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Abstract

The main combinatorial result in this article is a classification of bar partitions
of n which are of maximal p-bar weight for all odd primes p ≤ n. As a consequence,
we show that apart from very few exceptions any irreducible spin character of the
double covers of the symmetric and alternating groups vanishes on some element of
odd prime order.
Mathematics Subject Classification: 05A17, 20C30

1 Introduction

A well known result by Burnside states that any non-linear irreducible character of a
finite group vanishes on some element of the group. This was refined in [9], where it was
shown that such a character always has a zero at an element of prime power order; it had
also been noticed in [9] that any non-linear irreducible character of a finite simple group
except possibly the alternating groups even vanishes on some element of prime order. In
[5] it was then shown that this character property also holds for the alternating and the
symmetric groups. Indeed, this vanishing property was a consequence of a combinatorial
result on the weights of partitions.
Here, we prove a corresponding vanishing property for irreducible spin characters of the
double covers of the symmetric and alternating groups on elements of odd prime order;
this is obtained from a result on bar weights of partitions into distinct parts.
The elements of odd prime order p which we are going to use in the double cover S̃n of
the symmetric group Sn are those of maximal p-bar weight, i.e., the corresponding cycle

type has
⌊

n
p

⌋
parts of size p. (Here b·c denotes the floor function. Thus bxc is the integral

part of x ∈ R.)

An extended abstract for this paper appeared in the Proceedings of the FPSAC’06 conference.
0Key words: bar partitions, bar cores, bar weights, symmetric group, alternating group, spin charac-

ters, character zeros
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For n ∈ N, we denote by D(n) the set of partitions of n into distinct parts, and we set
D =

⋃
n D(n). Now consider a partition λ ∈ D(n), also called a bar partition. For a

given integer r ∈ N, we denote by wr(λ) the r-bar weight of λ, i.e., wr(λ) is the maximal
number of r-bars that can successively be removed from λ. The resulting bar partition
after removing this maximal number of r-bars is then the r-bar core (or r̄-core) λ(r̄) of λ
(see [7] or [12] for details). In this paper, we will only deal with the case where r is a
prime number p. In the main result we classify the bar partitions of n which have maximal

p̄-weight
⌊

n
p

⌋
for all odd primes p ≤ n.

We denote by O(n) the set of partitions of n into odd parts; elements of S̃n whose image in
Sn has cycle type in O(n) are said to be of odd type (or of type O). We now describe the
connection to the vanishing of spin characters on elements of odd type. The irreducible
spin characters of S̃n are labelled by the bar partitions λ of n (and signs). The recursion
formula given by Morris [10] for spin character values on elements of odd type in S̃n shows
that an irreducible spin character labelled by λ vanishes on a p-element of maximal weight
(where p is odd), if the p̄-weight of λ is not maximal (or equivalently, the p̄-core of λ is
not small, i.e., has size at least p). Note that the spin character values occur as factors
in the coefficients of the expansion of Schur Q-functions Qλ into power sum functions pα,
where λ ∈ D(n) and α ∈ O(n), so the vanishing of the spin character values is connected
with the support of this expansion.
For p = 2, suitable notions to consider are the 4̄-weight and the 4̄-core of λ, respectively,
which are computed using the 4̄-abacus with one runner for the even parts, and two
conjugate runners for the parts ≡ 1, 3 mod 4; this fits with the distribution of spin
characters into the 2-blocks of S̃n (see [3]).

Our main result is the following:

Theorem 1.1 Let λ be a bar partition of n ∈ N. Then the following holds: wp(λ) =
⌊

n
p

⌋

for all odd primes p ≤ n if and only if λ = (n) or λ = (n − 1, 1), where n = 2a + 2 for
some a ∈ N, or one of the following occurs:

n = 5 : λ = (3, 2)
n = 6 : λ = (3, 2, 1)
n = 8 : λ = (5, 2, 1)
n = 9 : λ = (4, 3, 2)
n = 10 : λ = (4, 3, 2, 1) or (7, 3)

.

If, in addition, also the 4̄-core of λ is small (i.e., it is of size smaller than 2), then λ = (n)
with n 6≡ 3 mod 4, or λ is one of (3, 1), (3, 2, 1), (4, 3, 2, 1).

The combinatorial classification result has the desired consequence for the spin character
zeros; before stating this, first we have to introduce some more notation.

A partition λ ∈ D(n) is in D+(n) (or D−(n), resp.) if n − l(λ) is even (or odd, resp.).
We denote by 〈µ〉 the irreducible spin character of S̃n corresponding to µ ∈ D+(n), and
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by 〈µ〉+, 〈µ〉− = sgn · 〈µ〉+, the irreducible spin characters of S̃n associated to µ ∈ D−(n).

Furthermore, we let 〈〈µ〉〉 denote the irreducible spin character of Ãn corresponding to
µ ∈ D−(n) (which is the reduction of 〈µ〉±), and 〈〈µ〉〉± the irreducible spin characters of

Ãn associated to µ ∈ D+(n) (which are conjugate and sum to the reduction of 〈µ〉, and
which differ only on the critical classes of cycle type λ ∈ D+).
We refer to [7] for further details on the irreducible spin characters of Ãn.
A special rôle is played by the basic spin characters of S̃n and Ãn; these are the spin
characters labelled by the bar partition (n), i.e., 〈n〉(±) and 〈〈n〉〉(±). On an element of

type α ∈ O(n) the basic spin character 〈n〉(±) has the value 2[
l(α)
2

] (similarly for the basic

spin characters of Ãn); hence the basic spin characters do not have any zeros on elements
of odd type. We will thus only consider non-basic spin characters.

Theorem 1.2 Let n ∈ N, n ≥ 4. Let χ be any non-basic irreducible spin character of
a double cover S̃n of the symmetric group Sn or a double cover Ãn of the alternating
group An. Then χ vanishes on some element of odd prime order, except if χ is labelled
by (n − 1, 1) with n = 2a + 2 for some a ∈ N, or by one of the partitions (3, 2), (3, 2, 1)
or (5, 2, 1).

