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1 Introdu
tion

In 1998, the se
ond author raised the problem of 
lassifying the irredu
ible


hara
ters of S

n

of prime power degree. Zalesskii proposed the analogous

problem for quasi-simple groups, and he has, in joint work with Malle, made

substantial progress on this latter problem. With the ex
eption of the al-

ternating groups and their double 
overs, their work provides a 
omplete

solution. In this arti
le we �rst 
lassify all the irredu
ible 
hara
ters of S

n

of prime power degree (Theorem 2.4), and then we dedu
e the 
orresponding


lassi�
ation for the alternating groups (Theorem 5.1), thus providing the

answer for one of the two remaining families in Zalesskii's problem. This


lassi�
ation has another appli
ation in group theory. With it, we are able to

answer, for alternating groups, a question of Huppert: Whi
h simple groups

G have the property that there is a prime p for whi
h G has an irredu
ible


hara
ter of p-power degree > 1 and all of the irredu
ible 
hara
ters of G

have degrees that are relatively prime to p or are powers of p?

The 
ase of the double 
overs of the symmetri
 and alternating groups will

be dealt with in a forth
oming paper; in parti
ular, this 
ompletes the an-

swer to Zalesskii's problem.

The paper is organized as follows. In se
tion 2, some results on hook lengths

in partitions are proved. These results lead to an algorithm whi
h allows us

to show that every irredu
ible representation of S

n

with prime power degree

is labelled by a partition having a large hook. In se
tion 3, we obtain a new

result 
on
erning the prime fa
tors of 
onse
utive integers (Theorem 3.4). In

se
tion 4 we prove Theorem 2.4, the main result. To do so, we 
ombine the

algorithm above with Theorem 3.4 and work of Rasala on minimal degrees.

This implies Theorem 2.4 for large n. To 
omplete the proof, we 
he
k that

the algorithm terminates appropriately for small n (i.e. those n � 9:25 �10

8

)

with the aid of a 
omputer. In the last se
tion we derive the 
lassi�
ation of

0
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irredu
ible 
hara
ters of A

n

of prime power degree, and we solve Huppert's

question for alternating groups.
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2 An algorithm for hook lengths

We refer to [6℄, [8℄ for details about partitions, Young diagrams and hooks.

Consider a partition � = (�

1

; �

2

; : : : ; �

m

) of the integer n. Thus �

1

� �

2

�

� � � � �

m

> 0 and �

1

+ �

2

+ : : : + �

m

= n. We 
all the �

i

's the parts of �

and m the length of �. Moreover for i � 1, m

i

= m

i

(�) denotes the number

of parts equal to i in �. Thus m =

P

i�1

m

i

. The Young diagram of �


onsists of n nodes (boxes) with �

i

nodes in the ith row. We refer to the

nodes in matrix notation, i.e. the (i; j)-node is the jth node in the ith row.

The (i; j)-hook 
onsists of the nodes in the Young diagram to the right and

below the (i; j)-node, and in
luding this node. The number of nodes in this

hook is its hooklength, denoted by h

ij

. Thus

� � �

�

is the Young diagram of (5

2

; 4; 1), where we have marked the (2; 3)-hook

belonging to the third node in the se
ond row, and the 
orresponding hook

length h

23

is 4.

We put h

i

= h

i1

= �

i

+ (m � i) for 1 � i � m; these are the �rst 
olumn

hook lengths, abbreviated by f
h.

The degree f

�

of � is

f

�

=

n!

�

i;j

h

ij

:

It is known that this is the degree of the 
omplex irredu
ible representation

of the symmetri
 group S

n

labelled by � (see [6℄, [8℄).

Example 2.1 If � = (n � k; 1

k

), a partition of n with 0 < k < n then

f

�

=

�

n�1

k

�

, a binomial 
oeÆ
ient.
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Binomial 
oeÆ
ients are prime powers only in the \trivial" 
ases ([4℄, [12℄):

Proposition 2.2 The binomial 
oeÆ
ient

�

n

k

�

is a (nontrivial) power of a

prime exa
tly when n is a prime power and k = 1 or k = n� 1.

