7 we may assume that one of

the following holds:

(a) �=
 is connected with every removable node of 
.

(b) There exists a removable node A

0

of 
 disconnected from �=
, [�=
] and [�=


A

0

] are

of degree 1, �=
 is connected with every removable node of 
, and �=
 is connected

with every removable node of 
 di�erent from A

0

.

Case (a). In this case � must be a rectangle, and 
 must have a removable node A

0

such that [�=


A

0

] = (n�m; 1) for otherwise � = (n).

�=





A

0

12



Let us �rst assume that �=
 is disconnected from A

0

. Then, in view of Lemmas 4.5(1)

and 4.1, the expression (3) contains

[�=


A

0

] � [�=


A

0

]�

X

B

[�

B

] = [n�m; 1] �

�

X

B

[�

B

]

�

�

X

B

[�

B

]

=

X

B

X

C

X

D

[(�

B

)

C

D

]� 2

X

B

[�

B

]

=

X

B

(r

B

� 2)[�

B

] +

X

B

X

C

X

D 6=C

[(�

B

)

C

D

] (11)

where B runs over the addable nodes of �, C runs over the removable nodes of �

B

(for the

respective node B), D runs over the addable nodes of (�

B

)

C

and r

B

denotes the number

of removable nodes of �

B

.

If � has at least 3 addable nodes, say B

0

, B

1

, B

2

, then we have the following contri-

bution to the expression above:

(r

B

0

� 2)[�

B

0

] + [�

B

1

] + [�

B

2

] + (r

B

1

� 2)[�

B

1

] + [�

B

0

] + [�

B

2

]

+(r

B

2

� 2)[�

B

2

] + [�

B

0

] + [�

B

1

]

= r

B

0

[�

B

0

] + r

B

1

[�

B

1

] + r

B

2

[�

B

2

]:

By Lemma 4.6, this yields 3 irreducible components in [�] � [�].

So � has exactly two addable nodes, say B

0

, B

1

, i.e. � is a rectangle. Then we have

the following contribution to the expression (11):

(r

B

0

� 2)[�

B

0

] + [�

B

1

] + (r

B

1

� 2)[�

B

1

] + [�

B

0

]

If � is not a row or a column then both r

B

0

, r

B

1

are at least 2, and in view of Lemma 4.6,

we get two irreducible constituents for [�] � [�], both di�erent from [�]. Let � be a row

or a column. Assume that � is a row, the column case being similar. Then (11) equals

[n�m; 1] + [n�m� 1; 2] + [n�m� 1; 1

2

] if n�m > 2, and [2; 1] + [1

3

] if n�m = 2. By

Lemma 4.6, this yields at least two constituents in [�] � [�] di�erent from [�]. Finally, let

n�m = 1. Then (11) equals 0. Note that 
 must have a removable node A

1

6= A

0

, since

otherwise � = (1

n

). If �=
 is disconnected from A

1

, then

[�=


A

1

] � [�=


A

1

] = [2] + [1

2

];

and we are done by Lemma 4.6. If �=
 is connected with A

1

, then � = (2

k

; 1

2

); � = (2

k+1

)

(and k > 1 since � is not of the form (2; 1

n�2

)). Then the expression (3) equals [1

2

]. So,

by Lemma 4.6, [n � 1; 1] and [n � 2; 1

2

] are constituents of [�] � [�]. But j� \ �

0

j = 4, so

there also must be a constituent with 4 non-zero rows, thanks to Theorem 2.1.

This completes the consideration of the case where [�=
] is disconnected from A

0

.

Let �=
 be connected with A

0

. Then, in view of Lemmas 4.4 and 4.5(2), we have

[�=


A

0

] =

X

B 6=B

0

[�

B

]
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where B

0

is the bottom addable node of �. Let B

1

be the top addable node of �. Then

we get a contribution to (3) from the following expression:

[�=


A

0

] � [�=


A

0

]�

X

B

[�

B

] = [n�m; 1] �

X

B 6=B

0

[�

B

]�

X

B

[�

B

]

=

X

B 6=B

0

X

C

X

D

[(�

B

)

C

D

]�

X

B 6=B

0

[�

B

]�

X

B

[�

B

]

=

X

C 6=B

1

X

D

[(�

B

1

)

C

D

] +

X

B 6=B

0

;B

1

X

C

X

D

[(�

B

)

C

D

]�

X

B 6=B

0

[�

B

] (12)

where B runs through the addable nodes of �, C runs through the removable nodes of �

B

(for the respective node B) and D runs through the addable nodes of (�

B

)

C

.

