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Abstract

Cartan matrices are of fundamental importance in representation theory. For algebras
defined by quivers with monomial relations the computation of the entries of the Cartan
matrix amounts to counting nonzero paths in the quivers, leading naturally to a combina-
torial setting. Our main motivation are derived module categories and their invariants: the
invariant factors, and hence the determinant, of the Cartan matrix are preserved by derived
equivalences.

The paper deals with the class of (skewed-) gentle algebras which occur naturally in
representation theory, especially in the context of derived categories. We study q-Cartan
matrices, where each nonzero path is weighted by a power of an indeterminate q according
to its length. Specializing q = 1 gives the classical Cartan matrix. We determine normal
forms for the q-Cartan matrices of skewed-gentle algebras. In particular, we give explicit
combinatorial formulae for the invariant factors and thus also for the determinant. As an
application of our main results we show how to use our formulae for the difficult problem of
distinguishing derived equivalence classes.

MSC-Classification: 16G10, 18E30, 05E99, 05C38, 05C50

1 Introduction

This paper deals with combinatorial aspects in the representation theory of algebras. More pre-
cisely, for certain classes of algebras which are defined purely combinatorially by directed graphs
and homogeneous relations we will characterize important representation-theoretic invariants in
a combinatorial way. In particular, this leads to new explicit invariants for the derived module
categories of the algebras involved.
The starting point for this article is that the unimodular equivalence class of the Cartan matrix
of a finite dimensional algebra is invariant under derived equivalence. Hence, being able to
determine normal forms of Cartan matrices yields invariants of the derived category.
The class of algebras we study are the gentle algebras, and the related skewed-gentle algebras.
Gentle algebras are defined purely combinatorially in terms of a quiver with relations (for details,
see Section 2); the more general skewed-gentle algebras (introduced in [10]) are then defined from
gentle algebras by specifying special vertices which are split for the quiver of the skewed-gentle
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algebra (see Section 4). These algebras occur naturally in the representation theory of finite
dimensional algebras, especially in the context of derived categories. For instance, the algebras
which are derived equivalent to hereditary algebras of type A are precisely the gentle algebras
whose underlying undirected graph is a tree [1]. The algebras which are derived equivalent to
hereditary algebras of type Ã are certain gentle algebras whose underlying graph has exactly one
cycle [2]. Remarkably, the class of gentle algebras is closed under derived equivalence [16]; but
note that the class of skewed-gentle algebras is not closed under derived equivalence.
A fundamental distinction in the representation theory of algebras is given by the representation
type, which can be either finite, tame or wild. In the modern context of derived categories,
also derived representation types have been defined. Again, gentle algebras occur naturally in
this context. D. Vossieck [18] showed that an algebra A has a discrete derived category if and
only if either A is derived equivalent to a hereditary algebra of type A, D, E or A is gentle
with underlying quiver (Q, I) having exactly one (undirected) cycle and the number of clockwise
and of counterclockwise paths of length 2 in the cycle that belong to I are different. Skewed-
gentle algebras are known to be of derived tame representation type (for a definition of derived
tameness, see [9]).
It is a long-standing open problem to classify gentle algebras up to derived equivalence. A
complete answer has only been obtained for the derived discrete case [6]. The main problem is
to find good invariants of the derived categories.
In this paper we provide easy-to-compute invariants of the derived categories of skewed-gentle
algebras which are of a purely combinatorial nature. Our results are obtained from a detailed
computation of the q-Cartan matrices of gentle and skewed-gentle algebras, respectively.
The following notion will be crucial throughout the paper. Let (Q, I) be a (gentle) quiver with
relations. An oriented path p = p0p1 . . . pk−1 with arrows p0, . . . , pk−1 in Q is called an oriented
k-cycle with full zero relations if p has the same start and end point, and if pipi+1 ∈ I for all
i = 0, . . . , k− 2 and also pk−1p0 ∈ I. Such a cycle is called minimal if the arrows p0, p1, . . . , pk−1

on p are pairwise different.
We call two matrices C, D with entries in a polynomial ring Z[q] unimodularly equivalent
(over Z[q]) if there exist matrices P, Q over Z[q] of determinant 1 such that D = PCQ.
We can now state our main result on gentle algebras.

Theorem 1. Let (Q, I) be a gentle quiver, and A = KQ/I the corresponding gentle algebra.
Denote by ck the number of minimal oriented k-cycles in Q with full zero relations.
Then the q-Cartan matrix CA(q) is unimodularly equivalent (over Z[q]) to a diagonal matrix with
entries (1 − (−q)k), with multiplicity ck, k ≥ 1, and all further diagonal entries being 1.

This theorem has the following direct consequences.

Corollary 1. Let (Q, I) be a gentle quiver, and A = KQ/I the corresponding gentle algebra.
Denote by ck the number of minimal oriented k-cycles in Q with full zero relations. Then the
q-Cartan matrix CA(q) has determinant

det CA(q) =
∏

k≥1

(1 − (−q)k)ck .

The following consequence of Corollary 1 was first proved in [11]. For a gentle quiver (Q, I) we
denote by oc(Q, I) the number of minimal oriented cycles of odd length in Q having full zero
relations, and by ec(Q, I) the number of analogous cycles of even length.
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Corollary 2. Let (Q, I) be a gentle quiver, and A = KQ/I the corresponding gentle algebra.
Then for the determinant of the Cartan matrix CA the following holds.

detCA =

{
0 if ec(Q, I) > 0

2oc(Q,I) else

The most important application of Theorem 1 is the following corollary which gives for gentle
algebras easy-to-check combinatorial invariants of the derived category.

Corollary 3. Let (Q, I) and (Q′, I ′) be gentle quivers, and let A = KQ/I and A′ = KQ′/I ′ be
the corresponding gentle algebras. If A and A′ are derived equivalent, then ec(Q, I) = ec(Q′, I ′)
and oc(Q, I) = oc(Q′, I ′).

As an illustration we give in Section 3 a complete derived equivalence classification of gentle
algebras with two simple modules and of gentle algebras with three simple modules and Cartan
determinant 0.

Our main result on skewed-gentle algebras determines the normal form of their q-Cartan matrices.

Theorem 2. Let Â = KQ̂/Î be a skewed-gentle algebra, arising from choosing a suitable set of
special vertices in the gentle quiver (Q, I). Denote by ck the number of minimal oriented k-cycles
in Q with full zero relations.
Then the q-Cartan matrix C

Â
(q) is unimodularly equivalent to a diagonal matrix with entries

1 − (−q)k, with multiplicity ck, k ≥ 1, and all further diagonal entries being 1.

