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Abstract. We introduce and study the class of weighted locally gentle quivers. This natu-
rally extends the class of gentle quivers and gentle algebras, which have been intensively stud-
ied in the representation theory of finite-dimensional algebras, to a wider class of potentially
infinite-dimensional algebras. Weights on the arrows of these quivers lead to gradings on the
corresponding algebras. For the natural grading by path lengths, any locally gentle algebra is
Koszul. The class of locally gentle algebras consists of the gentle algebras together with their
Koszul duals.

Our main result is a general combinatorial formula for the determinant of the weighted Cartan
matrix of a weighted locally gentle quiver. We show that this weighted Cartan determinant is
a rational function which is completely determined by the combinatorics of the quiver, more
precisely by the number and the weight of certain oriented cycles.

1. Introduction

In the representation theory of finite-dimensional algebras, gentle algebras occur naturally
in various contexts, especially in connection with tilting and derived equivalences [2], [3], [6],
[11], [18], [20]. The definition of these algebras is purely combinatorial in terms of quivers with
relations. Moreover, gentle algebras share some remarkable structural properties, for instance
they are Gorenstein [11], and the class of gentle algebras is closed under derived equivalence
[18]. It is a longstanding open problem to classify gentle algebras up to derived equivalence.
Only few partial results in this direction are known [6], [20].

One of the striking structural features is that gentle algebras are Koszul algebras (with the
natural grading by path lengths; see also Section 3.3 below). The class of gentle algebras together
with their Koszul duals (which are not finite-dimensional in general) forms the class of locally
gentle algebras occurring in this paper. More generally, we introduce and study weighted locally
gentle quivers, and the particular aim of this paper is to study the weighted Cartan matrices of
the corresponding graded algebras.

The original starting point for this project came from the finite-dimensional situation: here,
the unimodular equivalence class, and hence the determinant, of the Cartan matrix is an in-
variant of the derived module category of a finite-dimensional algebra [7, Proposition 1.5] For
the finite-dimensional gentle algebras the Cartan determinant was completely described in [14],
and the unimodular equivalence class in [5], leading to new combinatorial derived invariants.
Recently, these derived invariants have been improved and refined by D. Avella-Alaminos and
C.Geiss [1], by using completely different methods.

The aim of the present paper is to extend the above results on Cartan matrices in two
directions. Firstly, we consider Z-gradings on gentle algebras, and hence we have to study the
graded Cartan matrices. This gives refined results even for the finite-dimensional situation; the
usual ungraded situation occurs as the special case where all arrows are in degree 1. Secondly,
we include the possibly infinite-dimensional Koszul duals of gentle algebras into the picture.
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This is a major issue of this paper, and it requires entirely new techniques compared to the
finite-dimensional situation.

Extensions of gentle and skewed-gentle algebras to classes of possibly infinite-dimensional
algebras have also been studied by I. Burban and Y. Drozd [9] (see also [10]). However, these
authors have a very different goal, namely to classify indecomposable objects in the derived
categories. Moreover, our infinite-dimensional locally gentle algebras are not contained in the
class of so-called nodal algebras considered in [9] (in fact, a locally gentle algebra is nodal if and
only if it is finite-dimensional).

To any weighted locally gentle quiver (Q, I) there is a corresponding locally gentle algebra A =
KQ/I. Algebraically, the weights on the quiver correspond to gradings of the algebra. If all
arrows are set to be in degree 1, then the corresponding locally gentle algebras are Koszul (see 3.3
below).

Our main result gives an explicit formula for the determinant of the Cartan matrix of a
weighted locally gentle quiver. The numerator and denominator of this rational function are
completely determined by the combinatorics of the quiver, more precisely by the minimal ori-
ented cycles with full relations (for the numerator) and the minimal oriented cycles with no
relations (for the denominator). See 1.1 for a precise statement.

This formula has potential applications in the context of graded derived categories and graded
derived equivalences (for general background on these topics see for instance [15] or [16]). The
determinant of the graded Cartan matrix of a Z-graded algebra is invariant under graded derived
equivalences. (This seems to be well-known to some experts, but, unfortunately, we could not
locate a proof in the literature.) However, we do not discuss this aspect of graded derived
equivalence classifications in the present paper.

Evaluating our formula at special values, we reobtain as very special cases the results on
Cartan determinants from the previous papers [14] and [5], as outlined in 1.2 below.

1.1. The main result. We now briefly describe and state our main result. Let Q = (Q, I)
be a locally gentle quiver (we recall the definition of gentle quivers in Section 2 below; note
that the term ’locally’ refers to the fact that the corresponding algebra KQ/I might be infinite-
dimensional). On locally gentle quivers, we consider the generic weight function w : Q1 → Z[xe |
e ∈ Q1] on the arrows Q1, where xe are indeterminates. It is extended to all paths p = α1 . . . αt

(where αi ∈ Q1) by setting w(p) :=
∏t

i=1 w(αi). As usual, we denote by l(p) := t the length of
the path p.

In this paper we study weighted Cartan matrices of locally gentle quivers (for a precise
definition of weighted Cartan matrices see Section 2 below). On the corresponding algebras
KQ/I the weight function induces a grading. Then the weighted Cartan matrices are just the
graded Cartan matrices with respect to the gradings.

Let p = p0p1 . . . pk−1 with arrows p0, . . . , pk−1 in Q be an oriented cycle. The cycle p is called
a cycle with full relations if pipi+1 ∈ I for all i = 0, . . . , k− 2 and also pk−1p0 ∈ I. The cycle p is
called a cycle with no relations if pipi+1 6∈ I for all i = 0, . . . , k − 2 and also pk−1p0 6∈ I. Any of
the above cycles is called minimal if the arrows p0, p1, . . . , pk−1 on p are pairwise different. For
any w-weighted locally gentle quiver Q = (Q, I) denote by ZC(Q) the set of minimal oriented
cycles with full relations and by IC(Q) the set of minimal oriented cycles with no relations.

Then we are in the position to state our main result.