If � has a third addable node, say B

2

, then �

B

1

is not a rectangle, and hence there

exists a node C

1

6= B

1

which is removable from �

B

1

. This shows that the �rst sum in (12)

contains [�

B

1

]. Moreover, the second sum in (12) contains

P

D

[�

D

], and so both [�

B

0

]

and [�

B

1

] are constituents of (12). Now we can apply Lemma 4.6.

If B

0

and B

1

are the only addable nodes of �, then � is a rectangle. Let C

1

be the

corner node of �.

If � is not a row, then �

B

1

also has the removable node C

1

. In this case, (12) is

X

D

[(�

B

1

)

C

1

D

]� [�

B

1

]

which gives at least two contributions, except in the case where � = (1

2

) when (12) equals

[3]. If 
 has a further removable node A

1

, then this leads to a further contribution [2; 1]

to (3). But if 
 is a rectangle, then � = (2

3

) and � = (3

2

), and we can apply Lemma 4.3.

If � is a row then 
 must have a removable node A

1

6= A

0

, since otherwise � = (n).

Note that (12) equals �[n�m+ 1]. Also [�=


A

1

] � [�=


A

1

] = [n�m+ 1] + [n�m; 1]. By

Lemma 4.6, the product [�] � [�] contains [m;n�m] and [m� 1; n�m; 1]. Note that our

assumptions yield � = (k+ n�m; k� n+m), � = (k; k) with k� n+m � 2. But in this

case j� \ �

0

j � 4. So Theorem 2.1 implies that [�] � [�] has a constituent with 4 rows.

Case (b). Since [�] is not of degree 1, the assumption [�=
] and [�=


A

0

] are of degree

1 implies that 
 must have a removable node A

1

6= A

0

. By assumption, A

1

is connected

with both �=
 and �=
, and since [�=
] is of degree 1, A

1

and A

0

are the only removable

nodes of 
.

Since [�=


A

0

] is 1-dimensional, we conclude from Lemmas 4.4 and 4.5 that [�=


A

1

] =

[n � m; 1] or the conjugate. So if n � m > 1 and [�=


A

1

] = [n � m; 1] then (3) equals

[n � m; 1] � [n � m; 1] or the conjugate. Now we apply Corollary 4.2 and Lemma 4.6.

Otherwise � = (k; k); � = (k + n �m; k � n+m) or � = (2

k

); � = (2

k�1

; 1

2

). But these

cases have already been considered. �

Thus we have classi�ed all pairs �; � such that [�] � [�] has at most 2 homogeneous

components. The \if-parts" of the following conjecture are proved in Corollary 4.2 and

Lemma 4.3.

Conjecture

(i) [�] � [�] has 3 homogeneous components if and only if n = 3 and � = � = (2; 1) or

n = 4 and � = � = (2; 2).
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(ii) [�] � [�] has 4 homogeneous components if and only if one of the following happens

(a) n � 4 and �; � 2 f(n� 1; 1); (2; 1

n�2

)g;

(b) n = 2k + 1 for some k � 2, and one of �, � is in f(2k; 1); (2; 1

2k�1

)g while the

other one is in f(k + 1; k); (2

k

; 1)g

(c) n = 6 and �; � 2 f(2

3

); (3

2

)g.

The following theorem proves the conjecture in the special case when both � and �

are symmetric.

Theorem 4.9 Let � and � be symmetric partitions of n. Then [�] � [�] has at most 4

homogeneous components if and only if one of the following holds:

(i) n = 1.

(ii) n = 3, � = � = (2; 1), when [�]

2

= [3] + [2; 1] + [1

3

];

(iii) n = 4, � = � = (2

2

), when [�]

2

= [4] + [2

2

] + [1

4

].

Proof. Let 
 = � \ �, m = j
j. Then 
 is a symmetric partition, and at least one of the

skew diagrams �=
, �=
 has no box on the main diagonal. Say it is �=
. Because of the

symmetry, we can then write �=
 as a disjoint union �[�

0

, where � and �

0

are some skew

shapes which are conjugate to each other. In particular, n�m is even. By [6, (5.7)],

[�=
] = [�]

^


[�

0

]:

If every constituent of [�]

^


[�

0

] belongs toM = f[n�m]; [1

n�m

]; [n�m�1; 1]; [2; 1

n�m�2

]g

then by the Littlewood-Richardson Rule, every constituent of [�] and [�

0

] would have to

belong to f[(n �m)=2]; [1

(n�m)=2

]; [(n �m)=2 � 1; 1]; [2; 1

(n�m)=2�2

]g . But even then, if

n�m � 6, the Littlewood-Richardson Rule implies that there are components of [�]

^


[�

0

]

not in M .