As an immediate consequence we obtain that the Cartan determinant of any skewed-gentle
algebra is the same as the Cartan determinant for the underlying gentle algebra.

Corollary 4. Let Â = KQ̂/Î be a skewed-gentle algebra, arising from choosing a suitable set of
special vertices in the gentle quiver (Q, I), with corresponding gentle algebra A = KQ/I. Then
det C

Â
(q) = det CA(q), and thus in particular, the determinants of the ordinary Cartan matrices

coincide, i.e., detC
Â

= det CA.

The paper is organized as follows. In Section 2 we collect the necessary background and defini-
tions about quivers with relations and (q-)Cartan matrices. In Section 3 we prove all the main
results about q-Cartan matrices for gentle algebras. Here we also give some extensive examples
to illustrate our results. Section 4 contains the analogous main results for skewed-gentle algebras.

Acknowledgement. We thank the referee for very helpful and insightful comments. In par-
ticular, we are grateful for pointing out the importance of graded derived equivalences in our
context of q-Cartan matrices.

2 Quivers, q-Cartan matrices and derived invariants

Algebras can be defined naturally from a combinatorial setting by using directed graphs. A finite
directed graph Q is called a quiver. For any arrow α in Q we denote by s(α) its start vertex
and by t(α) its end vertex. An oriented path p in Q of length r is a sequence p = α1α2 . . . αr of
arrows αi such that t(αi) = s(αi+1) for all i = 1, . . . , r− 1. (Note that for each vertex v in Q we
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allow a trivial path ev of length 0, having v as its start and end vertex.) For such a path p we
then denote by s(p) := s(α1) its start vertex and by t(p) := t(αr) its end vertex.
The path algebra KQ, where K is any field, has as basis the set of all oriented paths in Q. The
multiplication in the algebra KQ is defined by concatenation of paths, i.e., the product of two
paths p and q is defined to be the concatenated path pq if t(p) = s(q), and zero otherwise.
More general algebras can be obtained by introducing relations on a path algebra. An ideal
I ⊂ KQ is called admissible if I ⊆ J2 where J is the ideal of KQ generated by the arrows of Q.
The pair (Q, I) where Q is a quiver and I ⊂ KQ is an admissible ideal is called a quiver with
relations.
For any quiver with relations (Q, I), we can consider the factor algebra A = KQ/I, where
K is any field. We identify paths in the quiver Q with their cosets in A. Let Q0 denote the
set of vertices of Q. For any i ∈ Q0 there is a path ei of length zero. These are primitive
orthogonal idempotents in A, the sum

∑
i∈Q0

ei is the unit element in A. In particular we get
A = 1 ·A = ⊕i∈Q0

eiA, hence the (right) A-modules Pi := eiA are the indecomposable projective
A-modules.
The Cartan matrix C = (cij) of an algebra A = KQ/I is the |Q0| × |Q0|-matrix defined by
setting cij := dimK HomA(Pj , Pi).
Recall that when I is generated by monomials, A = KQ/I is called a monomial algebra. For
monomial algebras, computing entries of the Cartan matrix reduces to counting paths in the
quiver Q which are nonzero in A. In fact, any homomorphism ϕ : ejA → eiA of right A-modules
is uniquely determined by ϕ(ej) ∈ eiAej , the K-vector space generated by all paths in Q from
vertex i to vertex j, which are nonzero in A = KQ/I. In particular, we have cij = dimK eiAej .
This is the key viewpoint in this paper, enabling us to obtain results on the representation-
theoretic Cartan invariants by combinatorial methods. It allows to study a refined version of the
Cartan matrix, which we call the q-Cartan matrix. (It also occurred in the literature as filtered
Cartan matrix, see for instance [8].)
Let Q be a quiver and assume that the relation ideal I is generated by homogeneous relations, i.e.,
by linear combinations of paths having the same length (actually, for the algebras considered
in this paper, the ideal I will always be generated by monomials and commutativity (mesh)
relations). The path algebra KQ is a graded algebra, with grading given by path lengths. Since
I is homogeneous, the factor algebra A = KQ/I inherits this grading. So the morphism spaces
HomA(Pj , Pi) ∼= eiAej become graded vector spaces. Recall that the dimensions of these vector
spaces are the entries of the (ordinary) Cartan matrix.

Definition. Let A = KQ/I be a finite-dimensional algebra, and assume that the ideal I is
generated by homogeneous relations. For any vertices i and j in Q let eiAej = ⊕n(eiAej)n be
the graded components.
Let q be an indeterminate. The q-Cartan matrix CA(q) = (cij(q)) of A is defined as the matrix
with entries cij(q) :=

∑
n dimK(eiAej)n qn ∈ Z[q].

In other words, the entries of the q-Cartan matrix are the Poincaré polynomials of the graded
homomorphism spaces between projective modules. Loosely speaking, when counting paths in
the quiver of the algebra, each path is weighted by some power of q according to its length.
Clearly, specializing q = 1 gives back the usual Cartan matrix CA (i.e., we forget the grading).
Even if we are mainly interested in the ordinary Cartan matrix, the point of view of q-Cartan
matrices provides some new insights as we take a closer look at the invariants of the Cartan
matrix.
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Example 2.1 We consider the following two quivers.

α β

γδ
1

2
3Q 1 Q

2

α
1 2

α α

3

Let A = KQ1/I1, where the ideal I1 is generated by αβ, γδ and δα − βγ. The q-Cartan matrix
of A has the form

CA(q) =




1 + q2 q 0

q 1 + q2 q
0 q 1 + q2



.

The second algebra B = KQ2/I2 is defined by the quiver nQ2, subject to the generating rela-
tions α4 (i.e. all paths of length four are zero). The q-Cartan matrix of B has the form

CB(q) =




1 + q3 q q2

q2 1 + q3 q
q q2 1 + q3



.

Cartan matrices provide invariants which are preserved under derived equivalences and thus
improve our understanding of derived module categories; this is our main motivation to study
normal forms, invariant factors and determinants of Cartan matrices in this paper. The following
result is contained in the proof of [7, Proposition 1.5].

Theorem 2.2 Let A be a finite-dimensional algebra. The unimodular equivalence class of the
Cartan matrix CA is invariant under derived equivalence.
In particular, the determinant of the Cartan matrix is invariant under derived equivalence.