Main Theorem. Let Q = (Q, I) be a locally gentle quiver with the generic weight function w,
and let Cw

Q(x) be its weighted Cartan matrix.
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Then the determinant of this Cartan matrix is a rational function which is given by the
formula

detCw
Q(x) =

∏
C∈ZC(Q)(1− (−1)l(C)w(C))∏

C∈IC(Q)(1− w(C))
.

1.2. Applications and special cases. Perhaps the most natural choice for weights on a locally
gentle quiver Q = (Q, I) is to assign to each arrow α a positive integer w(α). Algebraically,
this means that the corresponding algebra KQ/I becomes Z-graded, where the weights give the
degrees in the grading. Since our weight functions are defined multiplicatively, we shall choose
corresponding weight functions having values in the polynomial ring Z[q], i.e, to each arrow
one assigns the weight qw(α). The corresponding weighted Cartan matrices are called q-Cartan
matrices.

The natural grading by path lengths is now the case of setting all arrow weights equal to
the indeterminate q. In this very special case, our above theorem gives the following result for
locally gentle algebras which generalizes [5, Corollary 1] to the infinite-dimensional situation.

Corollary 1. Let Q = (Q, I) be a locally gentle quiver, with corresponding algebra A = KQ/I.
Then the determinant of the q-Cartan matrix is

detCQ(q) = detCA(q) =

∏
C∈ZC(Q)(1− (−q)l(C))∏

C∈IC(Q)(1− ql(C))
.

Specializing further to finite-dimensional gentle algebras and setting q = 1 we obtain the
following explicit formula for the Cartan determinant which has first been proven in [14]. For
a gentle quiver Q = (Q, I) denote by ec(Q) the number of oriented cycles of even length in Q
with full relations, and by oc(Q) the corresponding number of such cycles of odd length.

Corollary 2. Let Q = (Q, I) be a gentle quiver, with corresponding finite-dimensional alge-
bra A = KQ/I. Then the determinant of the Cartan matrix of Q (and hence of A) is

det CQ =
{

0 if ec(Q) > 0
2oc(Q) else

.

See [8] for a very recent application of this corollary.

1.3. Organization of the paper. In Section 2 we give the definition of weighted locally gentle
quivers, and of their weighted Cartan matrices. In Section 3 we prove a duality result. In the
unweighted case, this can be seen as a special case of Koszul duality; however, we provide a
general elementary combinatorial proof. The core part of the paper is Section 4 which contains
the proof of the main theorem. In subsection 4.1 we first give a proof of the main theorem on
weighted Cartan determinants for the case where the weighted locally gentle quiver does not
contain a cycle with no relations. This is basically the finite-dimensional situation considered
in [5], but now generalized to weighted quivers. Actually, we get a more precise result about
unimodular normal forms for the weighted Cartan matrices. Subsection 4.2 contains a crucial
reduction step; we show how, under certain conditions, one can reduce the number of cycles with
full relations in the quiver, and at the same time precisely control the transformations on the
weighted Cartan matrices. Using this reduction result, we will then in subsection 4.4 prove the
main theorem for ‘most’ weighted locally gentle quivers. Actually, by the reduction via 4.2 we
inductively get a quiver with no cycles with full relations. Hence its dual weighted locally gentle
quiver has no cycles with no relations, i.e., we are in the finite-dimensional situation of 4.1.
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Applying the duality result 3.1 then finishes the proof of the main theorem. In subsection 4.3
we illustrate the above arguments by going through an explicit example.

However, there are very special quivers for which these arguments do not work. These so-
called critical locally gentle quivers are introduced and dealt with in subsection 4.5, where
we compute their weighted Cartan determinant. The critical locally gentle quivers have an
interesting combinatorial interpretation in terms of certain configurations of 2n-polygons (where
n is the number of vertices of the quiver). We explain this connection in detail in subsection 4.6.
In particular, as a consequence of the Harer-Zagier formula [13], critical locally gentle quivers
exist only with an even number of vertices.

1.4. Acknowledgements. We are grateful to several people for very helpful discussions about
the topics of this paper. In particular, we thank Joe Chuang, Peter Jørgensen and Raphaël
Rouquier for patiently answering questions about Koszul algebras and graded derived equiva-
lences, and Richard Stanley for pointing out to us the references [12], [13].

2. Weighted locally gentle quivers

In this section we will eventually introduce the weighted locally gentle quivers occurring in
the title. Before, we give a quick review of the basics on quivers, Cartan matrices and gentle
quivers in the ordinary (non-weighted and finite-dimensional) setting.

2.1. Quivers with relations. Algebras can be defined naturally from a combinatorial setting
by using directed graphs. A quiver is a directed graph with finitely many vertices and arrows.

For any field K, we can define the path algebra KQ. It has as basis the set of all oriented
paths in Q. The multiplication is defined by concatenation of paths. More precisely, for a path p
in Q let s(p) denote its start vertex and t(p) its end vertex. The product in KQ of two paths
p and q is defined to be the concatenated path pq if t(p) = s(q), and zero otherwise. Note that
our convention is to write paths from left to right.

Such a path algebra KQ is finite-dimensional precisely when Q does not contain an oriented
cycle.

More general algebras can be obtained by introducing relations on a path algebra. An ideal
I ⊆ KQ is called admissible if I ⊆ rad2(KQ) where rad(KQ) is the radical of the algebra KQ.

It is well-known that if K is algebraically closed, any finite-dimensional K-algebra is Morita
equivalent to a factor algebra KQ/I where I is an admissible ideal. So for most contexts within
the representation theory of finite-dimensional algebras it suffices to consider algebras of the
form KQ/I, often referred to as quivers with relations.

2.2. Ordinary Cartan matrices. Let A = KQ/I be finite-dimensional, where K is any field.
By a slight abuse of notation we identify paths in the quiver Q with their cosets in A. Let Q0

denote the set of vertices of Q. For any i ∈ Q0 there exists a path ei of length zero. These are
primitive orthogonal idempotents in A, the sum

∑
i∈Q0

ei is the unit element in A. In particular
we get A = 1 · A = ⊕i∈Q0eiA, hence the (right) A-modules Pi := eiA are the indecomposable
projective A-modules.