Proof. For the spin characters of S̃n, this follows from Theorem 1.1, after checking that
the spin characters for the other exceptional partition labels for small n, i.e., (4, 3, 2),
(4, 3, 2, 1), (7, 3), indeed have zeros of odd prime order; in fact, they vanish on elements
of cycle type (32, 1∗). For (3, 2), (3, 2, 1) or (5, 2, 1), the corresponding spin characters do
not have a zero of odd prime order. Also, the spin character to (2a + 1, 1) cannot vanish
on an element of cycle type (pm, 1r) for an odd prime p, as there is exactly one way of
removing p-bars and one can always remove m p-bars.
For the spin characters of Ãn, we now discuss how to deduce the result from the one
above. Let λ ∈ D(n), not one of the exceptional partitions in Theorem 1.1.
If λ ∈ D−(n), then 〈λ〉±(σα) = 0 for some α ∈ O(n) with σα of odd prime order. Then

σα ∈ Ãn and also 〈〈λ〉〉(σα) = 0.
If λ ∈ D+(n), then 〈λ〉(σα) = 0 for some α ∈ O(n) with σα of odd prime order; again,
σα ∈ Ãn. If λ ∈ (D+ ∩ O)(n), then the critical class σλ for 〈〈λ〉〉± is in O(n), but
〈λ〉(σλ) = ±1, thus λ 6= α and then also the spin characters 〈〈λ〉〉± vanish on σα. If
λ ∈ D+(n) \ (D+ ∩ O)(n), then the critical class σλ for 〈〈λ〉〉± is not in O(n), so again
λ 6= α and the spin characters 〈〈λ〉〉± vanish on σα. ¦

Remarks 1.3 (i) If an irreducible character χ of a finite group G has a zero at an element
of prime order p, then p divides χ(1). Note that the irreducible spin characters of S̃n and
Ãn of prime power degree have been classified in [4]; from Theorem 1.2 we can immediately
recover the classification of irreducible spin characters of 2-power degree for these groups.
In fact, here they are exactly those that do not have a zero at an element of odd prime
order.
The converse of the statement above does not hold, even for G = S̃n. The spin character
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〈8, 4〉 is of degree 5280 = 24 · 3 · 5 · 11, but the character does not vanish on any element
of order 3.
(ii) Any irreducible spin character of S̃n vanishes on the classes which are not of type
O(n) or D−(n) as these do not split in S̃n; in particular, for all n ≥ 4, these characters
do always have (trivial) zeros at all elements of order 2. The even elements of order 2 are
also zeros of the irreducible spin characters of Ãn.

Note that there is a simple relation between the p̄-weight of a bar partition λ and the
defect of the spin p-block containing the irreducible spin character(s) of Sn or An labelled
by λ (see [12]). For a prime p ≤ n, the basic spin character(s) of S̃n or Ãn are contained
in one p-block which we call the basic p-block of S̃n or Ãn, respectively. The following is
then another direct consequence of Theorem 1.1 (note that for a > 2 the spin character
to (2a + 1, 1) is not in the basic p-block for any odd prime p not dividing n and n− 1).

Corollary 1.4 Let n ∈ N, n ≥ 4.
(i) The basic spin characters 〈n〉(±), the spin characters 〈n− 1, 1〉 where n = 2a + 2 for
some a ∈ N, and the spin characters 〈3, 2〉±, 〈3, 2, 1〉±, 〈5, 2, 1〉±, 〈4, 3, 2〉, 〈4, 3, 2, 1〉, 〈7, 3〉
are the only irreducible spin characters of S̃n which are in spin p-blocks of maximal defect
for all odd primes p.
The spin characters 〈3, 1〉, 〈5, 1〉, 〈3, 2〉±, 〈3, 2, 1〉±, 〈4, 3, 2〉, 〈7, 3〉 are the only non-basic
spin characters contained in the basic p-block for all odd primes p ≤ n.
(ii) The basic spin characters 〈〈n〉〉(±), the spin characters 〈〈n− 1, 1〉〉± where n = 2a +
2 for some a ∈ N, and the spin characters 〈〈3, 2〉〉, 〈〈3, 2, 1〉〉, 〈〈5, 2, 1〉〉, 〈〈4, 3, 2〉〉±,

〈〈4, 3, 2, 1〉〉±, 〈〈7, 3〉〉± are the only irreducible spin characters of Ãn which are in spin
p-blocks of maximal defect for all odd primes p.
The spin characters 〈〈3, 1〉〉±, 〈〈5, 1〉〉±, 〈〈3, 2〉〉, 〈〈3, 2, 1〉〉, 〈〈4, 3, 2〉〉±, 〈〈7, 3〉〉± are the only

non-basic spin characters contained in the basic p-block of Ãn for all odd primes p ≤ n.

As mentioned above, the 2-block distribution of the spin characters was determined in [3].
Employing this, we immediately obtain the following result for S̃n (a corresponding result
also holds for Ãn):

Corollary 1.5 Let n ∈ N, n ≥ 4.
(i) The basic spin characters 〈n〉(±) for n 6≡ 3 mod 4 and the spin characters 〈3, 1〉,
〈3, 2, 1〉±, 〈4, 3, 2, 1〉 are the only irreducible spin characters of S̃n which are in p-blocks of
maximal defect for all primes p.
(ii) The spin characters 〈3, 1〉 and 〈3, 2, 1〉± are the only non-basic spin characters con-
tained in the basic p-block for all primes p ≤ n.

Note that the statements on the basic blocks in the second part of Corollary 1.4(i) and
in Corollary 1.5(ii) were also obtained in [2].

The paper is organized as follows. Section 2 contains some results on bar lengths. In
section 3 we consider bar partitions of maximal bar weight. We will use suitable algorithms
to generate “large” first row bar lengths in the bar partitions under consideration. The
final section contains the proof of the main result.
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2 Bar lengths of bar partitions

We refer to [8], [12], [7] for details about partitions, Young diagrams, hooks and bar
partitions, shifted diagrams and bars, respectively.
Consider a partition λ = (λ1, λ2, . . . , λl) of the integer n. Thus λ1 ≥ λ2 ≥ . . . ≥ λl > 0
and λ1 + λ2 + . . . + λl = n, with integer parts λi; l = l(λ) is the length of λ. The Young
diagram of λ consists of n boxes with λi boxes in the ith row. We refer to the boxes in
matrix notation, i.e. the (i, j)-box is the jth box in the ith row. The (i, j)-hook consists
of the boxes in the Young diagram to the right of and below the (i, j)-box, and including
this box. The number of boxes in this hook is its hook length, denoted by hij.

For λ ∈ D, we consider the corresponding shifted diagram, where in the ith row we start
on the diagonal at (i, i) rather than at the box (i, 1). By flipping this over the diagonal
and then gluing it to the shifted diagram of λ, we obtain the shift symmetric diagram
S(λ) on 2n boxes. The bar lengths in λ correspond to the hook lengths in the λ-boxes of
S(λ); the bar length at position (i, j) is then denoted bij; we abbreviate the bar lengths
in the first row by b1i = bi, or also by bλ

i when necessary.
Furthermore, we denote by h̄λ the product of all the bar lengths of λ.

Example. Take λ = (4, 3, 1). In the shift symmetric diagram below the bar lengths are
filled into the corresponding boxes of λ.

. 7 5 4 2

. . 4 3 1

. . . 1

. .

Thus, h̄λ = 7 · 5 · 42 · 3 · 2.

The removal of a p-bar from λ ∈ D(n) corresponds to taking a part p or two parts
summing to p out of λ, or subtracting p from a part of λ if possible (i.e., if the resulting
partition is in D(n − p)). Doing this as long as possible gives the p̄-core λ(p̄) of λ; the
number of p-bars removed is then the p-bar weight wp(λ) of λ (see [7] or [12] for details).
These operations may also be performed on a suitable p̄-abacus.