Remark 2.3 We emphasize that the above theorem only deals with ordinary Cartan matrices
CA = CA(1). The determinant of the q-Cartan matrix is in general not invariant under derived
equivalence. As an example, consider the algebras A and B from Example 2.1, with detCA(q) =
1 + q2 + q4 + q6 and detCB(q) = 1 + q3 + q6 + q9. But, in fact, the algebras A and B are
derived equivalent; they are Brauer tree algebras for trees with the same number of edges and
the same exceptional multiplicity [15]. Note that when specializing q = 1 we indeed get the same
determinants for the ordinary Cartan matrices, as predicted by Theorem 2.2
However, the natural setting when dealing with q-Cartan matrices is that of graded derived
categories. Indeed, the determinant of the q-Cartan matrix (which is defined so as to take the
grading into account) is invariant under graded derived equivalences. We are very grateful to
the referee for pointing this out to us. We do not discuss this aspect in this paper further, but
shall address the topic of graded derived equivalences for gentle algebras in detail in a subsequent
publication.
For instance, the above algebra B is graded derived equivalent to the algebra A, where the
grading on A is chosen so that α and β are of degree 2, and δ and γ of degree 1. Then Rickard’s
derived equivalence [15] lifts to a graded derived equivalence.
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3 Gentle algebras

In this section, we shall prove Theorem 1 on the unimodular equivalence class of the q-Cartan
matrix of an arbitrary gentle algebra.
We first recall the definition of special biserial algebras and of gentle algebras, as these details
will be crucial for what follows.

Let Q be a quiver and I an admissible ideal in the path algebra KQ. We call the pair (Q, I) a
special biserial quiver (with relations) if it satisfies the following properties.
(i) Each vertex of Q is starting point of at most two arrows, and end point of at most two arrows.
(ii) For each arrow α in Q there is at most one arrow β such that αβ 6∈ I, and at most one arrow
γ such that γα 6∈ I.

A finite-dimensional algebra A is called special biserial if it has a presentation as A = KQ/I
where (Q, I) is a special biserial quiver.

Gentle quivers form a subclass of the class of special biserial quivers.

A pair (Q, I) as above is called a gentle quiver if it is special biserial and moreover the following
holds.
(iii) The ideal I is generated by paths of length 2.
(iv) For each arrow α in Q there is at most one arrow β′ with t(α) = s(β′) such that αβ′ ∈ I,
and there is at most one arrow γ′ with t(γ′) = s(α) such that γ′α ∈ I.

A finite-dimensional algebra A is called gentle if it has a presentation as A = KQ/I where (Q, I)
is a gentle quiver.

The following lemma will turn out to be very useful. It does not only hold for gentle algebras
but for those where we have dropped the final condition (iv) in the definition of gentle quivers.
Recall that two matrices C, D with entries in Z[q] are called unimodularly equivalent (over Z[q])
if there exist matrices P , Q over Z[q] of determinant 1 such that D = PCQ.

Lemma 3.1 Let (Q, I) be a special biserial quiver, and assume that I is generated by paths of
length 2. Let A = KQ/I be the corresponding special biserial algebra. Let α be an arrow in Q,
not a loop, such that there is no arrow β with s(α) = t(β) and βα ∈ I, or there is no arrow γ
with t(α) = s(γ) and αγ ∈ I. Let Q′ be the quiver obtained from Q by removing the arrow α,
let I ′ be the corresponding relation ideal and A′ = KQ′/I ′. Then the q-Cartan matrices CA(q)
and CA′(q) are unimodularly equivalent (over Z[q]).

Proof. We consider the case where α is an arrow in Q such that there is no arrow β with
s(α) = t(β) and βα ∈ I; the second case is dual.
Let α = p0 : v0 → v1. As (Q, I) is special biserial, there is a unique maximal non-zero path
starting with p0, say p = p0p1 . . . pt, where pi : vi → vi+1, i = 1, . . . , t. As A is finite-dimensional,
the condition on α = p0 guarantees that vi 6= v0 for all i > 0, but we may have vi = vj for some
i > j > 0. Now any non-zero path of length j, say, ending at v0 can uniquely be extended to
a non-zero path of length j + i ending at vi, by concatenation with p0 . . . pi−1. Conversely, any
non-zero path ending at vi and involving p0 arises in this way.
Now denote the column corresponding to a vertex v in the q-Cartan matrix CA(q) by sv. We
perform column transformations on CA(q) by replacing the columns svi

by svi
− qisv0

, for
i = 1, . . . , t + 1 (if vi = vj for some i > j, the column svi

= svj
will then be replaced by

svi
− (qi + qj)sv0

). The resulting matrix C̃(q) is then exactly the Cartan matrix CA′(q) to the
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algebra A′ corresponding to the quiver Q′ where α = p0 has been removed. ⋄

For any vertex in a quiver Q, its valency is defined as the number of arrows attached to it, i.e.,
the number of incoming arrows plus the number of outgoing arrows (note that in particular any
loop contributes twice to the valency).

Theorem 3.2 Let (Q, I) be a gentle quiver, and let A = KQ/I be the corresponding gentle
algebra. Denote by ck the number of minimal oriented k-cycles in Q with full zero relations.
Then the q-Cartan matrix CA(q) is unimodularly equivalent (over Z[q]) to a diagonal matrix with
entries (1 − (−q)k), with multiplicity ck, k ≥ 1, and all further diagonal entries being 1.