The (ordinary) Cartan matrix C = (cij) of a finite-dimensional algebra A = KQ/I is the
|Q0|× |Q0|-matrix defined by setting cij := dimK HomA(Pj , Pi). Any homomorphism ϕ : ejA →
eiA of right A-modules is uniquely determined by ϕ(ej) ∈ eiAej , the K-vector space generated
by all paths in Q from vertex i to vertex j, which are nonzero in A = KQ/I. In particular, we
have cij = dimK eiAej . In this way, computing entries of the Cartan matrix for A = KQ/I is
the same as counting paths in the quiver Q which are nonzero in A.



WEIGHTED LOCALLY GENTLE QUIVERS AND CARTAN MATRICES 5

This is the key viewpoint in this paper, enabling us to obtain results on the representation-
theoretic Cartan invariants by purely combinatorial methods.

2.3. Gentle quivers. We now recall the definitions of the classes of special biserial and gentle
quivers.

A pair (Q, I) consisting of a quiver Q and an admissible ideal I in the path algebra KQ is
called special biserial if it satisfies the following axioms (G1)-(G3).

(G1) The corresponding algebra A = KQ/I is finite-dimensional.
(G2) Each vertex of Q is starting point of at most two arrows, and end point of at most two

arrows.
(G3) For each arrow α in Q there is at most one arrow β such that αβ 6∈ I, and at most one

arrow γ such that γα 6∈ I.
Gentle quivers form a subclass of the class of special biserial quivers.
The pair (Q, I) as above is called gentle if it is special biserial, i.e. (G1)-(G3) hold, and in

addition the following axioms hold.
(G4) The ideal I is generated by paths of length 2.
(G5) For each arrow α in Q there is at most one arrow β′ with t(α) = s(β′) such that αβ′ ∈ I,

and there is at most one arrow γ′ with t(γ′) = s(α) such that γ′α ∈ I.
An algebra A over the field K is called gentle if A is Morita equivalent to an algebra KQ/I

where (Q, I) is a gentle quiver.
These algebras have been introduced in the 1980s, and ever since played a major role in

tilting theory; see for instance [3], [6], [18], [20], and the references therein. A particularly
surprising and interesting feature of the class of gentle algebras is that it is closed under derived
equivalences [18].

2.4. Locally gentle quivers. Gentle algebras have been introduced and studied intensively
in the representation theory of finite-dimensional algebras. This explains the occurrence of
axiom (G1) on finite-dimensionality above. However, from a combinatorics point of view this
axiom does not seem to be natural; in fact any ’combinatorial’ statement or proof about gentle
algebras (like e.g. the ones about Cartan determinants and normal forms in [14], [5]) can be
hoped to have a counterpart in the absence of (G1).

In this paper we will be concerned also with infinite-dimensional algebras arising from these
quivers with relations. This leads us to the following definition.

A locally gentle quiver is a pair (Q, I) consisting of a quiver Q and an admissible ideal I in
the path algebra KQ satisfying (G2)-(G5) above.

To any such locally gentle quiver (Q, I) there is attached a locally gentle algebra A = KQ/I.
Simple examples of locally gentle algebras are given by the polynomial ring K[X] in one

indeterminate over a field K, or the (non-commutative) algebra K〈X,Y 〉/(X2, Y 2).

2.5. Cartan matrices for locally gentle quivers. Since a locally gentle algebra need not be
finite-dimensional, the usual definition of a Cartan matrix (where the entries are obtained by
just counting the number of non-zero paths) no longer makes sense.

Instead, as in [5], one can look at a refined version of the Cartan matrix, where instead of just
counting paths in (Q, I), we now count each path (which is non-zero in the algebra A = KQ/I)
of length n by qn, where q is an indeterminate.

More precisely, the path algebra KQ is a graded algebra, with grading given by path lengths.
Since I is homogeneous, the factor algebra A = KQ/I inherits this grading. So the morphism
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spaces HomA(Pj , Pi) ∼= eiAej become graded vector spaces. For any vertices i and j in Q let
eiAej = ⊕n(eiAej)n be the graded components.

Now let q be an indeterminate. For a locally gentle quiver Q = (Q, I) the q-Cartan matrix
CQ = (cij(q)) of Q is defined as the matrix with entries cij(q) :=

∑
n dimK(eiAej)n qn in the

ring of power series Z[[q]].
In other words, the entries of the q-Cartan matrix are the Poincaré polynomials of the graded

homomorphism spaces between projective modules of the corresponding algebra A = KQ/I.
Clearly, specializing q = 1 gives back the usual Cartan matrix (i.e., we forget the grading).

2.6. Weighted locally gentle quivers. We now introduce the most general class of quivers
to be studied in this paper.

A w-weighted locally gentle quiver is a locally gentle quiver (Q, I) together with a weight
function w : Q1 → R on the arrows of Q into a commutative ring R with 1.

The weight function is extended to all paths in Q by setting w(p) = 1 for the trivial paths of
length 0, and w(p) =

∏t
i=1 w(αi) for a finite path p = α1 · · ·αt with α1, . . . , αt ∈ Q1. In later

situations, the weight function will be further restricted so that corresponding weighted counts
make sense.

Note that the special case of choosing the weight function w : Q1 → Z[q], α 7→ q for all arrows
α, induces the weight by length on the paths in the quiver. This has been used before for the
q-Cartan matrix of the ordinary locally gentle quivers, as defined in 2.4. We will also refer to
these as q-weighted locally gentle quivers.

The main case for us is the generic weight function w : Q1 → Z[xe | e ∈ Q1] into the
polynomial ring Z[xe | e ∈ Q1] given by mapping each arrow e ∈ Q1 to the corresponding
indeterminate xe. Of course, specializing all xe to an indeterminate q leads to the previous case.
If t is a further indeterminate, substituting xet for xe, for all e ∈ Q1, gives a weight function on
the paths that shows explicitly both the generic weight and the weight by length (here via tl(p)

for a path p). For later purposes, we may as well substitute other monomials from a polynomial
ring Z[y1, . . . , yk] for the xe’s. For example, the weights may be of the form qmet, me ∈ N, for
e ∈ Q1; with this choice we may keep track at the same time of the length and a further integer
weight of a path.