Example. Take p = 3, λ = (7, 3, 2, 1). Removing a bar of length 3 from λ can be achieved
by removing the parts 2 and 1 from λ, or by removing the part 3, or by replacing 7 by 4.
When we do this in succession, we have reached the bar partition (4), from which we can
remove a further 3-bar and thus obtain (1) = λ(3̄); the 3̄-weight of λ is 4.

We will often make use of the following property of the p-bar weight of a partition (see
[11], [12]); the Lemma may easily be proved by considering the p̄-abacus (see [12]).

Lemma 2.1 Let p be an odd prime. If λ is a bar partition of p̄-weight wp(λ) = w, then λ
has exactly w bars of length divisible by p. In particular, if λ has a bar of length divisible
by p, then it has a bar of length p.
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This is used to prove some easy but crucial results about bar lengths (compare this with
[4] where a similar Lemma for hook lengths is used).

As mentioned before, for p = 2, a suitable parameter to consider is the 4̄-core of λ which
is computed using the 4̄-abacus with one runner for the even parts, and two conjugate
runners for the parts ≡ 1, 3 mod 4; in contrast to the p̄-abacus for odd p, here we are
allowed to subtract 2 from the even parts (so these will be removed when computing the
4̄-core).

From now on, λ = (λ1, . . . , λl) is always a bar partition of n, of length l.

The following easy proposition will often be useful.

Proposition 2.2 Assume that wp(λ) =
⌊

n
p

⌋
for the odd prime p ≤ n.

(i) Let µ be obtained from λ by removing the first row. Then the number of bars in µ

divisible by p is equal to the number of p-multiples kp, 1 ≤ k ≤
⌊

n
p

⌋
, which are not

first row bar lengths of λ.

In particular, if p - h̄µ, then p, 2p, . . . ,
⌊

n
p

⌋
p are first row bar lengths of λ.

(ii) If n− λ1 < p, then p, 2p, . . . ,
⌊

n
p

⌋
p are first row bar lengths of λ.

Proof. Parts (i) and (ii) follow immediately from Lemma 2.1. ¦

Note that the first row bar lengths of λ can explicitly be given (see [12]); the set of these
numbers is

{λ1 + λ2, . . . , λ1 + λl} ∪ {1, . . . , λ1} \ {λ1 − λ2, . . . λ1 − λl} .

In particular, the largest bar length in λ is λ1 + λ2 (which also follows easily from the
definition).

We also recall a useful result due to Hanson:

Theorem 2.3 [6] The product of k consecutive numbers all greater than k contains a
prime divisor greater than 3

2
k, with the only exceptions 3 · 4, 8 · 9 and 6 · 7 · 8 · 9 · 10.

We can now deal with the “bar case” in analogy to dealing with the hook case first in the
situation of partitions. We call a bar partition λ a bar if l(λ) ≤ 2.

Proposition 2.4 Let λ = (n− k, k) for some k ∈ N0, k < n− k. Then wp(λ) =
⌊

n
p

⌋
for

all odd primes p ≤ n if and only if one of the following holds:

(i) k = 0, i.e., λ = (n).

(ii) k = 1 and n = 2a + 2 for some a ∈ N0, i.e., λ = (2a + 1, 1).
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(iii) λ is one of (3, 2), (7, 3).

If, in addition, also the 4̄-core of λ is small, then λ = (n) or λ is one of (2, 1), (3, 1).

Proof. One easily checks that all the partitions listed in (i)-(iii) have the stated property.
For the converse, we may assume k > 0. The two largest bar lengths in the first row are
b1 = n and b2 = n − k. For k ≥ 3, consider the following product of “missing” first row
bar lengths:

π = (n− k + 1)(n− k + 2) · · · (n− 1) .

This has k− 1 factors, all greater than n− k > k, hence by Theorem 2.3 one of these fac-
tors has a prime divisor q > 3

2
(k− 1), except if (n, k) = (10, 3) (note that the possibilities

(5, 3) and (11, 6) do not occur as we are assuming k < n−k). As k ≥ 3, we then have such
a prime divisor q > k = n − λ1, except when (n, k) = (10, 3), and indeed this gives one
of the exceptional partitions listed in (iii). As λ is of maximal q̄-weight, Proposition 2.2
implies that all multiples of q which are at most n are first row bar lengths in all other
partitions with k ≥ 3, giving a contradiction.
For k = 2, the partition λ = (3, 2) is an exception, as listed in (iii). If λ 6= (3, 2), then
π1 = n− 1 and π2 = n− 4 are missing bar lengths in the first row; note that n > 5, thus
n − 4 > 1. Now one of the numbers π1, π2 is odd, hence has a prime divisor q ≥ 3. But
then, using Proposition 2.2 again, we obtain a contradiction.
It remains to consider the case k = 1. Then only the bar length n − 2 is missing in the
first row; if this has an odd prime divisor, we get a contradiction as before. Hence the
only possibility in this case is that n = 2a + 2 for some a ∈ N0.
If we now assume that in addition the 4̄-core of λ is small, then one easily sees that only
the partitions (n) and (2, 1), (3, 1) remain. ¦

Lemma 2.5 Let λ ∈ D(n). Let s be a bar length of λ with n
2
≤ s. Then s is a first row

bar length of λ or s = b23 = λ2 + λ3. In the second case, b1, b2 are then the only first row
bar lengths ≥ n

2
.

Proof. If s is not a first row bar length, then s ≤ b23 = λ2 + λ3. If s 6= b23, then
n
2
≤ s ≤ λ2 +λ4. But since λ1 +λ3 > λ2 +λ4, then λ1 +λ3 +λ2 +λ4 > n – a contradiction.

The final assertion follows using the same inequality. ¦

Corollary 2.6 Let λ ∈ D(n) be of maximal p̄-weight for all odd primes p ≤ n with p ≥ n
2
.

Let q be the smallest prime with q ≥ n
2
. Then any prime r with q < r ≤ n is a first row

bar length of λ.

Corollary 2.7 Let n = 13, 14 or n ≥ 17. Let λ ∈ D(n) be of maximal p̄-weight for all
odd primes p with n

2
≤ p ≤ n. Then all bar lengths ≥ n

2
are first row bar lengths of λ.
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Proof. The condition on n guarantees that there are at least three odd primes p with
n
2
≤ p ≤ n. All these have to be bar lengths of λ. If there is a further bar length s ≥ n

2

in the second row, then we immediately have a contradiction. If some prime q ≥ n
2

is not
a first row bar length, then by Lemma 2.5 we have only two larger bar lengths, thus we
are in the situation where there are only three primes, and these have to be the numbers
λ1 + λ2, λ1 + λ3 and λ2 + λ3. But these three numbers can not all be odd, giving a
contradiction. Hence all the bar lengths ≥ n

2
are first row bar lengths. ¦

3 Forcing large bar lengths

We can now use a similar procedure as in [4] to force the bar partitions under investigation
to have large bar lengths in their first row:

Proposition 3.1 Let n ≥ 17. Let λ ∈ D(n) be of maximal p̄-weight for all odd primes
p ≤ n. Let s1 < s2 < · · · < sr ≤ n and t1 < t2 < · · · < tr ≤ n be sequences of integers
satisfying

(i) si < ti for all i;

(ii) s1, t1 are primes > n
2
;

(iii) for 1 ≤ i ≤ r − 1, each of si+1, ti+1 has a prime divisor exceeding 2n− si − ti.