Proof. We want to prove the claim by double induction on the number of vertices and the
number of arrows. Clearly the result holds if Q has no arrows or if it consists of one vertex with
a loop.
If Q has a vertex v of valency 1 or 3, or of valency 2 but with no zero relation at v, then we
can use Lemma 3.1 to remove an arrow from Q; note that by the conditions in Lemma 3.1 the
removed arrow is not involved in any oriented cycle with full zero relations. Hence CA(q) is
unimodularly equivalent to CA′(q), where the corresponding quiver has one arrow less but the
same number of oriented cycles with full zero relations, and hence the result holds by induction.
Hence we may now assume that all vertices are of valency 0, 2 or 4, and if a vertex is of valency 2,
then there is a zero relation at the vertex. Also, if Q is not connected, we may use induction on
the number of vertices to have the result for the components and thus for the whole quiver; hence
we may assume that Q is connected. In particular, we now only have vertices v of valency 2 with
a non-loop zero relation at v, and vertices of valency 4. As we do not have paths of arbitrary
lengths, not all vertices can be of valency 4 (see also [11, Lemma 3]).
Now we take a vertex v = v1 of valency 2, with incoming arrow p0 : v0 → v1 and outgoing arrow
p1 : v1 → v2 with p0p1 = 0 (here, v0 6= v 6= v2).
As (Q, I) is gentle, there is a unique maximal path p in Q with non-repeating arrows starting
in v0 with p0, such that the product of any two consecutive arrows is zero in A; in our present
situation this path is an oriented cycle C with full zero relations returning to v0. We denote
the vertices on this path by v0, v1 = v, v2, . . . , vs, vs+1 = v0, and the arrows by pi : vi → vi+1,
i = 0, . . . , s (also psp0 = 0); note that the arrows on p are distinct, but the vertices are not
necessarily distinct (but we point out that vi 6= v1 for all i 6= 1).
Denote by zw the row of the q-Cartan matrix CA(q) corresponding to the vertex w. In CA(q),
we now replace the row zv by the linear combination

Z =

s+1∑

i=1

(−q)i−1zvi

to obtain a new matrix C̃(q) (note that this is a unimodular transformation over Z[q]).
The careful choice of the coefficients is just made so that we can refine the argument in [11]. We
recall some of the notation there. For any arrow α in Q let P(α) be the set of paths starting
with α which are non-zero in A. At each vertex vi there is at most one outgoing arrow ri 6= pi;
for this arrow we have pi−1ri 6= 0, as (Q, I) is gentle.
Hence, cancelling pi induces a natural bijection φ : P(pi) → {evi+1

}∪P(ri+1), for i = 1, . . . , s−1,
such that a path of q-weight qj is mapped to a path of q-weight qj−1 (if there is no arrow ri, we
set P(ri) = ∅).
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As v is of valency 2, with a zero-relation at v, we also have the trivial bijection P(p0) = {p0} →
{ev1

}, again with a weight reduction by q. Now almost everything cancels in Z, apart from the
one term 1 − (−q)s+1 that we obtain as the entry in the column corresponding to v.
In the next step, we use the dual (counter-clockwise) operation on the columns labelled by the
vertices on the cycle C, i.e., we set vs+2 = v = v1 and replace the column sv by the linear
combination

S =
s+1∑

i=1

(−q)s+1−isvi+1
.

Ordering vertices so that v corresponds to the first row and column of the Cartan matrix, we
have thus unimodularly transformed CA(q) to a matrix of the form




1 − (−q)s+1 0 · · · 0
0
... C ′(q)
0




where C ′(q) is the q-Cartan matrix of the gentle algebra A′ for the quiver Q′ obtained from Q
by removing v and the arrows incident with v. Note that in comparison with Q, the quiver Q′

has one vertex less and one cycle with full zero relations of length s + 1 less; now by induction,
the result holds for C ′(q) = CA′(q), and hence the result for CA(q) follows immediately. ⋄

This result has several immediate nice consequences.

Corollary 3.3 Let (Q, I) be a gentle quiver, and let A = KQ/I be the corresponding gentle
algebra. Denote by ck the number of minimal oriented k-cycles in Q with full zero relations.
Then the q-Cartan matrix CA(q) has determinant

det CA(q) =
∏

k≥1

(1 − (−q)k)ck .

Remark 3.4 Let (Q, I) be a gentle quiver, with set of vertices Q0. Then, as a direct consequence
of Theorem 3.2, there are at most |Q0| minimal oriented cycles with full zero relations in the
quiver (this could also be proved directly by induction).

Note that the property of being gentle is invariant under derived equivalence [16], and we now
have some invariants to distinguish the derived equivalence classes. For a gentle quiver (Q, I),
recall that ec(Q, I) and oc(Q, I) denote the number of minimal oriented cycles in Q with full zero
relations of even and odd length, respectively. As an immediate consequence of Corollary 3.3 we
obtain the following formula for the Cartan determinant which was the main result in [11]:

Corollary 3.5 Let (Q, I) be a gentle quiver, and let A = KQ/I be the corresponding gentle
algebra. Then for the determinant of the Cartan matrix CA the following holds.

detCA =

{
0 if ec(Q, I) > 0

2oc(Q,I) else
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Note that in combination with Remark 3.4 this implies that the Cartan determinant of a gentle
algebra A = KQ/I is at most 2l(A), where l(A) = |Q0| is the number of simple modules of A.

The most important application of Theorem 3.2 is the following corollary which gives for gentle
algebras new, combinatorial and easy-to-check invariants of the derived category.

Corollary 3.6 Let (Q, I) and (Q′, I ′) be gentle quivers, and let A = KQ/I and A′ = KQ′/I ′ be
the corresponding gentle algebras. If A and A′ are derived equivalent, then ec(Q, I) = ec(Q′, I ′)
and oc(Q, I) = oc(Q′, I ′).

Proof. Since A and A′ are derived equivalent, their (ordinary) Cartan matrices CA and CA′

are unimodularly equivalent over Z. By specializing to q = 1 in Theorem 3.2, representatives for
the equivalence classes are given by diagonal matrices with entries ′2′ for each minimal oriented
cycle with full zero relations of odd length, an entry ′0′ for each such cycle of even length,
and remaining entries ′1′. These are precisely the elementary divisors over Z. The elementary
divisors of an integer matrix are uniquely determined, and the diagonal matrices in Theorem 3.2
are actually the Smith normal forms of CA and CA′ over Z. But by Theorem 2.2 the unimodular
equivalence class, and hence the Smith normal form, is invariant under derived equivalence.
Hence, the diagonal entries in the above normal forms for CA and CA′ must occur with ex-
actly the same multiplicities. Thus we get the same number of minimal oriented cycles with
full zero relations of even length and of odd length, respectively, i.e., ec(Q, I) = ec(Q′, I ′) and
oc(Q, I) = oc(Q′, I ′). ⋄

We now illustrate our results and apply them to derived equivalence classifications of gentle
algebras.

Example 3.7 Gentle algebras with two simple modules. There are nine connected gentle
quivers (Q, I) with two vertices, as given in the following list. The dotted lines indicate the zero
relations generating the admissible ideal I.