2.7. The Cartan matrix of a weighted locally gentle quiver. Let Q = (Q, I) be a locally
gentle quiver with the generic weight function w : Q1 → Z[xe | e ∈ Q1] as above. We define a
weighted Cartan matrix Cw

Q(x) (where x stands for (xe)e∈Q1) as for locally gentle quivers in 2.5
by counting non-zero paths according to their weights, where here instead of the lengths we take
into account the weights on the arrows. Thus, a non-zero path p in the corresponding algebra
A = KQ/I gives a contribution w(p). The corresponding Cartan matrix is then defined over
the ring of power series Z[[xe | e ∈ Q1]]. For any vertices i, j ∈ Q0 the corresponding entry in
Cw
Q(x) is set to be

cij(x) :=
∑

p

w(p)

where the sum is taken over all non-zero paths p in (Q, I) from i to j.

Note that if in the weight function all variables are specialized to q on Q1, i.e., if it induces
the weighting by path lengths, then we reobtain the q-Cartan matrix CQ(q) of the quiver.
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3. Duality

In this section we will define to any weighted locally gentle quiver its dual and prove a
fundamental duality result for their Cartan matrices which will be crucial later in the proof of
the main theorem.

3.1. The dual weighted locally gentle quiver. Let Q = (Q, I) be a w-weighted locally
gentle quiver. The dual w-weighted locally gentle quiver is defined as Q# := (Q, I#) where
the relation set I# is characterized by the following property. For any arrows α, β in Q with
t(α) = s(β) we have αβ 6∈ I if and only if αβ ∈ I#.

Note that the dual Q# has the same underlying quiver Q and the same weight function w
as Q.

We would like to point out that the above duality does not preserve finite-dimensionality for
the corresponding algebras, as the following easy example shows.

Take Q to be the quiver with one vertex and one loop ε. Let I be generated by ε2. Then (Q, I)
is gentle, giving a finite-dimensional gentle algebra A = KQ/I. For the dual quiver (Q, I#) we
have I# = 0, so the corresponding algebra A# = KQ/I# is infinite-dimensional (more precisely,
it is a polynomial ring in one generator).

This explains that for being able to use duality we really have to broaden our perspective and
study infinite-dimensional situations as well.

3.2. Duality on Cartan matrices. The aim is to prove the following fundamental result on
the Cartan matrices of weighted locally gentle quivers.

Proposition 3.1. Let Q = (Q, I) be a locally gentle quiver with the generic weight function w,
and let Q# = (Q, I#) be its dual. Then the following holds for their weighted Cartan matrices:

Cw
Q(x) · Cw

Q#(−x) = E|Q0|
where E|Q0| denotes the identity matrix.

Proof. For i, j ∈ Q0, we consider the (i, j)-entry of the product Cw
Q(x) · Cw

Q#(−x). Any contri-
bution to this comes from a path p̂ = pp′ from i to j in KQ such that the path p is non-zero
in A = KQ/I and the path p′ is non-zero in A# = KQ/I#. Let p = p0p1 . . . pl, p′ = p′0p

′
1 . . . p′l′

with pr, p
′
r ∈ Q1, except that possibly p0 = ei if l = 0 or p′0 = ej if l′ = 0. The contribution

coming from this path is then w(p)w(p′)(−1)l(p′). By definition of the dual quiver, plp
′
0 6∈ I or

plp
′
0 6∈ I#, and we can have both only if (at least) one of the paths is trivial. If plp

′
0 6∈ I and

l′ > 0, set p′′ = p′1 . . . p′l′ ; then the same path p̂ in KQ also gives a contribution coming from
its factorization p̂ = (pp′0)p

′′, which is w(p)w(p′)(−1)l(p′)−1 and thus cancels with the previous
contribution. Similarly, we obtain a cancelling contribution if plp

′
0 6∈ I# and l > 0 by shifting

the factorization one place to the left rather than to the right. Note that for any fixed path p̂ in
KQ of positive length which gives a contribution we have exactly two factorizations as a product
of a non-zero path in A and a non-zero path in A#, as described above. As the corresponding
contributions cancel, it only remains to consider the trivial paths at each vertex; these give a
contribution 1, and thus the matrix product is the identity matrix, as claimed. ¤

Remark 3.2. This proposition implies immediately that if the main theorem holds for a
weighted locally gentle quiver Q then it is also true for its dual. To see this, we first note
that clearly cycles with full relations and cycles without relations are interchanged when we
dualize the quiver. Furthermore, evaluating the Cartan matrix at −x rather than at x means
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that the weight of a cycle C of length l(C) is changed from w(C) to (−1)l(C)w(C). Hence, if the
determinant formula holds for the Cartan matrix of Q, then the duality formula above gives

detCw
Q#(x) = (detCw

Q(−x))−1

=

∏
C∈IC(Q)(1− (−1)l(C)w(C))∏

C∈ZC(Q)(1− w(C))

=

∏
C∈ZC(Q#)(1− (−1)l(C)w(C))∏

C∈IC(Q#)(1− w(C))
.

In particular, we observe that if the main theorem holds for all weighted locally gentle quivers
which do not have cycles with no relations (i.e., those corresponding to finite-dimensional alge-
bras), then it also holds for all weighted locally gentle quivers which do not have cycles with full
relations.