This immediately implies the 
hara
terization of hook partitions of (non-

trivial) prime power degree:

Corollary 2.3 Suppose that � = (n � k; 1

k

) with 0 < k < n � 1. Then

f

�

= p

r

for some prime p and integer r � 1 if and only if n = p

r

+ 1 and

k = 1 or k = p

r

� 1.

The following theorem 
hara
terizes those partitions (resp. irredu
ible 
har-

a
ters of symmetri
 groups) that are of prime power degree.

Theorem 2.4 Let � be a partition of n. Then f

�

= p

r

for some prime p,

r � 1, if and only if one of the following o

urs:

n = p

r

+ 1 ; � = (p

r

; 1) or (2; 1

p

r

�1

) ; f

�

= p

r

or we are in one of the following ex
eptional 
ases:

n = 4 : � = (2

2

); f

�

= 2

n = 5 : � = (2

2

1) or (3; 2) ; f

�

= 5

n = 6 : � = (4; 2) or (2

2

1

2

) ; f

�

= 3

2

� = (3

2

) or (2

3

) ; f

�

= 5

� = (321) ; f

�

= 2

4

n = 8 : � = (521) or (321

3

) ; f

�

= 2

6

n = 9 : � = (72) or (2

2

; 1

5

) ; f

�

= 3

3

First we state some elementary results about hook lengths. In the following,

� is a partition of n, m

1

is the multipli
ity of 1 as a part of �, and h

ij

, h

i

are the hook lengths as de�ned above.

The following lemma is elementary.

Lemma 2.5 If h

i2

6= 0 (i.e. �

i

� 2) then

h

i2

= h

i

�m

1

� 1 :

Proposition 2.6 Let 1 � i; j � m, i 6= j. Then

h

i

+ h

j

� n� 1 � m

1

:

Proof. It suÆ
es to prove this for h

1

and h

2

. If � = (n� k; 1

k

) is a hook

partition, then the result is trivially true. If � is not a hook partition, then

h

22

6= 0 so that h

22

= h

2

�m

1

� 1 by Lemma 2.5. Sin
e h

11

= h

1

and sin
e

h

11

+ h

22

� n the result follows. �
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Lemma 2.7 Suppose that s = h

ik

and t = h

j`

where (i; k) 6= (j; `).

(1) If i 6= j and k 6= `, then s+ t � n.

(2) If s + t > n, then either i = j = 1 (both hooks in the �rst row) or

k = ` = 1 (both hooks in the �rst 
olumn).

Proof. (1) By assumption, the two hooks have at most one node in 
om-

mon. If they have a node in 
ommon, none of the hooks is the (1; 1)-hook.

Thus, the hooks plus possibly the (1; 1)-node 
omprise s+ t nodes, when
e

s+ t � n.

(2) By (1), we know that i = j or k = `. Assume the former so that k 6= `.

If i > 1, then h

1k

> h

ik

when
e h

1k

+ h

j`

> n, 
ontradi
ting (1) applied to

(1; k) and (j; `). The 
ase k = ` is similar. �

Corollary 2.8 For i � 2, every hook of length t > n � h

i

= n � h

i1

is in

the �rst 
olumn of �.

Proof. Assume that t = h

j`

. If (j; `) = (i; 1), then the result is true.

Otherwise, apply (2) of Lemma 2.7 with (i; k) = (i; 1) to get ` = 1. �

From now on, assume that f

�

is a power of a prime and that � is not a hook

partition. For n � 6 one easily 
he
ks Theorem 2.4 by hand (or by using

the tables in [6℄). So we assume from now on that n > 6. Consequently, it

follows that f

�

� n+ 1 ([6℄, Theorem 2.4.10).

Proposition 2.9 If q is a prime for whi
h n�m

1

� q � n, then

q; 2q; : : : ;

�

n

q

�

q

are all f
h of �.