8

A A21

A3

A5

A7

A9

A4

A6

A

In [4] it was shown that these are precisely the basic connected algebras with two simple modules
which are derived tame. As a direct illustration of our results we show how to classify these
algebras up to derived equivalence.
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Recall that the property of being gentle is invariant under derived equivalence [16]. Moreover,
the number of simple modules of an algebra is a derived invariant [13]. Thus we will be able to
describe the complete derived equivalence classes.
We have shown above that the numbers oc(Q, I) and ec(Q, I) are derived invariants. In addition
we look at two classical invariants, the center and the first Hochschild cohomology group HH1.
Recall that the center of an algebra (and more generally the Hochschild cohomology ring) is
invariant under derived equivalence [14]. If the quiver contains a loop, then the dimension of HH1

depends on the characteristic being 2 or not. We indicate the dimension in characteristic 2
in parantheses in the table below. They can be computed using a method based on work of
M. Bardzell [3] on minimal projective bimodule resolutions for monomial algebras; a very nice
explicit combinatorial description is given by C. Strametz [17, Proposition 2.6].

Algebra A1 A2 A3 A4 A5 A6 A7 A8 A9

oc(Q, I) 0 0 0 0 1 1 0 1 2

ec(Q, I) 0 0 0 0 0 0 1 1 0

dimZ(A) 1 1 1 2 1 1 1 2 1

dim HH1(A) 0 3 2 1 1(2) 1(2) 1 2(3) 3(5)

The algebras A1, A2, A3, A4 are pairwise not derived equivalent. This can be deduced directly
from the above table, since the dimensions of the first Hochschild cohomology groups are different.
The algebras A5 and A6 are derived equivalent. (This can be shown by explicitly constructing a
suitable tilting complex, similar to the detailed example given in the Appendix.)
The algebras A7 and A8 with Cartan determinant 0 are not derived equivalent, since their centers
have different dimensions.
In summary, there are exactly eight derived equivalence classes of connected gentle algebras with
two simple modules. They are indicated by the double vertical lines in the above table.

Example 3.8 Gentle algebras with three simple modules. Let (Q, I) be a connected
gentle quiver with three vertices, with corresponding gentle algebra A = KQ/I. By Corollary 3.4
we deduce that det CA ∈ {0, 1, 2, 4, 8}. Algebras with different Cartan determinant can not be
derived equivalent, by Theorem 2.2.
As an illustration, we shall give a complete derived equivalence classification of those algebras
with Cartan determinant 0. By Corollary 3.5, a gentle algebra has Cartan determinant 0 if and
only if the quiver contains an even oriented cycle with full zero relations. There are 18 connected
gentle quivers with three vertices having Cartan determinant 0, as listed in the following figure.
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The main tool will be Corollary 3.6 which states that the numbers ec(Q, I) and oc(Q, I) of
minimal oriented cycles with full zero relations of even (resp. odd) length are invariants of the
derived category. This will already settle large parts of the classification. In addition we will need
to look at the centers and at the first Hochschild cohomology group. The following table collects
all the necessary invariants. Again, in the cases where the quiver has loops, the dimension of HH1

depends on the characteristic being 2 or not, and in these cases the dimension in characteristic 2
is given in parantheses.
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Algebra oc(Q, I) ec(Q, I) dimZ(Λ) dim HH1(Λ)

Λ1 0 1 1 1

Λ2 0 1 1 1

Λ3 0 1 1 4

Λ4 0 1 1 4

Λ5 0 1 2 2

Λ6 0 1 2 2

Λ7 0 2 1 2

Λ8 0 1 3 2

Λ9 1 1 1 2(3)

Λ10 1 1 1 2(3)

Λ11 1 1 1 2(3)

Λ12 1 1 1 2(3)

Λ13 1 2 2 3(4)

Λ14 2 1 1 4(6)

Λ15 2 1 1 4(6)

Λ16 0 1 1 4

Λ17 0 1 1 3

Λ18 0 1 1 3

For the derived equivalence classification, it only remains to consider those algebras having the
same invariants. In the cases where the algebras are in fact derived equivalent, we leave out the
details of the construction of a suitable tilting complex; in the appendix a detailed example is
provided which serves to indicate the strategy which also works in all other cases.
The algebras Λ1 and Λ2 are derived equivalent. Moreover, the algebras Λ3 and Λ4 are derived
equivalent.
Note that Λ1 and Λ3 represent different derived equivalence classes since their first Hochschild
cohomology groups have different dimensions.
The algebras Λ5 and Λ6 are derived equivalent. (The details for this case are provided in the
appendix.)
Similarly, the algebras Λ9, Λ10, Λ11 and Λ12 are derived equivalent, the algebras Λ14 and Λ15 are
derived equivalent and moreover, the algebras Λ17 and nΛ18 are derived equivalent.
The case of Λ16 is more subtle. This algebra has exactly the same invariants as the algebras
Λ3 and Λ4. However, we claim that Λ16 is not derived equivalent to Λ4. In fact, the Lie
algebra structures on HH1 are not isomorphic. Note that with the Gerstenhaber bracket, the
first Hochschild cohomology becomes a Lie algebra. By a result of B. Keller [12], this Lie
algebra structure on HH1 is invariant under derived equivalence. As mentioned before, by work
of M. Bardzell [3] there is an explicit way of computing HH1 for a gentle algebra, and a nice
combinatorial version due to C. Strametz [17, Proposition 2.6] (for the additive structure) and [17,
Theorem 2.7] (for the Lie algebra structure). With this method one can compute that the four-
dimensional Lie algebras on HH1(Λ16) and on HH1(Λ4) are not isomorphic. In fact, the Lie
algebra center of HH1(Λ16) is two-dimensional, whereas the Lie algebra center of HH1(Λ4) has
dimension 1.

12



This completes the derived equivalence classification of connected gentle algebras with three
simple modules and Cartan determinant 0. The ten derived equivalence classes are indicated in
the above table by the horizontal double lines.

4 Skewed-gentle algebras

Skewed-gentle algebras were introduced in [10]; for the notation and definition we follow here
mostly [5], but we try to explain how the construction works rather than repeating the technical
definition from [5].
We start with a gentle pair (Q, I). A set Sp of vertices of the quiver Q is an admissible set of
special vertices if the quiver with relations obtained from Q by adding loops with square zero at
these vertices is again gentle; we denote this gentle pair by (Qsp, Isp). The triple (Q, Sp, I) is
then called skewed-gentle.
We want to point out that the admissibility of the set Sp of special vertices is both a local as
well as a global condition. Let v be a vertex in the gentle quiver (Q, I); then we can only add a
loop at v if v is of valency 1 or 0 or if it is of valency 2 with a zero relation, but not one coming
from a loop. Hence only vertices of this type are potential special vertices. But for the choice of
an admissible set of special vertices we also have to take care of the global condition that after
adding all loops, the pair (Qsp, Isp) still does not have paths of arbitrary lengths.

