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1 Introdution

In 1998, the seond author raised the problem of lassifying the irreduible

haraters of S

n

of prime power degree. Zalesskii proposed the analogous

problem for quasi-simple groups, and he has, in joint work with Malle, made

substantial progress on this latter problem. With the exeption of the al-

ternating groups and their double overs, their work provides a omplete

solution. In this artile we �rst lassify all the irreduible haraters of S

n

of prime power degree (Theorem 2.4), and then we dedue the orresponding

lassi�ation for the alternating groups (Theorem 5.1), thus providing the

answer for one of the two remaining families in Zalesskii's problem. This

lassi�ation has another appliation in group theory. With it, we are able to

answer, for alternating groups, a question of Huppert: Whih simple groups

G have the property that there is a prime p for whih G has an irreduible

harater of p-power degree > 1 and all of the irreduible haraters of G

have degrees that are relatively prime to p or are powers of p?

The ase of the double overs of the symmetri and alternating groups will

be dealt with in a forthoming paper; in partiular, this ompletes the an-

swer to Zalesskii's problem.

The paper is organized as follows. In setion 2, some results on hook lengths

in partitions are proved. These results lead to an algorithm whih allows us

to show that every irreduible representation of S

n

with prime power degree

is labelled by a partition having a large hook. In setion 3, we obtain a new

result onerning the prime fators of onseutive integers (Theorem 3.4). In

setion 4 we prove Theorem 2.4, the main result. To do so, we ombine the

algorithm above with Theorem 3.4 and work of Rasala on minimal degrees.

This implies Theorem 2.4 for large n. To omplete the proof, we hek that

the algorithm terminates appropriately for small n (i.e. those n � 9:25 �10

8

)

with the aid of a omputer. In the last setion we derive the lassi�ation of
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irreduible haraters of A

n

of prime power degree, and we solve Huppert's

question for alternating groups.

Aknowledgements. The seond and the third author are grateful to the

Danish Natural Siene Foundation for the support of their ooperation on

this work. The fourth author thanks the National Siene Foundation, the

Alfred P. Sloan Foundation, and the David and Luile Pakard Foundation

for their generous support. The authors are indebted to Rhiannon Weaver

for writing an eÆient omputer program whih was vital for this work.

2 An algorithm for hook lengths

We refer to [6℄, [8℄ for details about partitions, Young diagrams and hooks.

Consider a partition � = (�

1

; �

2

; : : : ; �

m

) of the integer n. Thus �

1

� �

2

�

� � � � �

m

> 0 and �

1

+ �

2

+ : : : + �

m

= n. We all the �

i

's the parts of �

and m the length of �. Moreover for i � 1, m

i

= m

i

(�) denotes the number

of parts equal to i in �. Thus m =

P

i�1

m

i

. The Young diagram of �

onsists of n nodes (boxes) with �

i

nodes in the ith row. We refer to the

nodes in matrix notation, i.e. the (i; j)-node is the jth node in the ith row.

The (i; j)-hook onsists of the nodes in the Young diagram to the right and

below the (i; j)-node, and inluding this node. The number of nodes in this

hook is its hooklength, denoted by h

ij

. Thus

� � �

�

is the Young diagram of (5

2

; 4; 1), where we have marked the (2; 3)-hook

belonging to the third node in the seond row, and the orresponding hook

length h

23

is 4.

We put h

i

= h

i1

= �

i

+ (m � i) for 1 � i � m; these are the �rst olumn

hook lengths, abbreviated by fh.

The degree f

�

of � is

f

�

=

n!

�

i;j

h

ij

:

It is known that this is the degree of the omplex irreduible representation

of the symmetri group S

n

labelled by � (see [6℄, [8℄).

Example 2.1 If � = (n � k; 1

k

), a partition of n with 0 < k < n then

f

�

=

�

n�1

k

�

, a binomial oeÆient.
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Binomial oeÆients are prime powers only in the \trivial" ases ([4℄, [12℄):

Proposition 2.2 The binomial oeÆient

�

n

k

�

is a (nontrivial) power of a

prime exatly when n is a prime power and k = 1 or k = n� 1.

This immediately implies the haraterization of hook partitions of (non-

trivial) prime power degree:

Corollary 2.3 Suppose that � = (n � k; 1

k

) with 0 < k < n � 1. Then

f

�

= p

r

for some prime p and integer r � 1 if and only if n = p

r

+ 1 and

k = 1 or k = p

r

� 1.