Proof. Put w =

�

n

q

�

, n = wq + r, 0 � r < q. By assumption, we

have that (w � 1)q � (w � 1)q + r = n � q � m

1

. Sin
e m

1

is the multi-

pli
ity of 1 in �, the numbers 1; 2; : : : ;m

1

are f
h. In parti
ular, we have

that q; 2q; : : : ; (w � 1)q are f
h. If wq � m

1

, then we are done. Assume

that m

1

< wq. At most w hooks in � are of lengths divisible by q (see

e.g. [8℄, Proposition (3.6)). If there are only the above (w � 1) hooks in

the �rst 
olumn of length divisible by q, then qjf

�

sin
e

Q

w

i=1

(iq) j n!. By

assumption, f

�

is then a power of q. We get f

�

= (wq)

q

, the q-part of wq.

Thus f

�

jwq � n, when
e f

�

� n, a 
ontradi
tion. Let h

ij

be the additional

4



hook length divisible by q. Sin
e � 6= (1

n

), m

1

� h

2

. If h

2

> m

1

, then

h

ij

+ h

21

> q +m

1

� n. By Corollary 2.8 we get j = 1. If h

2

= m

1

, then

� = (n � m

1

; 1

m

1

) and sin
e m

1

< wq there has to be a hook of length

divisible by q in the �rst row. Sin
e n�m

1

� q it has to be the (1; 1)-hook.

Thus h

11

= wq. �

Corollary 2.10 Let 1 � i < j � m. If h � n has a prime divisor q

satisfying 2n� h

i

� h

j

< q, then h is a f
h of �.

Proof. By Proposition 2.6, n �m

1

� 2n + 1 � h

i

� h

j

. By assumption

2n+ 1� h

i

� h

j

� q � h � n, when
e n�m

1

� q � n. By Proposition 2.9,

any multiple of q less than or equal to n is a f
h. In parti
ular h is a f
h of �. �

Lemma 2.11 If q is a prime,

n

2

< q � n, then � has a hook of length q.

Proof. This follows immediately from the degree formula and the fa
t

that f

�

� n+ 1. �

We are now going to strengthen our assumption on n and � slightly. A
-


ording to Table 3 of [3℄ there are, for all n � 12, at least two distin
t primes

p; q with

n

2

< p; q � n. By Lemma 2.11 there are hooks of length p and q in

�. We will assume that su
h primes p; q exist for n and that p and q are f
h.

This is not a restri
tion, see Lemma 2.7(2) (if ne
essary we may repla
e � by

its 
onjugate partition �

0

as we have f

�

= f

�

0
). Now the above assumption

for
es any prime between

n

2

and n to be a f
h of �.

Proposition 2.12 Suppose we have sequen
es of integers s

1

< s

2

< � � � <

s

r

� n, t

1

< t

2

< � � � < t

r

� n satisfying

(i) s

i

< t

i

for all i;

(ii) s

1

and t

1

are primes >

n

2

;

(iii) For 1 � i � r � 1, s

i+1

and t

i+1


ontain prime fa
tors ex
eeding

2n� s

i

� t

i

.

Then s

1

; : : : ; s

r

; t

1

; : : : ; t

r

are all f
h of �.

Proof. We use indu
tion on i to show that s

i

and t

i

are f
h for �. For

i = 1 this is true by our assumption. If s

i

and t

i

are f
h, then Corollary 2.10

shows that s

i+1

and t

i+1

are f
h of �. �
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We get an algorithm from Proposition 2.12 whi
h shows that h

1

is large and

thus � is \almost" a hook: Start with two large primes s

1

< t

1


lose to n.

Then 2n � s

1

� t

1

is small. Choose if possible two integers s

2

and t

2

with

s

2

< t

2

, s

1

< s

2

� n, t

1

< t

2

� n ea
h having a prime divisor ex
eeding

2n�s

1

� t

1

. Then 2n�s

2

� t

2

< 2n�s

1

� t

1

. Choose if possible two integers

s

3

and t

3

with s

3

< t

3

, s

2

< s

3

� n, t

2

< t

3

� n ea
h having a prime divisor

ex
eeding 2n� s

2

� t

2

and so on. If this pro
ess rea
hes s

r

; t

r

, then t

r

� h

1

by Proposition 2.12.