Then s1, . . . , sr, t1, . . . , tr are first row bar lengths of λ.

Proof. We use induction on i. For s1, t1 it follows from Corollary 2.7 that they are first
row bar lengths, as by (ii) s1, t1 are primes > n

2
. We now assume the assertion up to i.

Then si + ti ≤ λ1 + λ2 + λ1 + λ3 ≤ n + λ1. Now let q be a prime divisor of si+1 (or ti+1,
resp.) as in (iii); then

q > 2n− si − ti ≥ n− λ1 ,

and hence by Proposition 2.2 si+1 (or ti+1, resp.) is a first row bar length of λ. ¦

Now we can use a similar strategy as in [1]. When we can show that there are sequences as
in Proposition 3.1 such that tr comes “close” to n, then the largest bar b1 of λ has length
“close” to n, and thus λ is “almost” a two-part partition. We use a greedy algorithm
to check for suitable sequences. Start with two large primes s1 < t1 close to n. Then
2n− s1 − t1 is small. Choose if possible two integers s2 and t2 with s2 < t2, s1 < s2 ≤ n,
t1 < t2 ≤ n each having a prime divisor exceeding 2n − s1 − t1. Then 2n − s2 − t2 <
2n−s1−t1. Choose if possible two integers s3 and t3 with s3 < t3, s2 < s3 ≤ n, t2 < t3 ≤ n
each having a prime divisor exceeding 2n− s2 − t2, and so on. For any numbers si, ti in
this process, we have ti ≤ b1 = λ1 + λ2 by Proposition 3.1.

Now from [1] we already know that for very large n this algorithm indeed terminates quite
close to n. To state the precise result, we first recall some notation from [1].
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Suppose that n ≥ 3 is a positive integer. Consider two finite increasing sequences of
integers {Ai} and {Bi} which satisfy the following properties:

(i) A1 < B1 ≤ n are two “large” primes.

(ii) For every i, we have Ai < Bi ≤ n.

(iii) If Bi < n, then Ai+1 < Bi+1 are integers not exceeding n each with a prime factor
exceeding 2n− Ai −Bi.

Then denote by A(n) (resp. B(n)) the largest integer in such a sequence {Ai} (resp. {Bi}).

For n in a large range it was already checked (by computer) for the proof of the classifi-
cation result in [1] that the algorithm ends very close to n, more precisely, we have:

Proposition 3.2 If 29 ≤ n ≤ 9.25 · 108, then there is a pair of sequences {Ai} and {Bi}
as above for which

n−B(n) ≤ 4.

For sufficiently large n we have the following result from [1]:

Theorem 3.3 If n > 9.25 · 108, then there is a pair of sequences {Ai} and {Bi} as above
for which

n−B(n) ≤ 225.

Using Proposition 3.1 we can thus deduce:

Corollary 3.4 Let n ∈ N. Let λ ∈ D(n) be of maximal p̄-weight for all odd primes p ≤ n,
b1 = λ1 + λ2 its largest bar length. Then

(i) For 29 ≤ n ≤ 9.25 · 108, n− b1 ≤ 4.

(ii) For n > 9.25 · 108, n− b1 ≤ 225.

So we still have the tasks to reduce 225 to some manageable number when n is large, and
to deal with the cases where n− b1 ≤ 4 (and n is arbitrary) or where n− b1 is bounded
by some reasonably sized number (when n is large).

For a positive real number x, define π(x) by

π(x) := #{p prime | p ≤ x} .

We need a crucial number-theoretic Lemma for reducing d = n− b1 and k = λ2 − λ3 − 1;
a similar result was already used in [5] but it has to be adapted for the purposes here.

Lemma 3.5 Let 5 ≤ r ≤ 1000. Then any product of r consecutive integers larger than
5.5 · 108 has a prime divisor q > 2.15 · r, when r ≤ 10, q > 2.58 · r, when 11 ≤ r ≤ 21,
and q > 3 · r, when r ≥ 22.
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Proof. Let n ∈ N with n > 5.5 · 108. Assume that all prime factors in the r consecutive
numbers n− r + 1, . . . , n − 1, n are at most c · r, where c = 2.15, c = 2.58 and c = 3 for
the ranges of r as given in the statement above. Then we obtain

(n

r

)r

<

(
n

r

)
=

∏

p|(n
r)

pbp ≤ nπ(cr)

where pbp is the maximal power of p dividing
(

n
r

)
(this is known to be bounded by n).

Equivalently,
(r − π(cr)) ln(n) < r ln r .

Note that for c as chosen above, r > π(cr) for the corresponding ranges of r. Hence, if
the assumption holds then

ln(n) <
r ln(r)

r − π(cr)
.

But computing the maximum of the function on the right hand side in the given region
(e.g. with Maple) shows that for n > 5.5 · 108 this does not hold (in fact, the lower
bound for n can be chosen slightly smaller for the lower ranges of r). Hence the Lemma
is proved. ¦

For later reference we state the following consequence of the Lemma above:

Corollary 3.6 In the range 5 ≤ k ≤ 21, any product of k consecutive integers larger
than 5.5 · 108 has a prime divisor q bounded from below as follows:

k = 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
q ≥ 13 17 17 19 23 23 31 37 37 41 41 43 47 53 53 53 59

4 Proof of the main result

Because of Proposition 2.4 we always assume in this section:

λ = (λ1, . . . , λl) ∈ D(n) is not a bar, i.e., l ≥ 3.

Also, the Theorem is easily checked by hand for n ≤ 28, so we may assume that n ≥ 29
when needed.

We use the following notations:
bi, 1 ≤ i ≤ λ1 are the first row bar lengths of λ; note that bi = b1,i+1 = λ1 + λi+1 for
i = 1, . . . , l − 1.
k := b1 − b2 − 1 = λ2 − λ3 − 1.
µ := (λ2, . . . , λl), with bµ

1 = b2,3 = λ2 + λ3, bµ
2 = b2,4 = λ2 + λ4 the two largest first row

bar lengths of µ (where λ4 = 0 if l = 3).
d := n − b1 =

∑
j≥3 λj =

∑
j≥2 µi; note that since we are assuming that λ is not a bar,

d > 0.
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Lemma 4.1 We have
(1) |µ| = λ3 + k + 1 + d.
(2) |µ| ≤ 2d + k + 1.
(3) bµ

1 = 2λ3 + k + 1 ≤ 2d + k + 1.
(4) bµ

2 = λ3 + λ4 + k + 1 ≤ d + k + 1.
(5) b2 ≥ k + 4.

Proof. (1) follows from the definitions, and then (2) follows from (1).
(3), (4) follow also easily from the definitions.
(5) b2 − k = λ1 + λ3 − λ2 + λ3 + 1 = (λ1 − λ2) + 2λ3 + 1 ≥ 4. ¦

In addition to the assumption that λ is not a bar, we now make the assumption

λ is of maximal p̄-weight for all odd primes p ≤ n.