Given a skewed-gentle triple (Q, Sp, I), we now construct a new quiver with relations (Q̂, Î) by
doubling the special vertices, introducing arrows to and from these vertices corresponding to the
previous such arrows and replacing a previous zero relation at the vertices by a mesh relation.
More precisely, we proceed as follows. The non-special (or: ordinary) vertices in Q are also
vertices in the new quiver; any arrow between non-special vertices as well as corresponding
relations are also kept. Any special vertex v ∈ Sp is replaced by two vertices v+ and v− in the
new quiver. An arrow a in Q from a non-special vertex w to v (or from v to w) will be doubled
to arrows a± : w → v± (or a± : v± → w, resp.) in the new quiver; an arrow between two special
vertices v, w will correspondingly give four arrows between the pairs v± and w±. We say that
these new arrows lie over the arrow a. Any relation ab = 0 where t(a) = s(b) is non-special
gives a corresponding zero relation for paths of length 2 with the same start and end points lying
over ab. If v is a special vertex of valency 2 in Q, then the corresponding zero relation at v,
say ab = 0 with t(a) = v = s(b), is replaced by mesh commutation relations saying that any
two paths of length 2 lying over ab, having the same start and end points but running over v+

and v−, respectively, coincide in the factor algebra to the new quiver with relations (Q̂, Î).
We will speak of (Q̂, Î) as a skewed-gentle quiver covering the gentle pair (Q, I).

A K-algebra is then called skewed-gentle if it is Morita equivalent to a factor algebra KQ̂/Î,
where (Q̂, Î) comes from a skewed-gentle triple (Q, Sp, I) as above.

Remark. Let A = KQ/I be gentle. In a gentle quiver, there is at most one non-zero cyclic
path starting and ending at a given vertex; hence the diagonal entries in the q-Cartan matrix
CA(q) are 1 or of the form 1 + qj , for some j ∈ N.
If a vertex v in Q can be chosen as a special vertex for a covering skewed-gentle quiver Q̂, then
the corresponding diagonal entry in CA(q) is 1, as otherwise we have paths of arbitrary lengths
in Qsp; hence in the corresponding q-Cartan matrix for the skewed-gentle algebra Â we have(

1 0
0 1

)
on the diagonal for the two split vertices v± in Q̂.
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Theorem 4.1 Let (Q, I) be a gentle quiver, and (Q̂, Î) a covering skewed-gentle quiver. Let
Â = KQ̂/Î be the corresponding skewed-gentle algebra. Denote by ck the number of oriented
k-cycles in (Q, I) with full zero relations.
Then the q-Cartan matrix C

Â
(q) is unimodularly equivalent (over Z[q]) to a diagonal matrix with

entries 1 − (−q)k, with multiplicity ck, k ≥ 1, and all further diagonal entries being 1.

Proof. Again, we argue by induction on the number of vertices and arrows. We let A = KQ/I
be the gentle algebra and CA(q) the q-Cartan matrix as before.
If Q has no arrows, then Q̂ is just obtained by doubling the special vertices, and this still has no
arrows, so the result clearly holds.
If Q has an arrow α as in Lemma 3.1, with a non-special s(α) in the first case, and a non-
special t(α) in the second case, respectively, then we can argue as in the proof of Lemma 3.1 to
remove α. Let us consider again the situation of the first case, so here s(α) = v0 is non-special.
Note that a maximal non-zero path p starting from v0 with α or α± (if v1 is special) will end on
a non-special vertex (and hence this maximal path is unique in Â); in general, this path will be
longer than the one taken in A.
In the column transformations, we only have to be careful at doubled vertices on the path p; here
we replace both corresponding columns ŝv±

i
of C

Â
(q) by ŝv±

i
− qiŝv0

. This leads to the Cartan

matrix for the skewed-gentle algebra where α or α±, respectively, has been removed from Q̂,
which is a skewed-gentle cover for the quiver obtained from Q by deleting α; then the claim
follows by induction.
Now assume Q has a source v which is special (w.l.o.g. the first vertex); the case of a sink is
dual. Then the q-Cartan matrix for Â has the form

C
Â
(q) =




1 0 ∗ · · · ∗
0 1 ∗ · · · ∗
0 0
...

... Ĉ ′(q)
0 0




∼
˜̂
C(q) =




1 0 0 · · · 0
0 1 0 · · · 0
0 0
...

... Ĉ ′(q)
0 0




where Ĉ ′(q) is the q-Cartan matrix of the skewed-gentle algebra Â′ for the quiver Q̂′ obtained
from Q̂ by removing v+, v− and the arrows incident with v±. Note that Q̂′ is the skewed-gentle
cover for the quiver Q′ which is obtained from Q by removing v and the arrow incident with v,
and the choice Sp′ = Sp \ {v} as the set of special vertices; in short, we write this as Q̂′ = Q̂′.
Again, using induction the claim follows immediately.
Thus again, we may now assume that Q has only vertices of valency 2 with a (non-loop) zero
relation or vertices of valency 4; note that any special vertex in Q has to be of valency 2. As
before, we may also assume that Q (and hence also Q̂) are connected.
If there are no non-special vertices, or if all non-special vertices are of valency 4, then Qsp is not
gentle. Hence Q has a non-special vertex v of valency 2 with a zero relation at v. Let p0 : v0 → v
be the (unique) incoming arrow.
Again we consider the unique maximal path p in Q with non-repeating arrows starting in v0

with p0, such that the product of any two consecutive arrows is zero in A; as before, we note that
in our current situation p has to be a cycle C = p0p1 . . . ps, where pi : vi → vi+1, i = 0, . . . , s,
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and vs+1 = v0. As in the previous situation, we note that the arrows are distinct, but vertices
vi 6= v0 may be repeated.
For a vertex w in Q we denote by zw the row of the q-Cartan matrix CA(q) corresponding to w.
If w is non-special, we denote by ẑw the corresponding row in the q-Cartan matrix Ĉ(q) = C

Â
(q).

If w is special, then for the two vertices w± we have two corresponding rows ẑw± in the Cartan
matrix Ĉ(q), and we then set ẑw = ẑw+ + ẑw− .