Example 2.13 n = 189 = 3

3

� 7. Choose s

1

= 179, t

1

= 181. Then

2n � s

1

� t

1

= 18. Now 
hoose t

2

= 188 = 4 � 47 and s

2

= 186 = 2 � 3 � 31

whi
h have prime fa
tors ex
eeding 18. Then 2n � s

2

� t

2

= 4. Choose

t

3

= 189, s

3

= 188. Thus if f

�

is a prime power then h

1

= 189 and � is a

hook partition, 
ontradi
ting Corollary 2.3. Thus none of the 1527273599625

partitions of n = 189 is of prime power degree greater than one.

3 Prime fa
tors in 
onse
utive integers and good

sequen
es

In this se
tion we show, for suÆ
iently large n, that there are suitable se-

quen
es as in Proposition 2.12 that end with numbers 
lose to n. Thus, for

a partition � of prime power degree the algorithm des
ribed in the previous

se
tion shows that � di�ers from a hook partition only by a small amount.

Suppose that n � 3 is a positive integer. Consider two �nite in
reasing

sequen
es of integers fA

i

g and fB

i

g whi
h satisfy the following properties:

(i) A

1

< B

1

� n are two \large" primes not ex
eeding n.

(ii) For every i, we have that

A

i

< B

i

� n:

(iii) If B

i

< n, then A

i+1

< B

i+1

are integers not ex
eeding n ea
h with a

prime fa
tor ex
eeding 2n�A

i

�B

i

.

Then denote by A(n) (resp. B(n)) the largest integer in su
h a sequen
e

fA

i

g (resp. fB

i

g).

We want to show that there are su
h sequen
es with n�B(n) \small".

More pre
isely, we prove the following theorem:

Theorem 3.1 If n > 3:06 � 10

8

, then there is a pair of sequen
es fA

i

g and

fB

i

g as above for whi
h

n�B(n) � 225:

6



We note that the 225 in the theorem above 
an be redu
ed to 2 for suÆ-


iently large n. However, this result is of no use in the present paper.

We �rst review some fa
ts about the distribution of primes, and we prove a

theorem on the prime divisors of a produ
t of 
onse
utive integers. Using

this, we then prove Theorem 3.1.

Throughout this se
tion p shall denote a prime. Now we re
all three relevant

fun
tions. If X > 0, then de�ne �(X) and �(X) by

�(X) := #fp � Xg; (1)

�(X) :=

P

p�X

log p: (2)

Moreover, re
all that von Mangoldt's fun
tion �(n) is de�ned by

�(n) :=

(

log p if n = p

�

with � 2 Z;

0 otherwise:

(3)

Rosser and S
hoenfeld [10℄, [11℄ proved the following un
onditional inequal-

ities. These inequalities will be important in the proof of Theorem 3.1.

Theorem 3.2 (Rosser-S
hoenfeld)

(1) If X > 1, then

�(X) � 1:25506 �

X

logX

:

(2) If X > 1, then

X

1�n�X

�(n)

n

� logX:

(3) If X � 1319007, then

0:998684 �X < �(X) < 1:001102 �X:

Now we prove the following 
ru
ial result about the prime fa
tors of 
onse
-

utive integers.

Lemma 3.3 If 1 � m � k � y < n are integers for whi
h

�

n

k

�

k

� (n+ k)

�(y)+m�1

; (4)

then at least m of the integers n + 1; n + 2; : : : ; n + k have a prime fa
tor

ex
eeding y.