Example 3.3. We consider the following weighted locally gentle quiver Q (where relations are
indicated by dotted lines)

2

A number m attached to an arrow denotes the weight qmt, where we omit attaching 1’s for
the weight qt; again, q, t are indeterminates. The vertices are denoted 1, 2, 3 in a clockwise order,
with 1 being the vertex at the top. Then the weighted Cartan matrix has the following form

CQ(q, t) =




1
1−q6t5

qt+q4t3

1−q6t5
q2t2+q5t4

1−q6t5

q2t2+q5t4

1−q6t5
1+q3t2+q3t3+q6t5

1−q6t5
2qt+q4t3+q4t4

1−q6t5

qt+q4t3

1−q6t5
q2t+q2t2+2q5t4

1−q6t5
1+q3t2+q3t3+q6t5

1−q6t5




The dual weighted locally gentle quiver Q# has the form

2

Note that this dual quiver now has one minimal oriented cycle with full relations of length 6,
and no cycles with no relations. The weighted Cartan matrix of Q# has the following form

CQ#(q, t) =




1 + q6t5 qt + q4t3 q2t2 + q5t4

q2t2 + q5t4 1 + q3t2 2qt + q4t3

qt + q4t3 q2t 1 + q3t2




In this example, we have specialized the generic weights xe to qmet, where me is the weight
number attached to the arrow e in the figure. Thus, the change from x to −x for the Cartan
matrix of the dual quiver in the duality result corresponds to a change t to −t in this situation.
We leave to the reader the straightforward (though tedious) verification that indeed the product
CQ(q, t) · CQ#(q,−t) equals the identity matrix, as predicted by Proposition 3.1.
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3.3. Locally gentle algebras are Koszul. The above duality result Proposition 3.1 is rem-
iniscent of similar formulae for Koszul algebras, so-called numerical Koszulity criterion, see [4,
2.11.1]. In this subsection we briefly clarify this connection by indicating that the locally gentle
algebras, with the natural grading by path lengths (i.e., all arrows are of degree 1), are actually
Koszul algebras. However, if at least one of the weights is > 1 then the weighted locally gentle
algebra can not be Koszul since any Koszul algebra has to be generated by its degree 1 compo-
nent (see [4, 2.3.1]). In particular, our duality result above (which holds for arbitrary weights)
is not just a special case of Koszul duality.

For background and more details on Koszul algebras we refer to [4], especially Section 2.
Recall that a positively graded algebra A = ⊕i≥0Ai is Koszul if A0 is semisimple and if the

graded left A-module A0 admits a graded projective resolution . . . → P 2 → P 1 → P 0 → A0 → 0
such that each P i is generated by its component in degree i, i.e., P i = AP i

i .
Also recall that on any graded A-module M = ⊕i≥0Mi there are shifts defined by (M〈n〉)i =

Mi−n.
The following observation completely describes the graded projective resolutions of simple

modules for locally gentle algebras. We leave the details of the straightforward verification to
the reader.

Proposition 3.4. Let (Q, I) be a locally gentle quiver, with corresponding algebra A = KQ/I.
Consider A with the natural grading given by path lengths. For any vertex i in Q, consider the
(at most) two paths in Q with full relations starting in i; denote the vertices on these paths
by i, i1, i2, . . . and by i, j1, j2, . . ., respectively. Then the corresponding simple module Ei has a
graded projective resolution of the form

. . . → (P i2 ⊕ P j2)〈−2〉 → (P i1 ⊕ P j1)〈−1〉 → P i → Ei → 0.

In particular, with the grading by path lengths, any locally gentle algebra A is Koszul.

As a consequence of the above proposition we get that the Koszul dual E(A) = ExtA(A0, A0)
is canonically isomorphic to the opposite algebra of the quadratic dual A! ([4, Theorem 2.10.1]).
But for a locally gentle quiver Q = (Q, I) with algebra A = KQ/I, the latter opposite quadratic
dual is just the algebra A# := KQ/I# given by the dual locally gentle quiver Q# = (Q, I#)
defined in Section 3.1, having the ’opposite’ relations. (For a general definition of the quadratic
dual, see [4, Definition 2.8.1].)

Then our duality result Proposition 3.1, for the case of the grading given by path lengths, is
a special case of the numerical Koszulity criterion [4, Lemma 2.11.1].

A direct consequence of Proposition 3.4 is the following homological property of locally gentle
algebras. As usual, gldim(A) denotes the global dimension of an algebra. Recall that by ZC(Q)
we denote the set of minimal oriented cycles with full relations.

Corollary 3.5. Let Q = (Q, I) be a locally gentle quiver, with corresponding algebra A = KQ/I.
Then

gldim(A) < ∞ ⇐⇒ ZC(Q) = ∅.

4. Proof of the main result

In this section we will give a complete proof of our main result which we recall here for the
convenience of the reader.

Main Theorem. Let Q = (Q, I) be a locally gentle quiver with the generic weight function w,
and let Cw

Q(x) be its weighted Cartan matrix.
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Then the determinant of this Cartan matrix of Q is given by the formula

det Cw
Q(x) =

∏
C∈ZC(Q)(1− (−1)l(C)w(C))∏

C∈IC(Q)(1− w(C))
.

The proof will consist of three main steps. First, we give a proof for the finite-dimensional
case. Secondly, a reduction to the case where the quiver has no oriented cycles with full relations.
Using Remark 3.2 this inductively proves the main theorem for ’most’ quivers. Finally, we have
to deal with certain so-called critical quivers separately.

4.1. The finite-dimensional case. We first show how to prove the main result in the special
case where a weighted locally gentle quiver (Q, I) has no non-zero infinite paths. Note that this
corresponds to the algebra A = KQ/I being finite-dimensional, i.e., we are in the situation of
a weighted gentle quiver. The q-weighted special case of the following result has already been
proven in [5].

Proposition 4.1. Let Q = (Q, I) be a gentle quiver, and let w be the generic weight function on
the quiver. Then the weighted Cartan matrix Cw

Q(x) can be transformed by unimodular elemen-
tary operations over Z[x] = Z[x1, . . . , x|Q0|] into a diagonal matrix with entries 1−(−1)l(C)w(C),
for each C ∈ ZC(Q), and all further diagonal entries being 1.
In particular, for the determinant of the weighted Cartan matrix we have

det Cw
Q(x) =

∏

C∈ZC(Q)

(1− (−1)l(C)w(C)).

Proof. The proof is analogous to the proof for the q-Cartan matrix of (finite-dimensional) gentle
algebras given in [5]. However, we have to take the weights into account, so that we should
include a proof here (although we shall be brief at times; for details we refer to [5]).