Assume �rst that n �m � 6. Then, by the Littlewood-Richardson Rule again, [�=
]

contains a constituent not in M . Now Theorems 3.4 and 4.8 imply that [�=
] � [�=
]

contains at least three di�erent irreducible constituents, say [�̂

1

], [�̂

2

], [�̂

3

]. Then [�] � [�]

contains the corresponding constituents [�

1

], [�

2

], [�

3

], thanks to Corollary 2.3. Since �

and � are symmetric, [�] � [�] also contains the conjugate constituents [�

0

1

], [�

0

2

], [�

0

3

]. Now,

by Theorem 3.3 no constituent can have at the same time the maximal length and width

among all the constituents. Hence [�

i

] 6= [�

0

j

] for all i; j. Thus we have found 6 di�erent

irreducible constituents.

The case n�m = 0 follows from Lemma 4.3. So we may now assume that n�m = 2 or 4.

Note that in the �rst case n > 7 since for n � 7 there is only one symmetric partition, and

in the second case n > 8, since the intersection of the two di�erent symmetric partitions

for n = 8 is a partition of 6. Then by the Littlewood-Richardson Rule and Corollary 2.3,

we know that [�] � [�] has the constituents [n � 2; 2], [n � 2; 1

2

] and their conjugates if

n�m = 2, and it has the constituents [n� 4; 3; 1] and [n� 4; 2; 1

2

] and their conjugates

if n �m = 4. By the remark above, n is su�ciently large in both cases so that the four

constituents are all di�erent.
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Assume that these are all the constituents of [�] � [�]. Consider the case n �m = 4.

We compute the character values on (n� 1)-cycles and (n� 2)-cycles. Since j
j = n� 4,

we know that min(h

�

11

; h

�

11

) < n� 2. Hence on an (n� 1)-cycle z

n�1

and an (n� 2)-cycle

z

n�2

in S

n

we have by the Murnaghan-Nakayama rule:

[�](z

n�1

) � [�](z

n�1

) = 0 = [�](z

n�2

) � [�](z

n�2

):

On the other hand, if n is even, then

[n� 4; 2; 1

2

](z

n�1

) = �1 = [4; 2; 1

n�6

](z

n�1

)

and

[n� 4; 3; 1](z

n�1

) = 0 = [3; 2

2

; 1

n�7

](z

n�1

)

gives a contradiction. If n is odd, then similarly

[n� 4; 2; 1

2

](z

n�2

) = 0 = [4; 2; 1

n�6

](z

n�2

)

and

[n� 4; 3; 1](z

n�2

) = 1 = [3; 2

2

; 1

n�7

](z

n�2

)

gives a contradiction. The case n�m = 2 is considered similarly using z

n

and z

n�1

. �

5 Homogeneous Kronecker products of A

n

-representations

We �rst recall the classi�cation of the complex irreducible A

n

-representations (cf. [4,

2.5]). If � is a non-symmetric partition of n then the restrictions S

�

#

A

n

and S

�

0

#

A

n

are irreducible and isomorphic to each other. We denote the corresponding irreducible

A

n

-module by T

�

or T

�

0

. Thus T

�

�

=

T

�

0

for � 6= �

0

. On the other hand, if � = �

0

then S

�

#

A

n

splits into a direct sum of two non-isomorphic A

n

-modules, say T

�

+

and T

�

�

.

Moreover, the modules T

�

+

and T

�

�

, as � runs over all symmetric partitions of n, together

with the modules T

�

, as � runs over a system of representatives of the pairs f�; �

0

g

for the non-symmetric partitions � of n, form a complete system of the non-isomorphic

irreducible A

n

-modules. It is well known that T

�

�

is obtained from T

�

�

by twisting with an

automorphism of A

n

, which comes from a conjugation by an element g 2 S

n

n A

n

. The

character of T

�

(�)

will be denoted by f�g

(�)

.

Lemma 5.1 Let �, � be non-symmetric partitions of n, both di�erent from (n) and (1

n

).

Then T

�


 T

�

is homogeneous if and only if S

�


 S

�

�

=

xS

�

� y S

�

0

for some � 6= �

0

,

x; y 2 IN.