7



Proof. If L is de�ned by

L :=

k

Y

j=1

(n+ j) =

Y

p

p

�

p

;

then let R and S be the unique integers for whi
h L = RS and

R =

Q

p>y

p

�

p

; (5)

S =

Q

p�y

p

�

p

: (6)

Sin
e n+ k is the largest fa
tor de�ning L, if

R > (n+ k)

m�1

; (7)

then at least m of the numbers n+ 1; n + 2; : : : ; n + k have a prime fa
tor

ex
eeding y. Therefore, it suÆ
es to prove (7). Sin
e L = RS > n

k

, we

trivially have that

R >

n

k

S

;

and so by (7) it suÆ
es to prove that

n

k

S

> (n+ k)

m�1

: (8)

Now we derive an upper bound for S. By de�nition, we have that

log S = log

Y

p�y

p

�

p

=

X

p�y

�

p

log p =

X

p�y

log p

1

X

�=1

0

�

X

1�j�k ; p

�

jn+j

1

1

A

:

Now, the innermost sum 
learly has the upper bound

h

k

p

�

i

+ 1 Moreover,

sin
e this bound equals 1 whenever p

�

> k, by Theorem 3.2(2) we �nd that

log S �

P

p

�

�k

log p

h

k

p

�

i

+

P

p�y

log p

P

p

�

�n+k

1

� k

P

k

d=1

�(d)

d

+

P

p�y

log p

h

log(n+k)

log p

i

� k log k + �(y) log(n+ k): (9)

Therefore, we have that

S � k

k

(n+ k)

�(y)

;

and so

n

k

S

�

�

n

k

�

k

(n+ k)

��(y)

:

8



However, sin
e

�

n

k

�

k

� (n+ k)

�(y)+m�1

by (4) we have that

n

k

S

� (n+ k)

m�1

whi
h is (8). �

As a 
onsequen
e of Theorem 3.2 and Lemma 3.3, we obtain the following


ru
ial result.

Theorem 3.4 If n > 3:06 � 10

8

is an integer and k is a positive integer

satisfying

168 � k �

n

4

;

then at least three of the integers n+1; n+2; : : : ; n+ k have a prime fa
tor

ex
eeding 4k.

Proof. By Theorem 3.2 (3), we have that

�(n+ k)� �(n) > 0:998684(n + k)� 1:001102n = 0:998684k � 0:002418n:

So, if n=400 < k � n=4 and n � 1319007, then

�(n+ k)� �(n) > 0:0000787n > 2 log(5n=4) � 2 log(n+ k): (10)

Sin
e

�(n+ k)� �(n) =

X

n<p�n+k

log p � (�(n+ k)� �(n)) log(n+ k);

(10) implies that there are at least three primes among the numbers n+1; n+

2; : : : ; n + k provided that n=400 < k � n=4 and n � 1319007. Moreover,

by hypothesis these primes are � n+ 1 > 4k.

Next we 
onsider the 
ases where 100 � k � n=400 and n � 1:8 � 10

14

. By

Lemma 3.3 it suÆ
es to verify that

�

n

k

�

k

� (n+ k)

�(4k)+2

(11)

whenever 100 � k � n=400 and n > 1:8 � 10

14

.

By Theorem 3.2(1), if k � 100, then

�(4k) + 2 �

5:02024k

log(4k)

+ 2 <

5:15k

log(4k)

:

Therefore, (11) holds as soon as

�

n

k

�

k

� ((1 +

1

400

)n)

5:15k

log(4k)

� (n+ k)

4:95k

log(4k)

:

9



By taking logarithms, the �rst inequality is equivalent to

log(4k) log(n=k) � 5:15 log

��

1 +

1

400

�

n

�

: (12)

However, for a �xed value of n the fun
tion on the left hand side of this

inequality is an in
reasing fun
tion in k in the interval [1;

p

n=2℄ and is de-


reasing for larger k thus taking the minimal value log 400 � log(n=100) at

the endpoints. It is easy to verify that (12) holds for all k in the interval

[100; n=400℄ provided that n > 1:8 � 10

14

. Similarly, we 
an show that (11)

holds for all 500 � k � n=2000 and n � 3 � 10

8

.

To 
omplete the proof in the remaining 
ases we use Maple on a PC. On the

one hand, one 
an, using the Nextprime fun
tion, 
he
k that for j = 0; : : : ; 6

there is always a prime in any interval of type (m � 10

4+j

; (m + 1) � 10

4+j

℄

where 10

4

� m � 10

5

. This implies immediately that there are at least

three primes in any interval of type (n; n+ n=2000℄ where 10

8

� n � 10

15

.