We define the products

π1 := (b1 + 1)(b1 + 2) · · ·n, πi := (bi + 1)(bi + 2) · · · (bi−1 − 1) for i = 2 and i = 3 ,

having d, k and λ3 − λ4 − 1 consecutive factors, respectively. By definition, the factors
defining the products π1, π2 and π3 are “missing” first row bar lengths of λ. Thus
Proposition 2.2 implies

Lemma 4.2 If p is an odd prime divisor of πi, i = 1, 2, 3, then µ has a p-bar.

Lemma 4.3 We have
(1) k ≤ 4λ3 + 1 ≤ 4d + 1.

(2) Let n > 5.5 · 108.
If 5 ≤ k ≤ 10, then k ≤ 7

4
λ3 + 1 ≤ 7

4
d + 1.

If 11 ≤ k ≤ 21, then k ≤ 4
3
λ3 + 1 ≤ 4

3
d + 1.

If 22 ≤ k ≤ 1000, then k ≤ λ3 ≤ d.

Proof. (1) For k ≤ 1, there is nothing to prove. Now assume k > 1. Since b2 ≥ k + 4,
Theorem 2.3 shows that one of the k factors in π2 has a prime divisor q > 3

2
k, or we are

in one of the listed exceptional cases. We show first that none of these can occur.
(i) k = 2, b2 = 2 or k = 5, b2 = 5 are obviously impossible.
(ii) k = 2, b2 = 7. Then λ = (6, 4, 1), but this is not of maximal 3̄-weight, giving a
contradiction.

Now let q be a prime divisor of π2; then there has to be a q-bar in µ. Thus, us-
ing Lemma 4.1 (3) we obtain 3

2
k < q ≤ bµ

1 = 2λ3 + k + 1, implying 1
2
k < 2λ3 + 1

and thus k ≤ 4λ3 + 1 ≤ 4d + 1.
For (2), follow the same lines as in (1), but use Lemma 3.5. ¦

We now want to show that we can reduce to small d in all cases, i.e., we want to prove

11



Proposition 4.4 Let n ∈ N, n ≥ 29. For λ ∈ D(n) with the assumptions as above, we
have d = n− b1 ≤ 4.

Proof. By Corollary 3.4(i), we know that for n ≤ 9.25 · 108 we have d ≤ 4, and thus we
may now assume that n > 9.25 ·108. Then, by Corollary 3.4(ii), we have at least d ≤ 225.
Thus we can now assume that 5 ≤ d ≤ 225, and we want to arrive at a contradiction.
Now, Lemma 4.3(1) gives us a bound also for k, namely k ≤ 4d + 1 ≤ 901. But then, as
n > 5.5 · 108, we get an even better bound for k by Lemma 4.3(2), namely k ≤ 225. Note
also that λ3 − λ4 − 1 < d ≤ 225.
As n is sufficiently large, we can employ Lemma 3.5 for the d factors in π1, as well as
for the k factors in π2 when k ≥ 5, and for the λ3−λ4−1 factors in π3 when λ3−λ4−1 ≥ 5.

Case 22 ≤ d ≤ 225.
In this situation, π1 has a prime divisor q1 > 3d by Lemma 3.5. Hence µ has a bar of
length divisible by q1 in its first row, and 3d < q1 ≤ bµ

1 ≤ 2d + k + 1 (by 4.1), implying
d ≤ k. But then Lemma 4.3(2) implies k = d.
Now π2 has a prime divisor q2 > 3k = 3d. Thus µ also has a bar divisible by q2 in its
first row. If q1 = q2, then µ has to have two bars divisible by q1 in its first row. Then we
obtain 3d + 2 ≤ bµ

1 ≤ 3d + 1, and thus a contradiction.

We now work downwards to exclude all cases 5 ≤ d ≤ 21 as these get slightly more
involved for the cases of small d. Because of Lemma 4.3 we know in this situation that
k ≤ 21. Then Lemma 4.1 yields

bµ
1 = 2λ3 + k + 1 ≤ 2d + k + 1 ≤ 64 , bµ

2 = λ3 + λ4 + k + 1 ≤ d + k + 1 ≤ 43 .

In particular, for any prime divisor q in the “missing” first row bar lengths we have
q ≤ bµ

1 ≤ 61.

Case 17 ≤ d ≤ 21. Then by Corollary 3.6 there is a prime divisor q1 > 43 ≥ bµ
2 in

π1. Thus we must have q1 = bµ
1 . Thus, if q2 is a prime divisor in π2, then we must have

q2 ≤ bµ
2 ≤ 43; using Corollary 3.6 again, this implies k ≤ 16.

Here and in the following, q1, q2 will always be the largest prime divisors of π1, π2, respec-
tively.
If d = 21, then q1 ≥ 59, and hence 59 = bµ

1 ≤ 2d + k + 1 = k + 43 ≤ 59, thus k = 16.
Then q2 ≥ 43 in π2, and then we obtain q2 = 43 = bµ

2 ≤ d + k + 1 = 38, a contradiction.
If d = 20, we have q1 ≥ 53 in π1, and then 53 = bµ

1 ≤ k + 41 yields k ≥ 12. Then q2 ≥ 37
in π2, and thus 37 ≤ q2 ≤ bµ

2 ≤ k + 21, so even k ≥ 16. But then we even have q2 ≥ 43 in
π2, giving a contradiction as above. Similarly, for d = 19, an inequality 53 ≤ k + 39 leads
to k ≥ 14, and then to 41 ≤ q2 ≤ bµ

2 ≤ k + 20, which implies k = 21, and this yields the
contradiction bµ

2 ≥ 59. In the case d = 18 we get a contradiction quickly, as in the case
d = 21.
If d = 17, 47 ≤ q1 ≤ k +35 leads to k ≥ 12, hence 37 ≤ q2 ≤ k + d+1 ≤ 39; thus q2 = 37.
But this implies both k ≥ 16 and k ≤ 13, a contradiction.

Case d = 16. Then q1 ≥ 43, bµ
1 ≤ 54, bµ

2 ≤ 38, hence q1 = bµ
1 ≤ k + 33 and we

must have 10 ≤ k ≤ 13. Then bµ
2 ≤ 30 and we obtain k = 10. Now q1 = bµ

1 = 43 =
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2λ3 + k + 1 = 2λ3 + 11, hence λ3 = 16 = d, i.e., λ4 = 0. Now we also consider π3, which
has λ3 − 1 = 15 consecutive factors (which are still sufficiently large) and hence has a
prime divisor q3 ≥ 41, giving a contradiction.

Here and in the following, we keep the notation q1, q2, q3 for the largest prime divisors of
π1, π2, π3, respectively.