Since Q is gentle, we can do a similar reduction as in [5, Lemma 3.1] and as at the beginning
of the proof of [5, Theorem 3.2], now adapted to the weighted case. After the reduction, we
can assume that Q contains a vertex v = v1 of degree 2, with incoming arrow p0 : v0 → v1 and
outgoing arrow p1 : v1 → v2 with p0p1 = 0 in A, where v0 6= v1 6= v2.
As the quiver is gentle, there exists a unique path p starting with p0 such that the product of
any two consecutive arrows on p is in I. As we have already gone through the reduction steps,
this path is an oriented cycle C with full relations returning to v0. In this case we set p to be just
one walk around the cycle. So we have defined a finite path p = p0p1 . . . ps (with full relations).
Let v0, v1, . . . , vs, vs+1 = v0 denote the vertices on the path p.

We shall perform elementary row operations on the Cartan matrix Cw
Q(x). Denote the row

corresponding to a vertex u of Q by zu. Then consider the following linear combination of rows

Z := zv1 − w(p1)zv2 + w(p1)w(p2)zv3 −+ . . .

. . . + (−1)s−1w(p1) · · ·w(ps−1)zvs + (−1)sw(p1) · · ·w(ps)zvs+1 .

We replace the row zv1 by Z and get a new matrix C̃. The crucial observation is that in the
alternating sum Z many parts cancel. In fact, at any vertex vi on p there is a bijection between
the non-zero paths starting in vi but not with pi, and the non-zero paths starting with pi−1. The
‘scalar’ factors in Z are just chosen appropriately so that the corresponding contributions in the
weighted Cartan matrix cancel. Hence, in Z only those contributions could survive coming from
paths starting in v1, but not with p1. But by the choice of v1 there are no such paths except
the trivial one. For all other rows in Cw

Q(x), note that no path from some vertex ṽ 6= v1 can
involve p1. (In fact, there is only one incoming arrow in v1.)
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As p = C is an oriented cycle with full relations, we also have a final trivial bijection {p0} →
{ev1} where the weight is reduced by w(p0). By the remark above, almost everything cancels in
the new row Z apart from the one term in the column to v1 which comes from the trivial path
at v1 and its multiplication by all the weights, i.e.

1 + (−1)sw(p1) · · ·w(ps)w(p0) = 1− (−1)s+1w(p1 . . . psp0) = 1− (−1)l(C)w(C) .

As in the situation with the length weight function in [5], we then use the corresponding
operation on the columns labelled by the vertices on the cycle C, but now in counter-clockwise
order, i.e., we set vs+2 = v = v1 and replace the column sv1 by

S := sv1 − w(p0)sv0 + w(ps)w(p0)svs −+ . . .

. . . + (−1)s−1w(p3) · · ·w(ps)w(p0)sv3 + (−1)sw(p2) · · ·w(ps)w(p0)sv2 .

Again, this amounts to the desired cancellation of terms. Thus, by also ordering vertices so that
v corresponds to the first row and column of the Cartan matrix, we have altogether transformed
Cw
Q(x) to a matrix of the form




1− (−1)l(C)w(C) 0 · · · 0
0
... C ′
0




Here C ′ is the weighted Cartan matrix for the gentle quiver Q′ obtained from Q by removing v
and the arrows incident with v (and removing the corresponding relations) and restricting the
weight function to Q′

1 (so this is the generic weight function w′ for Q′). Note that in comparison
with Q, the quiver Q′ has one vertex less and one cycle with full relations less (namely C).
Now by induction, the result holds for C ′ = Cw′

Q′(x
′), and hence the result for Cw

Q(x) follows
immediately. ¤

4.2. Reducing the zero cycles. The aim of this section is to prove a technical result which
is actually the main reduction step for the proof of the main theorem. It describes a combina-
torial procedure for reducing the number of oriented cycles with full relations, leading to a new
weighted locally gentle quiver. The crucial aspect is that we can control the transformations on
the determinants of the weighted Cartan matrices in this process. However, in the reduction
procedure we are going to replace two consecutive arrows by one new arrow, with weight equal
to the product of the weights of the former arrows. But this process changes the lengths of
cycles, so that in the following result the weighted determinant of the new quiver as a function
in x is not quite with respect to the generic weight function on the new quiver.

Proposition 4.2. Let Q = (Q, I) be a locally gentle quiver which contains a minimal oriented
cycle C with full relations; let w be the generic weight function. Assume there exists a vertex v1

on C such that only two arrows of C are incident with v1. Let p1 be the arrow on C with starting
point v1. Assume that there exists an incoming arrow q1 at v1 which does not belong to C. We
define a new w̄-weighted locally gentle quiver Q̄ = (Q̄, Ī) as follows. The vertices are the same
as in Q, the arrows p1 and q1 are removed, and replaced by one arrow p̄ with s(p̄) = s(q1),
t(p̄) = t(p1). The weight function w̄ is set to be w̄(p̄) := w(q1)w(p1) on the new arrow, all other
weights are the same as for w.

If C is the only minimal oriented cycle with full relations attached to v1 then

det Cw
Q(x) = (1− (−1)l(C)w(C)) · det Cw̄

Q̄(x).
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If we have a second minimal oriented cycle C ′ with full relations attached to v1, then

det Cw
Q(x) = (1− (−1)l(C)w(C))(1− (−1)l(C′)w(C ′)) · det Cw̄

Q̄(x).

The following figure illustrates the situation and the statement of the above proposition.

w(q ) w(p )=w(q p )C
q1

1p
v1 v1

111 1

Proof. Analogous to the proof of Proposition 4.1 we perform row operations along the cycle C.
Let C = p1p2 . . . pk be the arrows, and v1, v2, . . . , vk the vertices on C. Let zvi be the row in
CQ(x) corresponding to the vertex vi. Then we replace the row corresponding to v1 by

Z := zv1 − w(p1)zv2 + w(p1)w(p2)zv3 −+ . . .

. . . + (−1)k−1w(p1) · · ·w(pk−1)zvk
.

Again, as in the proof of Proposition 4.1 all contributions coming from paths starting in v1

with p1 cancel in Z, and the contributions from the other paths starting in v1 (now there may
be nontrivial ones) occur with the factor

1 + (−1)k−1w(p1) · · ·w(pk−1) · w(pk) = 1− (−1)l(C)w(C) .