On the other hand using log(n+ k) < log n+ k=n, (11) follows from

log n �

k log k + (�(4k) + 2)k=n

k � �(4k) � 2

:

This is easily veri�ed (using only a table of primes below 2000) for 168 �

k � 500 and n > 3:06 � 10

8

. All 
ases are 
onsidered. �

Proof of Theorem 3.1.

Suppose that n > 3:06 � 10

8

and pi
k two primes 0:8n < A

1

< B

1

� 0:9n

whi
h is allowable by Theorem 3.2 (3). Note that B

1

� A

1

� n � B

1

by

hypothesis. Now suppose that when 
onstru
ting the sequen
es we have

B

i

�A

i

� n�B

i

:

Now we seek new integers A

i+1

< B

i+1

< n for whi
h

B

i+1

�A

i+1

� n�B

i+1

; (13)

B

i

< A

i+1

< B

i+1

� n: (14)

and ea
h with a prime fa
tor ex
eeding 3(n�B

i

).

Now we apply Theorem 3.4 with n = B

i

and k = d

3

4

(n � B

i

)e (where dxe

denotes the smallest integer � x). Obviously, we have 4k � 3(n � B

i

) >

2n� A

i

� B

i

. As long as k � 168 we 
an �nd three integers B

i

< a < b <


 � B

i

+ k ea
h with a prime fa
tor > 4k.

We now show that either the pair a and b or the pair b and 
 satis�es (13)

and (14). If neither does, then


� b > n� 
 and b� a > n� b

10



whi
h are equivalent to


� b � n� 
+ 1 and b� a � n� b+ 1:

These imply that

a � 2b� n� 1 � 2(2
 � n� 1)� n� 1 = 4
� 3n� 3

� 4(B

i

+ k)� 3n� 3

� 4B

i

+ 4

�

3

4

(n�B

i

) +

3

4

�

� 3n� 3 = B

i

:

Sin
e B

i

< a we see that we 
an always 
hoose su
h an A

i+1

and B

i+1

pro-

vided that k � 168. Suppose that A

i+1

and B

i+1

are the last terms whi
h

are found this way, then we have n�B

i+1

� 225. This proves Theorem 3.1. �

Corollary 3.5 Let � be a partition of n with largest hook length h

1

. If � is

of prime power degree and n > 3:06 � 10

8

, then n� h

1

� 225.

Proof. This follows immediately from Theorem 3.1 and Proposition 2.12.

�

4 Proof of the 
lassi�
ation result for S

n

For dealing with the situation where 
 = n� h

1

is small, we provide a good

upper bound for the p-powers in the 
hara
ter degrees for S

n

. This is similar

to the 
ase of binomial 
oeÆ
ients (i.e. the 
ase of hook partitions).

Proposition 4.1 Let � be a partition of n, and set 
 = n� h

1

. Let p be a

prime, and l the integer with p

l

� n < p

l+1

.

Then

�

p

(f

�

) � �

p

((2
+ 2)!) + 2l :

In parti
ular, a bound for the p-part of f

�

is given by

(f

�

)

p

� n

2

� ((2
+ 2)!)

p

:

Proof. Let k = m

1

be the multipli
ity of 1 in �. By looking at the Young

diagram we see that

�

1

� �

2

� h

1

� k � (
+ 2) = n� 2
� k � 2 :

Let A denote the set of nodes other than the �nal k nodes in the leg and

the �nal n� 2
�k� 2 nodes in the arm of the (1; 1)-hook; for a node y 2 A

11



let h

y

denote the 
orresponding hook length. Then from the degree formula

we obtain

�

p

(f

�

) =

l

X

i=1

��

n

p

i

�

�

�

k

p

i

�

�

�

n� 2
� k � 2

p

i

��

�

X

y2A

�

p

(h

y

)

For �xed i, the ith summand in the �rst sum gives a 
ontribution of at most

h

2
+2

p

i

i

+ 2, hen
e

�

p

(f

�

) �

l

X

i=1

��

2
+ 2

p

i

�

+ 2

�

� �

p

((2
 + 2)!) + 2l :

The se
ond inequality follows immediately from this. �

We �rst 
onsider the 
ase of small n. Assume again that � is a partition of

n of prime power degree but not a hook.