The following theorem haraterizes those partitions (resp. irreduible har-

aters of symmetri groups) that are of prime power degree.

Theorem 2.4 Let � be a partition of n. Then f

�

= p

r

for some prime p,

r � 1, if and only if one of the following ours:

n = p

r

+ 1 ; � = (p

r

; 1) or (2; 1

p

r

�1

) ; f

�

= p

r

or we are in one of the following exeptional ases:

n = 4 : � = (2

2

); f

�

= 2

n = 5 : � = (2

2

1) or (3; 2) ; f

�

= 5

n = 6 : � = (4; 2) or (2

2

1

2

) ; f

�

= 3

2

� = (3

2

) or (2

3

) ; f

�

= 5

� = (321) ; f

�

= 2

4

n = 8 : � = (521) or (321

3

) ; f

�

= 2

6

n = 9 : � = (72) or (2

2

; 1

5

) ; f

�

= 3

3

First we state some elementary results about hook lengths. In the following,

� is a partition of n, m

1

is the multipliity of 1 as a part of �, and h

ij

, h

i

are the hook lengths as de�ned above.

The following lemma is elementary.

Lemma 2.5 If h

i2

6= 0 (i.e. �

i

� 2) then

h

i2

= h

i

�m

1

� 1 :

Proposition 2.6 Let 1 � i; j � m, i 6= j. Then

h

i

+ h

j

� n� 1 � m

1

:

Proof. It suÆes to prove this for h

1

and h

2

. If � = (n� k; 1

k

) is a hook

partition, then the result is trivially true. If � is not a hook partition, then

h

22

6= 0 so that h

22

= h

2

�m

1

� 1 by Lemma 2.5. Sine h

11

= h

1

and sine

h

11

+ h

22

� n the result follows. �
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Lemma 2.7 Suppose that s = h

ik

and t = h

j`

where (i; k) 6= (j; `).

(1) If i 6= j and k 6= `, then s+ t � n.

(2) If s + t > n, then either i = j = 1 (both hooks in the �rst row) or

k = ` = 1 (both hooks in the �rst olumn).

Proof. (1) By assumption, the two hooks have at most one node in om-

mon. If they have a node in ommon, none of the hooks is the (1; 1)-hook.

Thus, the hooks plus possibly the (1; 1)-node omprise s+ t nodes, whene

s+ t � n.

(2) By (1), we know that i = j or k = `. Assume the former so that k 6= `.

If i > 1, then h

1k

> h

ik

whene h

1k

+ h

j`

> n, ontraditing (1) applied to

(1; k) and (j; `). The ase k = ` is similar. �

Corollary 2.8 For i � 2, every hook of length t > n � h

i

= n � h

i1

is in

the �rst olumn of �.

Proof. Assume that t = h

j`

. If (j; `) = (i; 1), then the result is true.

Otherwise, apply (2) of Lemma 2.7 with (i; k) = (i; 1) to get ` = 1. �

From now on, assume that f

�

is a power of a prime and that � is not a hook

partition. For n � 6 one easily heks Theorem 2.4 by hand (or by using

the tables in [6℄). So we assume from now on that n > 6. Consequently, it

follows that f

�

� n+ 1 ([6℄, Theorem 2.4.10).

Proposition 2.9 If q is a prime for whih n�m

1

� q � n, then

q; 2q; : : : ;

�

n

q

�

q

are all fh of �.

Proof. Put w =

�

n

q

�

, n = wq + r, 0 � r < q. By assumption, we

have that (w � 1)q � (w � 1)q + r = n � q � m

1

. Sine m

1

is the multi-

pliity of 1 in �, the numbers 1; 2; : : : ;m

1

are fh. In partiular, we have

that q; 2q; : : : ; (w � 1)q are fh. If wq � m

1

, then we are done. Assume

that m

1

< wq. At most w hooks in � are of lengths divisible by q (see

e.g. [8℄, Proposition (3.6)). If there are only the above (w � 1) hooks in

the �rst olumn of length divisible by q, then qjf

�

sine

Q

w

i=1

(iq) j n!. By

assumption, f

�

is then a power of q. We get f

�

= (wq)

q

, the q-part of wq.