Proof. This follows from the de�nition of the modules T

�

and Theorem 3.4. �

Lemma 5.2 Let �, � be partitions of n, both di�erent from (n); (1

n

). Assume that � 6= �

0

,

� = �

0

. Then T

�


 T

�

�

is homogeneous if and only if S

�


 S

�

�

=

xS

�

� y S

�

0

for some

� 6= �

0

, x; y 2 IN.
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Proof. The \if-part" is clear.

If T

�


 T

�

+

�

=

xT

�

�

for some � = �

0

, then, conjugating by g 2 S

n

n A

n

, we get

T

�


 T

�

�

�

=

xT

�

�

. So

T

�


 (T

�

+

� T

�

�

)

�

=

x(T

�

+

� T

�

�

) :

The lift to S

n

gives S

�


 S

�

�

=

xS

�

, which is impossible by Theorem 3.4.

If T

�


 T

�

+

�

=

xT

�

for some � 6= �

0

, then as above we have T

�


 T

�

�

�

=

xT

�

, so the lift

to S

n

gives S

�


 S

�

�

=

y S

�

� z S

�

0

(with y + z = x). �

Lemma 5.3 Let � be a symmetric partition of n, and let �;  be irreducible A

n

-characters

both di�erent from f�g

+

and f�g

�

. Then

h � f�g

+

; �i = h � f�g

�

; �i :

Proof. By [4, 2.5.13], we have

h � f�g

�

; �i =

1

jA

n

j

X

g2A

n

 (g)f�g

�

(g)�(g)

=

1

jA

n

j

�

X

g2A

n

n(C

+

�

[C

�

�

)

 (g)f�g

�

(g)�(g) +

X

g2C

+

�

 (g)

1

2

�

"

�

�

s

"

�

Y

i

h

�

ii

�

�(g)

+

X

g2C

�

�

 (g)

1

2

�

"

�

�

s

"

�

Y

i

h

�

ii

�

�(g)

�

where "

�

= (�1)

(n�k)=2

and C

�

�

denote the two conjugacy classes in A

n

which consist of

elements of cycle type (h

�

11

; : : : ; h

�

kk

). Since  , � correspond to partitions di�erent from �,

each of them takes the same value on C

+

�

and C

�

�

, so the last expression is the same for

f�g

+

and f�g

�

. �

Lemma 5.4 Let � be a symmetric partition of n and let  be an irreducible A

n

-character

di�erent from f�g

+

and f�g

�

. Then

h � f�g

+

; f�g

+

i = h � f�g

�

; f�g

�

i and h � f�g

+

; f�g

�

i = h � f�g

�

; f�g

+

i :

Proof. We compute the scalar products using [4, 2.5.13] as in the previous proof, and

use the facts that f�g

+

(g) = f�g

�

(g) for any g 2 A

n

n (C

+

�

[ C

�

�

) and  (g) =  (h) for

any g; h 2 C

+

�

[ C

�

�

. �

>From the previous two results we deduce:

Proposition 5.5 Let �, � be symmetric partitions of n, � 6= �. Then f�g

+

� f�g

+

is

homogeneous if and only if f�g

+

� f�g

�

is homogeneous.

Now we can classify the homogeneous Kronecker products of irreducibleA

n

-characters.

Note that if n > 4 then the only 1-dimensional character is the trivial one. For n = 3 and

4 there are two more 1-dimensional characters in each case: f2; 1g

�

and f2

2

g

�

.
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Theorem 5.6 Let �,  be irreducible A

n

-characters both of degrees greater than 1. Then

� �  is homogeneous if and only if n = a

2

for some a > 2 and one of the characters is

fn� 1; 1g, while the other is fa

a

g

+

or fa

a

g

�

. In the exceptional case:

fn� 1; 1g � fa

a

g

�

= fa+ 1; a

a�2

; a� 1g :

Proof. The \if-part" follows from Corollary 4.2(ii).