Before, we have transformed C by replacing zv by Z =
∑s+1

i=1 (−q)i−1zvi
and obtained a ma-

trix C̃(q). We now do a parallel transformation on Ĉ(q), that is, we replace ẑv by

Ẑ =
s+1∑

i=1

(−q)i−1ẑvi
,

and we obtain a matrix
˜̂
C(q). We have to compare the differences and check that everything

stays under control for the induction argument.

If a vertex vi, 1 ≤ i ≤ s, is special, note that the doubled contribution in ẑvi
= ẑv+

i
+ ẑv−

i
is

needed on the one hand for the cancellation with the previous row, and on the other hand to
continue around the cycle C. As v is non-special and of valency 2 with a zero-relation, we note
that as before, in Ẑ we only have the contribution 1 − (−q)s+1 at v.
Following this by the parallel operation to the previous column operation we then replace the
column ŝv by the linear combination

Ŝ =
s+1∑

i=1

(−q)s+1−iŝvi+1
,

where we use analogous conventions as before.
With v corresponding to the first row and column of the Cartan matrix, we have thus unimod-
ularly transformed Ĉ(q) to a matrix of the form




1 − (−q)s+1 0 · · · 0
0
... Ĉ ′(q)
0




where Ĉ ′(q) is the Cartan matrix of the skewed-gentle algebra Â′ for the quiver Q̂′ obtained

from Q̂ by removing v and the arrows incident with v. Note that in fact, Q̂′ = Q̂′ in the notation
of our previous proof, i.e., as explained earlier, Q̂′ is the skewed-gentle cover for the quiver Q′

and the choice Sp′ = Sp \ {v} as the set of special vertices.
Thus the result follows by induction. ⋄

Remark 4.2 By comparing Theorem 3.2 and Theorem 4.1 we observe that the q-Cartan ma-
trix CA(q) for the gentle algebra A to (Q, I), and the q-Cartan matrix C

Â
(q) for a skewed-gentle

cover Â are unimodularly equivalent to diagonal matrices which only differ by adding as many
further 1’s on the diagonal as there are special vertices chosen in Q. In particular, with notation
as above,

det C
Â
(q) = detCA(q) =

∏

k≥1

(1 − (−q)k)ck .
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This observation has the following immediate consequence when specializing to q = 1.

Corollary 4.3 Let (Q, I) be a gentle quiver, and (Q̂, Î) a covering skewed-gentle quiver. Then
the determinant of the ordinary Cartan matrix of the skewed-gentle algebra Â = KQ̂/Î is the
same as the one for the gentle algebra A = KQ/I, i.e., detC

Â
= detCA.

Remark 4.4 A gentle algebra and a (proper) skewed-gentle algebra may have the same q-
invariants but they cannot be derived equivalent by [16], Corollary 1.2.

5 Appendix: Tilting complexes and derived equivalences, a de-

tailed example

This appendix is aimed at providing enough background on tilting complexes and explicit com-
putations of their endomorphism rings so that the interested reader can fill in the details in the
derived equivalence classifications of Examples 3.7 and 3.8. We explained there in detail how to
distinguish derived equivalence classes (since this is the main topic of this paper), but have been
fairly short on indicating why certain algebras in the lists are actually derived equivalent. In this
section we will go through one example in detail; this will indicate the main strategy which also
works in all other cases.
For an algebra A denote by Db(A) the bounded derived category and by Kb(PA) the homotopy
category of bounded complexes of finitely generated projective A-modules.
Two algebras A and B are called derived equivalent if Db(A) and Db(B) are equivalent as
triangulated categories. By J. Rickard’s theorem [13], this happens if and only there exists a
tilting complex T for A such that the endomorphism ring EndKb(PA)(T ) in the homotopy category
is isomorphic to B. A bounded complex T of projective A-modules is called a tilting complex if
the following conditions are satisfied.
(i) HomKb(A)(T, T [i]) = 0 for i 6= 0 (where [.] denotes the shift operator)

(ii) add(T ), the full subcategory of Kb(PA) consisting of direct summands of direct sums of
copies of T , generates Kb(PA) as a triangulated category.

In Example 3.8 we stated that the algebras Λ5 and Λ6 are derived equivalent. For the convenience
of the reader we recall the definition of these algebras.

Λ5

α β

γδ
1

2
3 Λ 6

1 2

3

γ β

δ

α

Recall from Section 2 our conventions to deal with right modules and to read paths from left
to right. In particular, left multiplication by a nonzero path from vertex j to vertex i gives a
homomorphism Pi → Pj .

We define the following bounded complex T := T1 ⊕ T2 ⊕ T3 of projective Λ5-modules. Let
T1 : 0 → P3 → 0 and T3 : 0 → P1 → 0 be stalk complexes concentrated in degree 0. Moreover,

let T2 : 0 → P1 ⊕ P3
(δ,β)
−→ P2 → 0 (in degrees 0 and −1). We claim that T is a tilting complex.

Property (i) above is obvious for all |i| ≥ 2 since we are dealing with two-term complexes.
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Let i = −1, and consider possible maps T2 → Tj [−1] where j ∈ {1, 2, 3}. This is given by a map
of complexes as follows

0 −→ P1 ⊕ P3
(δ,β)
−→ P2 −→ 0

↓
0 −→ Q −→ . . .

where Q could be either of P1, P3, or P1 ⊕ P3. But since we are dealing with gentle algebras,
no nonzero map can be zero when composed with both δ and β. So the only homomorphism
of complexes T2 → Tj [−1] is the zero map, as desired. Directly from the definition we see that
Hom(T1, Tj [−1]) = 0 and Hom(T3, Tj [−1]) = 0 (since they are stalk complexes).
Thus we have shown that Hom(T, T [−1]) = 0.

Now let i = 1. We have to consider maps Tj → T2[1]; these are given as follows

0 −→ Q −→ . . .
↓

0 −→ P1 ⊕ P3
(δ,β)
−→ P2 −→ 0

where Q again can be either of P1, P3, or P1 ⊕ P3. Now there certainly exist nonzero homomor-
phisms of complexes. But they are all homotopic to zero. In fact, every path in the quiver of Λ5

from vertex 2 to vertex 1 or 3 either starts with δ or with β. Accordingly, every homomorphism
Q → P2 can be factored through the map (δ, β) : P1 ⊕ P3 → P2.
It follows that HomKb(PA)(T, T [1]) = 0 (in the homotopy category).