Thus f

�

jwq � n, whene f

�

� n, a ontradition. Let h

ij

be the additional
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hook length divisible by q. Sine � 6= (1

n

), m

1

� h

2

. If h

2

> m

1

, then

h

ij

+ h

21

> q +m

1

� n. By Corollary 2.8 we get j = 1. If h

2

= m

1

, then

� = (n � m

1

; 1

m

1

) and sine m

1

< wq there has to be a hook of length

divisible by q in the �rst row. Sine n�m

1

� q it has to be the (1; 1)-hook.

Thus h

11

= wq. �

Corollary 2.10 Let 1 � i < j � m. If h � n has a prime divisor q

satisfying 2n� h

i

� h

j

< q, then h is a fh of �.

Proof. By Proposition 2.6, n �m

1

� 2n + 1 � h

i

� h

j

. By assumption

2n+ 1� h

i

� h

j

� q � h � n, whene n�m

1

� q � n. By Proposition 2.9,

any multiple of q less than or equal to n is a fh. In partiular h is a fh of �. �

Lemma 2.11 If q is a prime,

n

2

< q � n, then � has a hook of length q.

Proof. This follows immediately from the degree formula and the fat

that f

�

� n+ 1. �

We are now going to strengthen our assumption on n and � slightly. A-

ording to Table 3 of [3℄ there are, for all n � 12, at least two distint primes

p; q with

n

2

< p; q � n. By Lemma 2.11 there are hooks of length p and q in

�. We will assume that suh primes p; q exist for n and that p and q are fh.

This is not a restrition, see Lemma 2.7(2) (if neessary we may replae � by

its onjugate partition �

0

as we have f

�

= f

�

0
). Now the above assumption

fores any prime between

n

2

and n to be a fh of �.

Proposition 2.12 Suppose we have sequenes of integers s

1

< s

2

< � � � <

s

r

� n, t

1

< t

2

< � � � < t

r

� n satisfying

(i) s

i

< t

i

for all i;

(ii) s

1

and t

1

are primes >

n

2

;

(iii) For 1 � i � r � 1, s

i+1

and t

i+1

ontain prime fators exeeding

2n� s

i

� t

i

.

Then s

1

; : : : ; s

r

; t

1

; : : : ; t

r

are all fh of �.

Proof. We use indution on i to show that s

i

and t

i

are fh for �. For

i = 1 this is true by our assumption. If s

i

and t

i

are fh, then Corollary 2.10

shows that s

i+1

and t

i+1

are fh of �. �
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We get an algorithm from Proposition 2.12 whih shows that h

1

is large and

thus � is \almost" a hook: Start with two large primes s

1

< t

1

lose to n.

Then 2n � s

1

� t

1

is small. Choose if possible two integers s

2

and t

2

with

s

2

< t

2

, s

1

< s

2

� n, t

1

< t

2

� n eah having a prime divisor exeeding

2n�s

1

� t

1

. Then 2n�s

2

� t

2

< 2n�s

1

� t

1

. Choose if possible two integers

s

3

and t

3

with s

3

< t

3

, s

2

< s

3

� n, t

2

< t

3

� n eah having a prime divisor

exeeding 2n� s

2

� t

2

and so on. If this proess reahes s

r

; t

r

, then t

r

� h

1

by Proposition 2.12.

Example 2.13 n = 189 = 3

3

� 7. Choose s

1

= 179, t

1

= 181. Then

2n � s

1

� t

1

= 18. Now hoose t

2

= 188 = 4 � 47 and s

2

= 186 = 2 � 3 � 31

whih have prime fators exeeding 18. Then 2n � s

2

� t

2

= 4. Choose

t

3

= 189, s

3

= 188. Thus if f

�

is a prime power then h

1

= 189 and � is a

hook partition, ontraditing Corollary 2.3. Thus none of the 1527273599625

partitions of n = 189 is of prime power degree greater than one.

3 Prime fators in onseutive integers and good

sequenes

In this setion we show, for suÆiently large n, that there are suitable se-

quenes as in Proposition 2.12 that end with numbers lose to n. Thus, for

a partition � of prime power degree the algorithm desribed in the previous

setion shows that � di�ers from a hook partition only by a small amount.

Suppose that n � 3 is a positive integer. Consider two �nite inreasing

sequenes of integers fA

i

g and fB

i

g whih satisfy the following properties:

(i) A

1

< B

1

� n are two \large" primes not exeeding n.

(ii) For every i, we have that

A

i

< B

i

� n:

(iii) If B

i

< n, then A

i+1

< B

i+1

are integers not exeeding n eah with a

prime fator exeeding 2n�A

i

�B

i

.