Using the available tables (or with the aid of MAPLE), it is easy to 
he
k

the main theorem for n < 43. In other words, the only partitions having

prime power degree are of the form (n�1; 1) together with their 
onjugates,

or are on the short list of ex
eptions given in the theorem.

For a midsized n (i.e. 43 � n � 9:25 � 10

8

), we use the following number

theoreti
 
ondition.

Fix a number b. Given a number n, let p

1

; p

2

be the two largest primes below

n. Then 
he
k whether there is a prime divisor q of n(n�1)(n�2) � � � (n�b)

with p

1

+ p

2

+ q > 2n.

A 
omputer program (written in C++ using the LiDIA number theory pa
k-

age, run on a super 
omputer with 32 nodes, running time 2 hours) was used

to 
he
k that this 
ondition is satis�ed for all n from 29 to 9:25�10

8

for b = 4.

We now want to use this in the situation where � is a partition of n of prime

power degree, 43 � n � 9:25 � 10

8

. Sin
e the two largest primes p

1

; p

2

are

f
h of �, if q is a prime divisor as in the 
ondition above (with b = 4), then

by Corollary 2.10 one of the numbers n; n� 1; : : : n� 4 is a f
h of �. Hen
e

n� h

1

� 4.

From Proposition 4.1 we know that if � is of prime power degree, then

f

�

� o(
) � n

2

12



where 
 = n� h

1

and o(
) = maxf(2
 + 2)!

p

j p prime g.

In our situation we have 
 � 4, so o(
) � o(4) = 256, and hen
e we know

f

�

� 256 � n

2

Now we use information on the minimal degrees of S

n

-representations. Burn-

side's theorem on the minimal degree > 1 for S

n

was greatly generalized by

Rasala [9℄, giving in a suitable sense the list of the minimal degrees for suf-

�
iently large n (depending on the requested length of the list). We use the

notation from [9℄.

For any k, the list of minimal degrees for S

n

starts with the degrees of par-

titions of n 
oming from partitions of numbers d � k by adding on a part

n � d, if n � B

k

, a bound whi
h is provided expli
itly in [9℄. The degree

polynomial '

�

(n) for any partition � of k is also given expli
itly.

For k = 5, one has B

5

= 43. One easily 
he
ks that for n � 43

256 � n

2

� '

5

(n) =

1

5!

(n� 9)

3

Y

i=0

(n� i)

Hen
e f

�

is among the minimal degrees for S

n

. But the list of minimal

degrees is easily 
omputed [9℄, and none of these is a prime power ex
ept

possibly n � 1 whi
h o

urs only for (n � 1; 1) and its 
onjugate (use that

the degree formula in [9℄, Theorem A, gives a fa
torized expression in whi
h


onse
utive numbers appear). Hen
e we do not get any further partitions

of prime power degree.

Now we deal with the 
ase of large n (i.e. n > 9:25 � 10

8

). By Corollary 3.5

we know that n� h

1

� 225. We want to use the bound for the degree and

the minimal degree argument again in this situation. As before, we use the

expli
it bounds B

k

given in [9℄, su
h that for n � B

k

the list of partitions

of n of minimal degree starts with all the partitions of weight at most k.

For k = 18, B

18

= 310390100 < n, and thus we know a long list of minimal

degrees for S

n

. The maximal entry on this list 
omes from the partition

� = (64321

3

) whi
h is of maximal degree 16336320 among the partitions

of 18.

For 
 = 225 we have o(
) = 2

448

and one 
he
ks (for example, using MAPLE)

that for n � 9:25 � 10

8

one has

f

�

� 2

448

� n

2

� '

�

(n) =

[�℄(1)

18!