Case d = 15. Then by Corollary 3.6 q1 ≥ 41. Now 41 ≤ bµ
1 = 2λ3 + k + 1 ≤ 2d + k + 1 =

k + 31, and thus k ≥ 10; note also that k ≤ 21 and thus bµ
1 ≤ 52. If k ≥ 11, then

q2 ≥ 31 and 31 ≤ bµ
2 ≤ d + k + 1 ≤ 37; but then we must have k ≤ 13, and we

obtain bµ
2 ≤ 29 – a contradiction. Now it remains to discuss the case k = 10. Then

41 ≤ q1 ≤ bµ
1 = 2λ3 +k +1 ≤ 2d+k +1 = 41, hence bµ

1 = q1 = 41 and λ3 = d, i.e., λ4 = 0.
But now we also have q3 ≥ 41, implying a contradiction.

Case d = 14. Here again, q1 ≥ 41, and this yields k ≥ 12; also, bµ
1 ≤ 50. Now q2 ≥ 37

and thus 37 ≤ bµ
2 ≤ d + k + 1 ≤ 36, a contradiction.

Case d = 13. Here q1 ≥ 37, and thus k ≥ 37− (2d− 1) = 10; also bµ
1 ≤ 2d + k + 1 ≤ 48.

If k ≥ 11, then q2 ≥ 31. Then 31 ≤ bµ
2 ≤ d + k + 1 = 35, and we deduce q2 = 31. Then

k = 11 and we have bµ
2 ≤ 25, a contradiction. Now assume that k = 10. Then bµ

1 ≤ 37,
hence q1 = 37 = bµ

1 and λ3 = d. Now, q3 ≥ 37, and this gives a contradiction.

Case d = 12. Here again q1 ≥ 37, and thus k ≥ 12, and so also q2 ≥ 37. But bµ
1 ≤ 46

and bµ
2 ≤ 34, hence this case is impossible.

Case d = 11. Here q1 ≥ 31, and then k ≥ 8. Also bµ
1 ≤ 44, and thus (using q2) k ≤ 16.

But then bµ
1 ≤ 39 and we must have k ≤ 13; now bµ

1 ≤ 36, and then even k ≤ 11, and
q1 = 31. Now bµ

2 ≤ 23, hence k ≤ 10, and then even bµ
2 ≤ 22, and now we must have

k = 8. Then bµ
1 = 31 and λ3 = d, hence q3 ≥ 23 – a contradiction.

Case d = 10. Here q1 ≥ 23, and then k ≥ 2. Also bµ
1 ≤ 42, and then k ≤ 15 and q1 ≤ 41.

As k ≤ 15, bµ
1 ≤ 36, and then k ≤ 11, q1 ≤ 31. This leads to bµ

1 ≤ 32 and bµ
2 ≤ 22,

and now we can deduce q1 = bµ
1 and k ≤ 8. This gives q1 = bµ

1 ≤ 29 and bµ
2 ≤ 19. If

29 = q1, then q1 = bµ
1 = 2λ3 + k + 1 ≤ 29 = 2d + k + 1 implies k = 8 and λ3 = d. But

then 19 = q2 = bµ
2 and q3 ≥ 23, giving a contradiction. Hence q1 = 23. Note that then

23 = q1 = bµ
1 = 2λ3 + k + 1 implies that k is even.

Now we have to discuss the cases k ∈ {2, 4, 6, 8}. Let k = 8. Then 23 = 2λ3 + 9, so
λ3 = 7. Furthermore, q2 ≥ 19, and hence 19 = q2 = bµ

2 = λ3 + λ4 + 9, so λ3 + λ4 = 10 = d
and l = 4. Then bµ

3 = λ2 = λ3 +1+ k = 16, bµ
4 = 15, bµ

5 = 14, bµ
6 = 12 are the next largest

bars in µ. But considering the first five and last five consecutive factors in π1 separately,
we see that π1 has a further prime divisor q4 ≥ 13, giving a contradiction.
Now assume k = 6. Then 23 = bµ

1 = 2λ3 + 7 implies λ3 = 8, and then we must have
λ4 = 2, l = 4 and bµ

2 = 17 = q2. Now note that bµ
3 = λ2 = λ3+1+k = 15, bµ

4 = 14, bµ
5 = 12

are the next largest bars in µ. But as λ3 − λ4 − 1 = 5, q3 ≥ 13, giving a contradiction.
When k ≤ 4, λ3 ≥ 9 and then λ3 + λ4 = 10 = d and bµ

2 ≤ 15. But then q3 ≥ 17 gives a
contradiction.

Case d = 9. Again, q1 ≥ 23, and here this implies k ≥ 4. Also bµ
1 ≤ 40, and then k ≤ 13

and q1 ≤ 37. Then, bµ
1 ≤ 32, and thus k ≤ 11; hence bµ

1 ≤ 30, and thus k ≤ 10 and we
obtain bµ

1 ≤ 29. Moreover, bµ
2 ≤ 20 and now we can deduce q1 = bµ

1 ∈ {23, 29} and k ≤ 8.
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This leads to bµ
1 ≤ 27 and hence q1 = bµ

1 = 23. As bµ
1 = 2λ3 + k + 1, k must be even.

As bµ
2 ≤ 18, this yields k ∈ {4, 6}. If k = 6, then bµ

2 = 16, giving a contradiction; hence
k = 4. Then λ3 = 9 = d, i.e., λ4 = 0, and thus q3 ≥ 18, giving a contradiction.

Case d = 8. Here, q1 ≥ 19, and thus k ≥ 2. Also bµ
1 ≤ 38, and thus k ≤ 13 and q1 ≤ 37.

Then, bµ
1 ≤ 30, and thus k ≤ 10; hence bµ

1 ≤ 27 and q1 ∈ {19, 23}, and also bµ
2 ≤ 19. If

q1 = 23, then also 23 = bµ
1 = 2λ3 + k + 1, and thus k ∈ {6, 8}. But then bµ

2 ≤ 17, hence
k = 6, which gives bµ

2 = 15 and then a contradiction.
It remains to consider the case q1 = 19. Then either bµ

1 = 19 or bµ
2 = 19. First assume

bµ
1 = 19; then k is even and k ≤ 6. Now bµ

2 ≤ 15, hence k ≤ 4 and then bµ
2 ≤ 13. Then

λ3 ≥ 7, hence λ3 − λ4 − 1 ≥ 5 and thus q3 = 13 = bµ
2 , and hence k = 4, λ3 = 7. But if

13 | π3 =
∏18

j=14(n− j), then also 13 | ∏5
j=1(n− j) | π1 =

∏7
j=0(n− j), and thus we have

to have a further 13-bar in µ, a contradiction.
Now we assume bµ

2 = 19; then k = 10 and q2 = 23 = bµ
1 , hence λ3 = 6, λ4 = 2. Let’s take

a closer look at the bar lengths in µ = (17, 6, 2):

23 19 17 16 14 13 12 10 9 8 7 6 5 4 3 2 1
8 6 5 3 2 1

2 1

Now there are only 15 instances of an odd prime dividing a bar length in µ; hence at least
10 of the “missing” first row bar lengths have to be 2-powers. But the 25 missing first
row bar lengths are in the range n, n− 1, . . . , n− 42, so this is impossible.