Then denote by A(n) (resp. B(n)) the largest integer in suh a sequene

fA

i

g (resp. fB

i

g).

We want to show that there are suh sequenes with n�B(n) \small".

More preisely, we prove the following theorem:

Theorem 3.1 If n > 3:06 � 10

8

, then there is a pair of sequenes fA

i

g and

fB

i

g as above for whih

n�B(n) � 225:
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We note that the 225 in the theorem above an be redued to 2 for suÆ-

iently large n. However, this result is of no use in the present paper.

We �rst review some fats about the distribution of primes, and we prove a

theorem on the prime divisors of a produt of onseutive integers. Using

this, we then prove Theorem 3.1.

Throughout this setion p shall denote a prime. Now we reall three relevant

funtions. If X > 0, then de�ne �(X) and �(X) by

�(X) := #fp � Xg; (1)

�(X) :=

P

p�X

log p: (2)

Moreover, reall that von Mangoldt's funtion �(n) is de�ned by

�(n) :=

(

log p if n = p

�

with � 2 Z;

0 otherwise:

(3)

Rosser and Shoenfeld [10℄, [11℄ proved the following unonditional inequal-

ities. These inequalities will be important in the proof of Theorem 3.1.

Theorem 3.2 (Rosser-Shoenfeld)

(1) If X > 1, then

�(X) � 1:25506 �

X

logX

:

(2) If X > 1, then

X

1�n�X

�(n)

n

� logX:

(3) If X � 1319007, then

0:998684 �X < �(X) < 1:001102 �X:

Now we prove the following ruial result about the prime fators of onse-

utive integers.

Lemma 3.3 If 1 � m � k � y < n are integers for whih

�

n

k

�

k

� (n+ k)

�(y)+m�1

; (4)

then at least m of the integers n + 1; n + 2; : : : ; n + k have a prime fator

exeeding y.
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Proof. If L is de�ned by

L :=

k

Y

j=1

(n+ j) =

Y

p

p

�

p

;

then let R and S be the unique integers for whih L = RS and

R =

Q

p>y

p

�

p

; (5)

S =

Q

p�y

p

�

p

: (6)

Sine n+ k is the largest fator de�ning L, if

R > (n+ k)

m�1

; (7)

then at least m of the numbers n+ 1; n + 2; : : : ; n + k have a prime fator

exeeding y. Therefore, it suÆes to prove (7). Sine L = RS > n

k

, we

trivially have that

R >

n

k

S

;

and so by (7) it suÆes to prove that

n

k

S

> (n+ k)

m�1

: (8)

Now we derive an upper bound for S. By de�nition, we have that

log S = log

Y

p�y

p

�

p

=

X

p�y

�

p

log p =

X

p�y

log p

1

X

�=1

0

�

X

1�j�k ; p

�

jn+j

1

1

A

:

Now, the innermost sum learly has the upper bound

h

k

p

�

i

+ 1 Moreover,

sine this bound equals 1 whenever p

�

> k, by Theorem 3.2(2) we �nd that

log S �

P

p

�

�k

log p

h

k

p

�

i

+

P

p�y

log p

P

p

�

�n+k

1

� k

P

k

d=1

�(d)

d

+

P

p�y

log p

h

log(n+k)

log p

i

� k log k + �(y) log(n+ k): (9)

Therefore, we have that

S � k

k

(n+ k)

�(y)

;

and so

n

k

S

�

�

n

k

�

k

(n+ k)

��(y)

:

8



However, sine

�

n

k

�

k

� (n+ k)

�(y)+m�1

by (4) we have that

n

k

S

� (n+ k)

m�1

whih is (8). �

As a onsequene of Theorem 3.2 and Lemma 3.3, we obtain the following

ruial result.

Theorem 3.4 If n > 3:06 � 10

8

is an integer and k is a positive integer

satisfying

168 � k �

n

4

;

then at least three of the integers n+1; n+2; : : : ; n+ k have a prime fator

exeeding 4k.