18

Y

i=1

(n� �

i

� 18 + i)

where � = (�

1

; : : : ; �

18

), extending � by parts 0 if ne
essary.
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Hen
e f

�

is among the minimal degrees, but as before, one 
an 
he
k that

all the minimal degrees on this list are not prime powers, ex
ept possibly

n� 1. This 
ompletes the proof. �

5 Alternating groups and a question of Huppert

The purpose of this se
tion is to prove the analogue of Theorem 2.4 for

the alternating groups. Also we answer a question of B. Huppert about


hara
ter degrees in alternating groups.

If � is a partition of n, then the irredu
ible representation of S

n

labelled

by � remains irredu
ible when restri
ted to A

n

if and only if � 6= �

0

, the


onjugate (asso
iated) partition of �. If � = �

0

the restri
tion is a sum

of two irredu
ible representations of the same degree. This leads us to the

following de�nition providing the 
hara
ter degrees in A

n

([6℄, 2.5).

Let � be a partition of n. Then

~

f

�

:=

(

f

�

if � 6= �

0

1

2

f

�

if � = �

0

:

Theorem 5.1 Let � be a partition of n. Then

~

f

�

= p

r

for some prime p,

r � 1, if and only if one of the following o

urs:

n = p

r

+ 1 > 3 ; � = (p

r

; 1) or (2; 1

p

r

�1

) ;

~

f

�

= p

r

or we are in one of the following ex
eptional 
ases

n = 5 : � = (2

2

1) or (3; 2) ;

~

f

�

= 5

� = (31

2

) ;

~

f

�

= 3

n = 6 : � = (4; 2) or (2

2

1

2

) ;

~

f

�

= 3

2

� = (3

2

) or (2

3

) ;

~

f

�

= 5

� = (321) ;

~

f

�

= 2

3

n = 8 : � = (521) or (321

3

) ;

~

f

�

= 2

6

n = 9 : � = (72) or (2

2

; 1

5

) ;

~

f

�

= 3

3

Proof. If � 6= �

0

we may apply Theorem 2.4. Suppose � = �

0

. The only

self 
onjugate partitions o

urring in the list of Theorem 2.4 are (2; 1) and

(2

2

) and here

~

f

�

= 1. Using the 
hara
ter tables of [2℄ there are no further

o

urren
es of self 
onjugate partitions with

~

f

�

= p

r

for n � 13. When

n > 13 we may always �nd two primes p

1

; p

2

satisfying

n+1

2

< p

1

< p

2

� n,

(using [3℄, Table 3). Then 2p

1

and 2p

2

are not 
hara
ter degrees of S

n

. If

� = �

0

and f

�

= 2p

r

then p 6= p

1

. Thus � has to 
ontain hooks of lengths

p

1

and p

2

. Sin
e � 
ontains only one hook of length p

1

and p

2

respe
tively,

both of them have to be in the diagonal, i.e. p

1

= h

ii

, p

2

= h

jj

for some i; j.
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This 
ontradi
ts Lemma 2.7. �

In re
ent work on the 
hara
terization of the �nite simple groups PSL(2; q)

by 
hara
ter degree properties [5℄, B. Huppert needs the following:

Corollary 5.2 Suppose that for some simple alternating group A

n

there is

a prime p, su
h that all irredu
ible 
hara
ter degrees of A

n

are either prime

to p or powers of p. Assume that some power of p is a degree for A

n

. Then

n = 5 and p = 2; 3 or 5, or n = 6 and p = 3.

Proof. Using the Atlas [2℄ we may assume n > 13. By Theorem 5.1, A

n

only has a prime power 
hara
ter degree p

r

when n = p

r

+ 1. But then

~

f

(n�2;1

2

)

=

(n� 1)(n� 2)

2

= p

r

(p

r

� 1)=2

is a 
hara
ter degree whi
h is divisible by p and not a power of p.

Remark. After this arti
le has been written a di�erent dire
t proof of the


orollary on the alternating groups has been given in [1℄.
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