Case d = 7. Here, q1 ≥ 17, and thus k ≥ 2. Also bµ
1 ≤ 36, and thus k ≤ 11. Then,

bµ
1 ≤ 26, and thus k ≤ 10; hence bµ

1 ≤ 25 and q1 ∈ {17, 19, 23}, and also bµ
2 ≤ 18.

If q1 = 23, then 23 = bµ
1 ≤ 2d + k + 1, and thus k ≥ 8; but then q2 ≤ 19, which gives a

contradiction.
If q1 = 19, then 19 = bµ

1 = 2λ3 + k + 1, and thus k ≥ 4 is even; also, k ≤ 6 because of
bµ
2 ≤ 18. If k = 6, then 17 ≤ q2 ≤ bµ

2 ≤ d + k + 1 = 14, a contradiction. Hence k = 4, and
this implies λ3 = 7 = d; but then 17 ≤ q3 ≤ bµ

2 = 12, a contradiction.
Hence it only remains to consider the case q1 = 17. Here q1 can be one of bµ

1 , bµ
2 or bµ

3 . If
q1 = bµ

1 = 17 = 2λ3 +k +1, then bµ
2 < 17 and we deduce k ∈ {2, 4}. If k = 4, then λ3 = 6,

λ4 = 1. We take again a look at the bar lengths in µ = (11, 6, 1):

17 12 11 9 8 7 6 4 3 2 1
7 6 4 3 2 1

1

There are only 10 instances of an odd prime dividing a bar length in µ; hence at least 8
of the “missing” first row bar lengths have to be 2-powers. But the 18 missing first row
bar lengths are in the range n, n− 1, . . . , n− 29, so this is impossible.
If k = 2, then λ3 = 7 = d, hence q3 ≥ 17, giving immediately a contradiction.
If q1 = bµ

2 = 17 = λ3 + λ4 + k + 1 ≤ d + k + 1, then k ≥ 9 and hence 23 ≤ q2 ≤ bµ
1 ≤ 25,

so q2 = 23 = bµ
1 = 2λ3 + k + 1. This implies k = 10, λ3 = 6, λ4 = 1. But then

bµ
2 = λ3 + λ4 + k + 1 = 18, a contradiction.
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Finally, assume q1 = bµ
3 = 17; then we must have bµ

2 = 18 and thus k = 10. Then
q2 ≥ 23, hence 23 = bµ

1 = 2λ3 + k + 1, so λ3 = 6, λ4 = 1. Looking at the bar lengths in
µ = (17, 6, 1), we see that there are 17 instances of an odd prime dividing a bar length in
µ (note that the bar length 15 gives two contributions); hence at least 7 of the “missing”
first row bar lengths have to be 2-powers. But the 24 missing first row bar lengths are in
the range n, n− 1, . . . , n− 41, so this is impossible.

Case d = 6. Again, q1 ≥ 17, and then k ≥ 4. Also bµ
1 ≤ 34, and thus k ≤ 11. Then,

bµ
1 ≤ 24, and thus k ≤ 10; hence bµ

1 ≤ 23 and again q1 ∈ {17, 19, 23}, and here bµ
2 ≤ 17.

If q1 = 23, then bµ
1 = q1 = 23 and thus k = 10; but then q2 ≥ 23, giving a contradiction.

If q1 = 19, then bµ
1 = q1 = 19 and this yields k = 6. Then λ3 = 6 = d and q2 = 17 = bµ

2 ,
but this leads to bµ

2 ≤ d + k + 1 = 13, a contradiction.
Finally, q1 = 17 and then one of bµ

1 , bµ
2 equals q1 = 17. If bµ

1 = 17, then we obtain k = 4
and thus λ3 = 6 = d; this implies bµ

2 = 11, and hence q3 ≥ 13 gives a contradiction.
If bµ

2 = 17, then k = 10 and thus 23 ≤ q2, so q2 = 23 = bµ
1 ; this implies λ3 = 6 = d.

Looking again at the bar lengths in µ = (17, 6), we see that there are 16 instances of
an odd prime dividing a bar length in µ, hence at least 7 of the “missing” first row bar
lengths have to be 2-powers; but the 23 missing first row bar lengths are in the range
n, n− 1, . . . , n− 40, so this is impossible.

Case d = 5. Here, q1 ≥ 13, and then k ≥ 2. Also bµ
1 ≤ 32, and thus k ≤ 11. Then,

bµ
1 ≤ 22, and thus k ≤ 8; hence bµ

1 ≤ 19 and now q1 ∈ {13, 17, 19}, and bµ
2 ≤ 14.

If q1 = 19, then bµ
1 = q1 = 19 and thus k = 8; but then q2 ≥ 19, giving a contradiction.

If q1 = 17, then bµ
1 = q1 = 6 and this implies k = 6; but then q2 ≥ 17 gives a contradiction.

Finally, q1 = 13 and then one of bµ
1 , bµ

2 , bµ
3 equals q1 = 13. If bµ

1 = 13, then k = 4 or
k = 2. If k = 4, then λ3 = 4 and λ4 = 1. In this case we find 7 instances of an odd
prime dividing a bar length in µ = (9, 4, 1), hence at least 7 of the “missing” first row
bar lengths have to be 2-powers; but the 14 missing first row bar lengths are in the range
n, n− 1, . . . , n− 23, a contradiction.
If k = 2, then λ3 = 5 = d. Here, we find 6 instances of an odd prime dividing a bar length
in µ = (8, 5), hence at least 7 of the “missing” first row bar lengths have to be 2-powers;
but the 13 missing first row bar lengths are in the range n, n− 1, . . . , n− 21, and this is
impossible.
If bµ

2 = 13, then k ≥ 7 and thus 17 ≤ q2 = bµ
1 ; this implies that k is even, so k = 8 and

then 19 = q2 = bµ
1 , so λ3 = 5 = d. But then bµ

2 = 14, a contradiction.
Finally we assume bµ

3 = 13; then bµ
2 = 14 and hence k = 8. Now q2 ≥ 19, hence

q2 = bµ
1 = 19 and thus λ3 = 5 = d. Here, there are 12 instances of an odd prime dividing

a bar length in µ = (14, 5), hence at least 7 of the “missing” first row bar lengths have to
be 2-powers; but the 19 missing first row bar lengths are in the range n, n− 1, . . . , n− 33,
and again this is impossible.

With this final contradiction we have now finished the proof of Proposition 4.4. ¦

Completing the proof of Theorem 1.1.
Because of Proposition 4.4 it only remains to discuss the situation where d ≤ 4.
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Case d = 1. By Lemma 4.3, we have k ≤ 4d + 1 = 5 (without assumption on n).
Recall that d = 1 means λ = (λ1, λ2, 1), b1 = n− 1, b2 = λ1 + 1, λ2 = k + 2.
Furthermore, we have the missing first row bar lengths π1 = n and b2 + 1, . . . , b1 − 1 =
λ1 + 2, . . . , n− 2, when k > 0.