Proof. By Theorem 3.2 (3), we have that

�(n+ k)� �(n) > 0:998684(n + k)� 1:001102n = 0:998684k � 0:002418n:

So, if n=400 < k � n=4 and n � 1319007, then

�(n+ k)� �(n) > 0:0000787n > 2 log(5n=4) � 2 log(n+ k): (10)

Sine

�(n+ k)� �(n) =

X

n<p�n+k

log p � (�(n+ k)� �(n)) log(n+ k);

(10) implies that there are at least three primes among the numbers n+1; n+

2; : : : ; n + k provided that n=400 < k � n=4 and n � 1319007. Moreover,

by hypothesis these primes are � n+ 1 > 4k.

Next we onsider the ases where 100 � k � n=400 and n � 1:8 � 10

14

. By

Lemma 3.3 it suÆes to verify that

�

n

k

�

k

� (n+ k)

�(4k)+2

(11)

whenever 100 � k � n=400 and n > 1:8 � 10

14

.

By Theorem 3.2(1), if k � 100, then

�(4k) + 2 �

5:02024k

log(4k)

+ 2 <

5:15k

log(4k)

:

Therefore, (11) holds as soon as

�

n

k

�

k

� ((1 +

1

400

)n)

5:15k

log(4k)

� (n+ k)

4:95k

log(4k)

:

9



By taking logarithms, the �rst inequality is equivalent to

log(4k) log(n=k) � 5:15 log

��

1 +

1

400

�

n

�

: (12)

However, for a �xed value of n the funtion on the left hand side of this

inequality is an inreasing funtion in k in the interval [1;

p

n=2℄ and is de-

reasing for larger k thus taking the minimal value log 400 � log(n=100) at

the endpoints. It is easy to verify that (12) holds for all k in the interval

[100; n=400℄ provided that n > 1:8 � 10

14

. Similarly, we an show that (11)

holds for all 500 � k � n=2000 and n � 3 � 10

8

.

To omplete the proof in the remaining ases we use Maple on a PC. On the

one hand, one an, using the Nextprime funtion, hek that for j = 0; : : : ; 6

there is always a prime in any interval of type (m � 10

4+j

; (m + 1) � 10

4+j

℄

where 10

4

� m � 10

5

. This implies immediately that there are at least

three primes in any interval of type (n; n+ n=2000℄ where 10

8

� n � 10

15

.

On the other hand using log(n+ k) < log n+ k=n, (11) follows from

log n �

k log k + (�(4k) + 2)k=n

k � �(4k) � 2

:

This is easily veri�ed (using only a table of primes below 2000) for 168 �

k � 500 and n > 3:06 � 10

8

. All ases are onsidered. �

Proof of Theorem 3.1.

Suppose that n > 3:06 � 10

8

and pik two primes 0:8n < A

1

< B

1

� 0:9n

whih is allowable by Theorem 3.2 (3). Note that B

1

� A

1

� n � B

1

by

hypothesis. Now suppose that when onstruting the sequenes we have

B

i

�A

i

� n�B

i

:

Now we seek new integers A

i+1

< B

i+1

< n for whih

B

i+1

�A

i+1

� n�B

i+1

; (13)

B

i

< A

i+1

< B

i+1

� n: (14)

and eah with a prime fator exeeding 3(n�B

i

).

Now we apply Theorem 3.4 with n = B

i

and k = d

3

4

(n � B

i

)e (where dxe

denotes the smallest integer � x). Obviously, we have 4k � 3(n � B

i

) >

2n� A

i

� B

i

. As long as k � 168 we an �nd three integers B

i

< a < b <

 � B

i

+ k eah with a prime fator > 4k.

We now show that either the pair a and b or the pair b and  satis�es (13)

and (14). If neither does, then

� b > n�  and b� a > n� b

10



whih are equivalent to

� b � n� + 1 and b� a � n� b+ 1:

These imply that

a � 2b� n� 1 � 2(2 � n� 1)� n� 1 = 4� 3n� 3

� 4(B

i

+ k)� 3n� 3

� 4B

i

+ 4

�

3

4

(n�B

i

) +

3

4

�

� 3n� 3 = B

i

:

Sine B

i

< a we see that we an always hoose suh an A

i+1

and B

i+1

pro-

vided that k � 168. Suppose that A

i+1

and B

i+1

are the last terms whih

are found this way, then we have n�B

i+1

� 225. This proves Theorem 3.1. �

Corollary 3.5 Let � be a partition of n with largest hook length h

1

. If � is

of prime power degree and n > 3:06 � 10

8

, then n� h

1

� 225.

Proof. This follows immediately from Theorem 3.1 and Proposition 2.12.