Let � and  correspond to partitions � and �, respectively. If � and � are both

non-symmetric, then by Lemma 5.1 and Theorem 4.8 the tensor product T

�


 T

�

is not

homogeneous. If one of the partitions �; � is symmetric and the other is not, use Lemma 5.2

and Theorem 4.8. So we may assume that � and � are both symmetric. If � 6= �, then by

Lemmas 5.3, 5.4 and 5.5, if one of the four products f�g

�

� f�g

�

is homogeneous then the

product [�] � [�] has at most two homogeneous components, contradicting Theorems 3.4

and 4.8. Indeed, consider for example the case where f�g

�

� f�g

�

is homogeneous. Since

f�g

�

is obtained from f�g

�

by conjugating with an element g 2 S

n

nA

n

, we conclude that

f�g

+

�f�g

+

is also homogeneous. Moreover, if f�g

�

�f�g

�

= xf�g then f�g

+

�f�g

+

= xf�g,

and if f�g

�

� f�g

�

= xf�g

�

then f�g

+

� f�g

+

= xf�g

�

. By Proposition 5.5, we also have

that f�g

�

� f�g

�

are homogeneous. Moreover, Lemmas 5.3, 5.4 imply f�g

�

� f�g

�

= f�g

or f�g

� or�

. Thus [�] � [�] is x[�] + y[�

0

] or x[�].

Now let � = � be symmetric. We have to consider three cases: f�g

�

� f�g

�

and

f�g

+

� f�g

�

. Using conjugation with g 2 S

n

nA

n

, we can eliminate one of them, and work

only with f�g

+

� f�g

+

and f�g

+

� f�g

�

. Let us consider the �rst case (the second one is

similar). So let f�g

+

� f�g

+

= x for some irreducible A

n

-character  .

If the dual character f�g

�

+

is equal to f�g

+

, then

hfng; f�g

+

� f�g

+

i = hf�g

+

; f�g

+

i = 1 ;

so we deduce f�g

+

� f�g

+

= fng, which is impossible as f�g is not of degree 1.

If f�g

�

+

= f�g

�

, then

hfng; f�g

+

� f�g

+

i = hf�g

�

; f�g

+

i = 0

and

hfn� 1; 1g; f�g

+

� f�g

+

i = hfng+ fn� 1; 1g; f�g

+

� f�g

+

i

= hfn� 1g "

A

n

; f�g

+

� f�g

+

i

= hf�g

�

#

A

n�1

; f�g

+

#

A

n�1

i

Consider the case where � is not a square. Then, by the Branching Rule, both re-

strictions in the last expression contain some f�g where � is a non-symmetric partition of

n� 1. So the scalar product above is non-zero, whence f�g

+

� f�g

+

= xfn� 1; 1g. Take

z 2 A

n

of cycle type (n � 2; 2), if n is even and of cycle type (n � 2; 1; 1), if n is odd.

As � is symmetric it does not have a hook of length n � 2. Hence by [4, 2.5.13] and the

Murnaghan-Nakayama Rule we have

f�g

+

(z)f�g

+

(z) = 0 :

On the other hand, xfn� 1; 1g(z) = �x 6= 0, when n is odd or even, respectively. This is

a contradiction.
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It remains to deal with the case where f�g

�

+

= f�g

�

and � is a square. Consider

hfn� 2g "

A

n

; f�g

+

� f�g

+

i = hf�g

�

#

A

n�2

; f�g

+

#

A

n�2

i

By the Branching Rule, the last scalar product is non-zero. But

fn� 2g "

A

n

= fng+ 2fn� 1; 1g+ fn� 2; 2g+ fn� 2; 1

2

g ;

and the product f�g

+

� f�g

+

can not be of the form xfng or xfn � 1; 1g by the same

arguments as before. So we may assume that

f�g

+

� f�g

+

= xfn� 2; 2g or f�g

+

� f�g

+

= xfn� 2; 1

2

g :

In the �rst case, we evaluate both sides on an element of cycle type (n� 2; 1

2

) if n is

odd, and on an element of cycle type (n� 1; 1) if n is even. Then the left hand side gives

zero whereas the right hand side is �x, giving a contradiction.

In the second case, we evaluate both sides on an element of cycle type (n) if n is odd,

and on an element of cycle type (n� 3; 1

3

) if n is even. This gives zero on the left hand

side and �x on the right hand side. �
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Note added in proof

After this paper had been accepted we learned of the paper by I. Zisser, \Irreducible

products of characters in A

n

", Israel J. Math. 84(1993), 147-151. The main result of

Zisser's paper is that A

n

has a pair of non-linear characters whose product is irreducible,

if and only if n is a perfect square. Even though Zisser does not classify all such pairs

(which is done in our paper), he does prove that one of the characters must correspond

to the square diagram. Moreover, he also proves that the product of two non-linear S

n

-

characters is never irreducible, using his previous results on decomposing the squares of

irreducible characters. However, we believe that the short direct proof of the more general

fact that such a product is never homogeneous given in section 3 of our paper (Theorem

3.4) might be useful. Generally, our approach allows us to consider more general questions

concerning few homogeneous components rather than few irreducible components.
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