When k = 0, µ = (2, 1), which has the bar lengths 3, 12, so two missing first row bar
lengths have to be 2-powers; note also that n ≥ 6. We consider the missing first row bar
lengths n and n − 5, n − 4 in λ. But then we can only have n = 6 or n = 8. For n = 6,
we obtain the partition (3, 2, 1), for n = 8, the partition λ = (5, 2, 1) which are both on
our list of exceptional bar partitions in Theorem 1.1.
When k = 1, µ = (3, 1), which has the bar lengths 4, 3, 12; note that n ≥ 8. Thus only
one missing first row bar length of λ can have an odd prime divisor (namely 3), and all
others have to be 2-powers. But the largest missing first row bar lengths are n, n− 2 and
n− 5, and these can not satisfy this condition.
When k = 2, µ = (4, 1), with bar lengths 5, 4, 2, 12, so again only one missing first row bar
length of λ can have an odd prime divisor (here, 5), and all others have to be 2-powers.
Here, n ≥ 9 and we consider n and n− 3, n− 2. But we notice that no two of the three
numbers n, n− 2, n− 3 can be simultaneously 2-powers.
When k = 3, µ = (5, 1), with bar lengths 6, 5, 3, 2, 12, so two missing first row bar lengths
of λ can have an odd prime divisor 3 and one missing first row bar length has the prime
divisor 5, and all others have to be 2-powers, in particular, at least three missing first
row bar lengths have to be 2-powers. Here, n ≥ 11 and we consider the missing first row
bar lengths n, n− 4, n− 3, n− 2 and n− 7. None of n, n− 2, n− 4 can be 2-powers, as
then none of the other four numbers can be a 2-power; thus, n− 3 and n− 7 have to be
2-powers, implying n = 11, which gives a contradiction.
When k = 4, µ = (6, 1), with bar lengths 7, 6, 4, 3, 2, 12, so two missing first row bar
lengths of λ can have an odd prime divisor 3 and one missing first row bar length has the
prime divisor 7, and all others have to be 2-powers, in particular, at least four missing
first row bar lengths have to be 2-powers. Here, n ≥ 13 and we consider the missing first
row bar lengths n, n− 2, n− 3, n− 4, n− 5 and n− 8. But it is impossible that three of
these numbers are 2-powers.
When k = 5, µ = (7, 1), with bar lengths 8, 7, 5, 4, 3, 2, 12, so at least five missing first row
bar lengths have to be 2-powers. Here, n ≥ 15 and we consider the missing first row bar
lengths n, n− 2, n− 3, n− 4, n− 5, n− 6. But it is impossible that three of these numbers
are 2-powers.

Case d = 2. By Lemma 4.3 we have k ≤ 4d + 1 = 9.
Recall that d = 2 means λ = (λ1, λ2, 2), b1 = n− 2, b2 = λ1 + 2, λ2 = k + 3.
Furthermore, we have the missing first row bar lengths n, n − 1 and b2 + 1, . . . , b1 − 1 =
n− 2− k, . . . , n− 3, n− 4− k, n− 7− k and n− 9− k when k > 0. Note that if k is odd,
then we have (k + 5)/2 each of missing first row bar lengths congruent to n and n − 1
mod 2, respectively, if k > 0 is even, then we have k/2 + 2 and k/2 + 3 missing first row
bar lengths congruent to n and n− 1 mod 2, respectively.
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For k = 0, µ = (3, 2) with bar lengths 5, 3, 22, 1, so at least three of the missing first row
bar lengths n, n − 1, n − 4, n − 3, n − 8 are 2-powers. But this is only possible if n = 9,
and this gives the bar partition λ = (4, 3, 2) which is on our list of exceptional cases.
For 1 ≤ k ≤ 9, the number of 2-powers among the missing first row bar lengths forced
by the 2-power bar lengths in µ as in the previous arguments, quickly shows in each case
that no further exceptional case occurs. (Note that one might also use Hanson’s result
to exclude some cases, but the arguments then take slightly longer and are a bit more
involved.)

Case d = 3. Here Lemma 4.3 yields k ≤ 4d + 1 = 13. For the discussion of this case,
again we do not assume that n ≥ 29.
In this situation, we have two types of bar partitions to discuss, namely type I: λ =
(λ1, λ2, 3) and type II: λ = (λ1, λ2, 2, 1).
Type I: λ = (λ1, λ2, 3). Again, we consider the missing first row bar lengths; here these
are n, n− 1, n− 2; n− 4, . . . , n− 3− k (when k > 0) n− 5− k, n− 6− k; n− 10− k and
n− 11− 2k. Note that n ≥ 12 + 2k.
When k = 0, the bar lengths in µ are (with multiplicities) 7, 4, 32, 22, 1, in particular, only
one missing first row bar length has a prime divisor > 3 and none has a prime divisor > 7.
Using Hanson’s Theorem for the sequences n, n − 1, n − 2 and n − 5, n − 6, we see that
this is not possible.
When k = 1, the bar lengths in µ are 8, 5, 4, 32, 2, 1, and a similar reasoning on n, n−1, n−2
and n− 6, n− 7 gives a contradiction.
For k = 2, the bar lengths in µ are 9, 6, 5, 4, 3, 22, 12, and by Hanson’s Theorem used on
n, n− 1, n− 2 and n− 4, n− 5 we have a contradiction.
For k = 3, the bar lengths in µ are 10, 7, 6, 5, 32, 22, 12, and thus we must have at least
four 2-powers among the missing first row bar lengths. But then there must be at least
four 2-powers among either the numbers n, n−2, n−4, n−6, n−8 or among the numbers
n− 1, n− 5, n− 9, n− 13, n− 17, and this is impossible.
The cases k = 4, 5, 6, 7 can be dealt with in an analogous way.
For k = 8, 9, 11, 13, Hanson’s Theorem gives a large prime divisor in (n−4) · · · (n−3−k)
which is bigger than the prime divisors in the bar lengths of µ.
For k = 10, µ has the bar lengths 17, 14, 13, 12, 10, 9, 8, 7, 6, 5, 4, 32, 22, 12, so we have only
6 bar lengths divisible by a prime ≥ 5. Now using Hanson’s Theorem on n, n − 1, n − 2
gives a prime divisor ≥ 5, then (n− 4) . . . (n− 13) has two different prime divisors ≥ 11,
but it also has a prime divisor 7 and two factors divisible by 5, and finally n− 15, n− 16
has a further prime divisor ≥ 5, a contradiction.
For k = 12, a similar argument is used.
Type II: λ = (λ1, λ2, 2, 1).
Here indeed we get the exceptional example (4, 3, 2, 1) for k = 0. For k > 0, in a tedious
case-by-case analysis using similar arguments as above all cases can be handled and no
further exceptional cases occur.

Case d = 4. Lemma 4.3 gives k ≤ 4d + 1 = 17.
Here, we have again two types of bar partitions to discuss, namely type I: λ = (λ1, λ2, 4)
and type II: λ = (λ1, λ2, 3, 1).
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As above, a tedious case-by-case analysis using again Hanson’s Theorem and sometimes
also the requirement of first row bar lengths to be 2-powers allows to deal with all cases,
and no new exceptional cases occur.
Thus the Theorem is proved. ¦
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