At this point our proof has to deviate from the previous one as there might well be non-zero
paths from vertices other than v1 involving p1. (This is because in our situation we can not
guarantee that there is only one incoming arrow into v1. Note that in the previous proof we
could only assume this because there were no cycles with no relations. In the present proposition
the quiver might, for instance, have the property that all vertices are of valency 4.)

In the next step we try to get rid of this problem by performing column operations. By
assumption there exists an incoming arrow q1 not on the cycle C. Consider the unique maximal
path q going backwards from q1 along the zero relations, i.e. q = ql . . . q2q1 with qjqj−1 ∈ I for
all j = l, . . . , 2. Note that q1 might also belong to an oriented cycle with full relations, namely
if there are two such cycles attached to v1. Then q is set to be one walk around the cycle. Let
v′l, . . . , v

′
2, v1 be the vertices on this path q. Moreover, let s̄v′l

, . . . , s̄v′2 , s̄v1 be the corresponding
columns of the modified Cartan matrix C̄(x) (obtained from Cw

Q(x) by replacing zv1 with Z).
Then we set

S := sv1 − w(q1)sv′2 + w(q1)w(q2)sv′3 −+ . . .

. . . + (−1)l−1w(q1) · · ·w(ql−1)zv′l
.

Let C̃(x) be the matrix obtained from CQ(x) by first replacing the row zv1 by Z, and then the
column sv1 by S.

Completely analogous to the argument for the row operation, the contributions in sv1 from
the paths ending with q1 are cancelled in S.

If q1 does belong to an oriented cycle C ′ with full relations, then the contributions from the
other paths ending in v1 occur in S with a factor

1 + (−1)l−1w(q1) · · ·w(ql−1) · w(ql) = 1− (−1)l(C′)w(C ′) .

If q1 does not belong to an oriented cycle with full relations, then this factor does not occur.
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Let ¯̄C(x) be the matrix obtained from C̃(x) by taking out the factor 1−(−1)l(C)w(C) from the
first row and, if q1 belongs to an oriented cycle with full relations, the factor 1− (−1)l(C′)w(C ′)
from the first column.

Recall that in ¯̄C(x) all contributions from paths starting with p1 and all contributions from
paths ending with q1 are cancelled. But, in general, there will be paths between vertices other
than v1 involving the (non-zero) product q1p1. Therefore, we have to introduce the new arrow p̄
replacing q1p1.

Then ¯̄C(x) is precisely the weighted Cartan matrix Cw̄
Q̄(x) of the w̄-weighted locally gentle

quiver described in the proposition.
Summarizing the above arguments we get for the determinants (leave out the factor 1 −

(−1)l(C′)w(C ′) if q1 does not belong to an oriented cycle with full relations)

detCw
Q(x) = (1− (−1)l(C)w(C)) · det C̄(x)

= (1− (−1)l(C)w(C))(1− (−1)l(C′)w(C ′)) · det ¯̄C(x)

= (1− (−1)l(C)w(C))(1− (−1)l(C′)w(C ′)) · detCw̄
Q̄(x),

as claimed. ¤

Remark 4.3. The proof of Proposition 4.2 also works when there is no incoming arrow q1; in
this situation, the quiver Q̄ is obtained from Q by just removing p1.

4.3. An explicit example. Let Q = (Q, I) be the following locally gentle quiver (where rela-
tions are indicated by dotted lines).

Note that we have two minimal cycles of length 3 with full relations, and one minimal cycle
with no relations of length 6. As it is somewhat cumbersome to write out the weighted Cartan
matrix for the generic weight function, we choose the weight function w to be q on every arrow.
Then the weighted Cartan matrix (i.e., in this case the q-Cartan matrix) has the form

Cw
Q(q) = CQ(q) =




1 + q3

1− q3

2q

1− q3

2q2

1− q3

2q2

1− q3

1 + q3

1− q3

2q

1− q3

2q

1− q3

2q2

1− q3

1 + q3

1− q3




.

As an illustration we go through the corresponding reduction steps described in 4.2 in detail.
We denote the three outer arrows in the above quiver by a, and the three inner arrows by b.

First, we perform row operations along the cycle a3 with full relations, replacing the first row
by Z := z1 − qz2 + q2z3. Then we perform column operations backwards along the cycle b3,
replacing the first column by the linear combination S := s1−qs3 +q2s2. We get the new matrix
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(having the same determinant) of the form

C̃(q) =




1 + q3

1− q3

qt(1 + q3)
1− q3

q2(1 + q3)
1− q3

q2(1 + q3)
1− q3

1 + q3

1− q3

2q

1− q3

q(1 + q3)
1− q3

2q2

1− q3

1 + q3

1− q3




When computing the determinant, we can now extract the factor 1 + q3 from the first row and
from the first column and get

det Cw
Q(q) = (1 + q3)2 · det




1
1− q6

q

1− q3

q2

1− q3

q2

1− q3

1 + q3

1− q3

2q

1− q3

q

1− q3

2q2

1− q3

1 + q3

1− q3




The next step in the proof of Proposition 4.2 is the transition to the modified w̃-weighted
quiver Q̃ := (Q̃, Ĩ) which now has one arrow of weight q2 and takes the form

2

with conventions on the weights as in Example 3.3.
The weighted Cartan matrix of this locally gentle quiver with respect to the weights q2t on

the marked arrow and qt on all others has been considered in Example 3.3; we call this weight
function also w̃ and keep in mind that we will have to specialize t to 1 to obtain the matrix
appearing on the right side above.

The transformed quiver has no more oriented cycles with full relations. Hence its dual
weighted locally gentle quiver Q̃# has no cycles with no relations. Thus we can compute its
weighted Cartan determinant from 4.1:

detCw̃
eQ#(q, t) = 1 + q6t5.

¿From our duality result Proposition 3.1 we deduce that

detCw̃
eQ(q, 1) = (detCw̃

eQ#(q,−1))−1 =
1

1− q6
.

Summarizing the above steps we get

detCw
Q(q) = det C̃(q) = (1 + q3)2 · detCw̃

eQ(q, 1)

=
(1 + q3)2

1− q6
.