It remains to show that the complex T also satisfies property (ii) of the definition of a tilting
complex. It suffices to show that the projective indecomposable modules P1, P2 and P3, viewed
as stalk complexes, can be generated by add(T ). This is clear for P1 and P3 since they occur as
summands of T . For P2, consider the map of complexes Ψ : T2 → T3 ⊕ T1 given by the identity
map on P1 ⊕ P3 in degree 0. Then the stalk complex P2[0] with P2 in degree 0 can be shown to
be homotopy equivalent (i.e. isomorphic in Kb(PA)) to the mapping cone of Ψ. Thus we have a
distinguished triangle

T2︸︷︷︸
∈add(T )

→ T3 ⊕ T1︸ ︷︷ ︸
∈add(T )

→ P2[0] → T2[1]︸ ︷︷ ︸
∈add(T )

.

By definition, add(T ) is triangulated, so it follows that also the stalk complex P2[0] ∈ add(T ),
which proves (ii).
Hence, T is indeed a tilting complex for Λ5.

By Rickard’s theorem, the endomorphism ring of T in the homotopy category is derived equivalent
to Λ5. We need to show that E := EndKb(PA)(T ) is isomorphic to Λ6. Note that the vertices of
the quiver of E correspond to the summands of T .
For explicit calculations, the following formula is useful, which gives a general method for com-
puting the Cartan matrix of an endomorphism ring of a tilting complex from the Cartan matrix
of A.

Alternating sum formula. For a finite-dimensional algebra A, let Q = (Qr)r∈Z and R = (Rs)s∈Z

be bounded complexes of projective A-modules. Then

∑

i

(−1)i dim HomKb(PA)(Q, R[i]) =
∑

r,s

(−1)r−s dim HomA(Qr, Rs).
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In particular, if Q and R are direct summands of a tilting complex then

dim HomKb(PA)(Q, R) =
∑

r,s

(−1)r−s dim HomA(Qr, Rs).

Note that the Cartan matrix of Λ5 has the form

0� 2 2 1

2 2 1

1 1 1

1A. From that, using the alternating

sum formula, we can compute the Cartan matrix of E to be

0� 1 1 1

1 1 1

1 1 2

1A. Note that this is

actually the Cartan matrix of Λ6.
Now we have to define maps of complexes between the summands of T , corresponding to the
arrows of the quiver of Λ6. The final step then is to show that these maps satisfy the defining
relations of Λ6, up to homotopy.
We define α̃ : T1 → T2 by the map (αβ, 0) : P3 → P1 ⊕ P3 in degree 0. Note that this is
indeed a homomorphism of complexes since δα = 0 in Λ5. Moreover, we define β̃ : T2 → T3

and δ̃ : T2 → T1 by the projection onto the first and second summand in degree 0, respectively.
Finally, we define γ̃ : T3 → T1 by γδ : P1 → P3.
We now have to check the relations, up to homotopy. We write compositions from left to right
(as in the relations of the quiver of E). Clearly, α̃δ̃ = 0. The composition β̃γ̃ : T2 → T1 is given
in degree 0 by (γδ, 0) : P1 ⊕ P3 → P3. So it is not the zero map, but is homotopic to zero via
the homotopy map γ : P2 → P3 (use that γβ = 0 in Λ5). Finally, consider δ̃α̃ on T2. It is given

by
�

0 αβ

0 0

�
in degree 0 and the zero map in degree −1. It is indeed homotopic to zero via the

homotopy map (α, 0) : P2 → P1 ⊕ P3. (Note that here we use that αδ = 0 and δα = 0 in Λ5.)
Thus, we have defined maps between the summands of T , corresponding to the arrows of the
quiver of Λ6. We have shown that they satisfy the defining relations of Λ6, and that the Cartan
matrices of E and Λ6 coincide. From this we can conclude that E ∼= Λ6. Hence, Λ5 and Λ6 are
derived equivalent, as desired.

All the other derived equivalences stated in Examples 3.7 and 3.8 can be verified exactly along
these lines. In particular, they can also be realized by tilting complexes with non-zero entries in
only two degrees.
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[3] M. J. Bardzell, The alternating syzygy behavior of monomial algebras, J. Algebra 188 (1997)
69–89

[4] V. Bekkert, Y. Drozd, Derived categories for some classes of algebras, Preprint. Available
at http://www.mat.ufmg.br/∼bekkert/pub.html

[5] V. Bekkert, E.N. Marcos, H.A. Merklen, Indecomposables in derived categories of skewed-
gentle algebras, Communications in Algebra (6) 31 (2003) 2615-2654

18



[6] G. Bobiński, C. Geiss, A. Skowroński, Classification of discrete derived categories, Cent.
Eur. J. Math. 2 (2004) 19-49

[7] R. Bocian, A. Skowroński, Weakly symmetric algebras of Euclidean type, J. Reine Angew.
Math. 580 (2005) 157-200

[8] K. Fuller, The Cartan determinant and global dimension of artinian rings, in: Azumaya
algebras, actions, and modules, Proceedings 1990, Contemporary Mathematics 124 (AMS
1992) 51-72

[9] C. Geiss, H. Krause, On the notion of derived tameness, J. Algebra Appl. 1 (2002) 133-157

[10] C. Geiss, J. A. de la Peña, Auslander-Reiten components for clans, Boll. Soc. Mat. Mexicana
5 (1999) 307-326

[11] T. Holm, Cartan determinants for gentle algebras, Archiv Math. 85 (2005), 233-239

[12] B. Keller, Derived invariance of higher structures on the Hochschild complex, Preprint (2003)

[13] J. Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989) 436-456

[14] J. Rickard, Derived equivalences as derived functors. J. London Math. Soc. (2) 43 (1991)
37-48

[15] J. Rickard, Derived categories and stable equivalence. J. Pure Appl. Algebra 61 (1989)
303-317

[16] J. Schröer, A. Zimmermann, Stable endomorphism algebras of modules over special biserial
algebras, Math. Z. 244 (2003) 515-530

[17] C. Strametz, The Lie algebra structure of the first Hochschild cohomology group of a mono-
mial algebra, Preprint (2001), math.RT/0111060; announced in: C. R. Math. Acad, Sci.
Paris 334 (2002) 733-738

[18] D. Vossieck, The algebras with discrete derived category, J. Algebra 243 (2001) 168-176

19