�

4 Proof of the lassi�ation result for S

n

For dealing with the situation where  = n� h

1

is small, we provide a good

upper bound for the p-powers in the harater degrees for S

n

. This is similar

to the ase of binomial oeÆients (i.e. the ase of hook partitions).

Proposition 4.1 Let � be a partition of n, and set  = n� h

1

. Let p be a

prime, and l the integer with p

l

� n < p

l+1

.

Then

�

p

(f

�

) � �

p

((2+ 2)!) + 2l :

In partiular, a bound for the p-part of f

�

is given by

(f

�

)

p

� n

2

� ((2+ 2)!)

p

:

Proof. Let k = m

1

be the multipliity of 1 in �. By looking at the Young

diagram we see that

�

1

� �

2

� h

1

� k � (+ 2) = n� 2� k � 2 :

Let A denote the set of nodes other than the �nal k nodes in the leg and

the �nal n� 2�k� 2 nodes in the arm of the (1; 1)-hook; for a node y 2 A

11



let h

y

denote the orresponding hook length. Then from the degree formula

we obtain

�

p

(f

�

) =

l

X

i=1

��

n

p

i

�

�

�

k

p

i

�

�

�

n� 2� k � 2

p

i

��

�

X

y2A

�

p

(h

y

)

For �xed i, the ith summand in the �rst sum gives a ontribution of at most

h

2+2

p

i

i

+ 2, hene

�

p

(f

�

) �

l

X

i=1

��

2+ 2

p

i

�

+ 2

�

� �

p

((2 + 2)!) + 2l :

The seond inequality follows immediately from this. �

We �rst onsider the ase of small n. Assume again that � is a partition of

n of prime power degree but not a hook.

Using the available tables (or with the aid of MAPLE), it is easy to hek

the main theorem for n < 43. In other words, the only partitions having

prime power degree are of the form (n�1; 1) together with their onjugates,

or are on the short list of exeptions given in the theorem.

For a midsized n (i.e. 43 � n � 9:25 � 10

8

), we use the following number

theoreti ondition.

Fix a number b. Given a number n, let p

1

; p

2

be the two largest primes below

n. Then hek whether there is a prime divisor q of n(n�1)(n�2) � � � (n�b)

with p

1

+ p

2

+ q > 2n.

A omputer program (written in C++ using the LiDIA number theory pak-

age, run on a super omputer with 32 nodes, running time 2 hours) was used

to hek that this ondition is satis�ed for all n from 29 to 9:25�10

8

for b = 4.

We now want to use this in the situation where � is a partition of n of prime

power degree, 43 � n � 9:25 � 10

8

. Sine the two largest primes p

1

; p

2

are

fh of �, if q is a prime divisor as in the ondition above (with b = 4), then

by Corollary 2.10 one of the numbers n; n� 1; : : : n� 4 is a fh of �. Hene

n� h

1

� 4.

From Proposition 4.1 we know that if � is of prime power degree, then

f

�

� o() � n

2

12



where  = n� h

1

and o() = maxf(2 + 2)!

p

j p prime g.

In our situation we have  � 4, so o() � o(4) = 256, and hene we know

f

�

� 256 � n

2

Now we use information on the minimal degrees of S

n

-representations. Burn-

side's theorem on the minimal degree > 1 for S

n

was greatly generalized by

Rasala [9℄, giving in a suitable sense the list of the minimal degrees for suf-

�iently large n (depending on the requested length of the list). We use the

notation from [9℄.

For any k, the list of minimal degrees for S

n

starts with the degrees of par-

titions of n oming from partitions of numbers d � k by adding on a part

n � d, if n � B

k

, a bound whih is provided expliitly in [9℄. The degree

polynomial '

�

(n) for any partition � of k is also given expliitly.

For k = 5, one has B

5

= 43. One easily heks that for n � 43

256 � n

2

� '

5

(n) =

1

5!

(n� 9)

3

Y

i=0

(n� i)

Hene f

�

is among the minimal degrees for S

n

. But the list of minimal

degrees is easily omputed [9℄, and none of these is a prime power exept

possibly n � 1 whih ours only for (n � 1; 1) and its onjugate (use that

the degree formula in [9℄, Theorem A, gives a fatorized expression in whih

onseutive numbers appear). Hene we do not get any further partitions

of prime power degree.

Now we deal with the ase of large n (i.e. n > 9:25 � 10

8

). By Corollary 3.5

we know that n� h

1

� 225. We want to use the bound for the degree and

the minimal degree argument again in this situation. As before, we use the

expliit bounds B

k

given in [9℄, suh that for n � B

k

the list of partitions

of n of minimal degree starts with all the partitions of weight at most k.

For k = 18, B

18

= 310390100 < n, and thus we know a long list of minimal

degrees for S

n

. The maximal entry on this list omes from the partition

� = (64321

3

) whih is of maximal degree 16336320 among the partitions

of 18.

For  = 225 we have o() = 2

448

and one heks (for example, using MAPLE)

that for n � 9:25 � 10

8

one has

f

�

� 2

448

� n

2

� '

�

(n) =

[�℄(1)

18!

18

Y

i=1

(n� �

i

� 18 + i)

where � = (�

1

; : : : ; �

18

), extending � by parts 0 if neessary.
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Hene f

�

is among the minimal degrees, but as before, one an hek that

all the minimal degrees on this list are not prime powers, exept possibly

n� 1. This ompletes the proof. �

5 Alternating groups and a question of Huppert

The purpose of this setion is to prove the analogue of Theorem 2.4 for

the alternating groups. Also we answer a question of B. Huppert about

harater degrees in alternating groups.

If � is a partition of n, then the irreduible representation of S

n

labelled

by � remains irreduible when restrited to A

n

if and only if � 6= �

0

, the

onjugate (assoiated) partition of �. If � = �

0

the restrition is a sum

of two irreduible representations of the same degree. This leads us to the

following de�nition providing the harater degrees in A

n

([6℄, 2.5).

Let � be a partition of n. Then

~

f

�

:=

(

f

�

if � 6= �

0

1

2

f

�

if � = �

0

:

Theorem 5.1 Let � be a partition of n. Then

~

f

�

= p

r

for some prime p,

r � 1, if and only if one of the following ours:

n = p

r

+ 1 > 3 ; � = (p

r

; 1) or (2; 1

p

r

�1

) ;

~

f

�

= p

r

or we are in one of the following exeptional ases

n = 5 : � = (2

2

1) or (3; 2) ;

~

f

�

= 5

� = (31

2

) ;

~

f

�

= 3

n = 6 : � = (4; 2) or (2

2

1

2

) ;

~

f

�

= 3

2

� = (3

2

) or (2

3

) ;

~

f

�

= 5

� = (321) ;

~

f

�

= 2

3

n = 8 : � = (521) or (321

3

) ;

~

f

�

= 2

6

n = 9 : � = (72) or (2

2

; 1

5

) ;

~

f

�

= 3

3

Proof. If � 6= �

0

we may apply Theorem 2.4. Suppose � = �

0

. The only

self onjugate partitions ourring in the list of Theorem 2.4 are (2; 1) and

(2

2

) and here

~

f

�

= 1. Using the harater tables of [2℄ there are no further

ourrenes of self onjugate partitions with

~

f

�

= p

r

for n � 13. When

n > 13 we may always �nd two primes p

1

; p

2

satisfying

n+1

2

< p

1

< p

2

� n,

(using [3℄, Table 3). Then 2p

1

and 2p

2

are not harater degrees of S

n

. If

� = �

0

and f

�

= 2p

r

then p 6= p

1

. Thus � has to ontain hooks of lengths

p

1

and p

2

. Sine � ontains only one hook of length p

1

and p

2

respetively,

both of them have to be in the diagonal, i.e. p

1

= h

ii

, p

2

= h

jj

for some i; j.
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This ontradits Lemma 2.7. �

In reent work on the haraterization of the �nite simple groups PSL(2; q)

by harater degree properties [5℄, B. Huppert needs the following:

Corollary 5.2 Suppose that for some simple alternating group A

n

there is

a prime p, suh that all irreduible harater degrees of A

n

are either prime

to p or powers of p. Assume that some power of p is a degree for A

n

. Then

n = 5 and p = 2; 3 or 5, or n = 6 and p = 3.

Proof. Using the Atlas [2℄ we may assume n > 13. By Theorem 5.1, A

n

only has a prime power harater degree p

r

when n = p

r

+ 1. But then

~

f

(n�2;1

2

)

=

(n� 1)(n� 2)

2

= p

r

(p

r

� 1)=2

is a harater degree whih is divisible by p and not a power of p.

Remark. After this artile has been written a di�erent diret proof of the

orollary on the alternating groups has been given in [1℄.
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