Note that this is exactly in line with our main theorem since Q = (Q, I) has two minimal
oriented cycles with full relations of length 3 and one minimal oriented cycle with no relations
of length 6.
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4.4. Almost finishing the proof using duality. We are now going to complete the proof of
our main theorem in most cases. We will encounter some very special locally weighted gentle
quivers which have to be treated separately in the next subsection.

Let Q = (Q, I) be an arbitrary locally gentle quiver with the generic weight function w.
Let ZC(Q) be its set of minimal oriented cycles with full relations, and let IC(Q) be its set of
minimal cycles with no relations

Assume ZC(Q) 6= ∅. If there is a zero cycle having a vertex that is not incident to four of
the arrows of the cycle, then we can construct a new weighted locally gentle quiver Q̄ which has
|ZC(Q̄)| < |ZC(Q)| according to the combinatorial rule described in Proposition 4.2. (Actually
the difference is 1 or 2, depending on whether the chosen vertex v1 is attached to one or two
minimal oriented cycles with full relations.) The crucial observation is that in this construction
the number of minimal cycles with no relations and their weights are not changed at all. In
particular, there is a weight-preserving bijection IC(Q) → IC(Q̄).

By Proposition 4.2 and Remark 4.3 each oriented cycle C with full relations lost in this
transition from Q to Q̄ gives a factor 1− (−1)l(C)w(C) for the computation of the determinant.

We assume now that on each cycle with full relations we find a vertex for which we can
perform this reduction step (the only critical situation occurs when there is no such vertex on
each cycle with full relations in the quiver and its dual, and we can not reduce further; this will
be dealt with in the next subsection). Then, continuing this combinatorial process inductively,
we reach a w̃-weighted locally gentle quiver Q̃ with ZC(Q̃) = ∅ and

detCw
Q(x) =

( ∏

C∈ZC(Q)

(1− (−1)l(C)w(C))
) · detCw̃

eQ(x).

Since ZC(Q̃) = ∅ we will have for the dual weighted locally gentle quiver that IC(Q̃#) = ∅.
Thus applying Proposition 4.1 to Q̃# (specialize the generic weight function to w̃), duality (via
Remark 3.2) and the fact that there are weight-preserving bijective correspondences

ZC(Q̃#) ↔ IC(Q̃) ↔ IC(Q)

we obtain

det Cw̃
eQ(x) =


 ∏

C∈IC(Q)

(1− w(C))



−1

.

Finally, combining the above equations we can conclude that

det Cw
Q(x) =

∏
C∈ZC(Q)(1− (−1)l(C)w(C))∏

C∈IC(Q)(1− w(C))
.

4.5. Critical quivers. The previous reduction steps yield a proof of our main theorem, unless
the w-weighted locally gentle quiver Q = (Q, I) is connected and has the following property:
each vertex has valency 4, and all the arrows incident to it belong to the same cycle with no
relations and also to the same cycle with full relations. Note that then Q has exactly one minimal
cycle with no relations and exactly one minimal cycle with full relations, and every arrow of Q
belongs to both these cycles. In other words, the quiver consists of these two cycles, which are
interwoven and both ’eight-shaped’ at each vertex. We call these weighted locally gentle quivers
critical. Here are two examples of critical locally gentle quivers.
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c

a

d

b

where for the left quiver we have the relations ad = 0, bc = 0, db = 0 and ca = 0. In the right
quiver, the zero relations are indicated by the dotted lines.

In the next subsection below we will discuss a combinatorial interpretation of critical locally
weighted quivers. A consequence of a deep combinatorial result, the Harer-Zagier formula [13],
then implies that such quivers exist only with an even number of vertices.

Note that the class of critical locally gentle quivers is closed under duality (as introduced in
Section 3.2), and that they don’t satisfy the assumptions of the main reduction step Proposi-
tion 4.2. So we indeed have to deal with these critical quivers separately.

The following result then completes the proof of our main theorem.

Proposition 4.4. Let Q = (Q, I) be a critical locally gentle quiver with the generic weight
function w. Then for the weighted Cartan matrix the following holds

detCw
Q(x) = 1.

Note that this is precisely the value of the determinant predicted by the main theorem. In
fact, a critical quiver Q has precisely one cycle in ZC(Q) and one cycle in IC(Q), both of which
have length 2|Q0| and the same weight (namely the product of the weights over all arrows in
the quiver).

For the proof of the above result we shall need the following very simple fact about determi-
nants of matrices which only differ in one entry.

Lemma 4.5. Let C = (cij) and C̃ = (c̃ij) be n × n-matrices. Assume c̃ij = cij except for
i = j = 1. Then

det C̃ = det C + (c̃11 − c11) det C11

where C11 is the principal submatrix of C (and of C̃) obtained by removing the first row and
column.

Proof. (of Proposition 4.4) Let Q = (Q, I) be a critical quiver as defined above, with generic
weight function w. We need to introduce some notation. Let n denote the number of vertices
of Q. Fix any vertex v1 in Q, and let p1 be one of the arrows starting in v1. Since Q is critical,
there is a unique minimal cycle p with full relations, starting with p1, and containing each arrow
of Q precisely once, and passing through each vertex of Q twice. Note that the path p has
length 2n. We can write p = p̄p′ where p̄ denotes the initial proper subpath of p of positive
length ending in v1. Let a be the length of p̄.

On the weighted Cartan matrix Cw
Q(x) we shall perform row and column operations similar

to the previous proofs. These will again be given by suitable alternating sums along the cycle
p. But as we will see, one has to be careful since these will not be elementary row and column
operations, since each vertex occurs twice on p.

More precisely, let v1, v2, . . . , va, va+1 = v1, va+2, . . . , v2n−1, v2n = v1 be the vertices, and
p1, p2, . . . , p2n the arrows on p. In particular, we have p̄ = p1 · · · pa.
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The row of the Cartan matrix corresponding to the vertex vi is denoted by zvi . Then consider
the following linear combination of rows

Z := zv1 − w(p1)zv2 + w(p1p2)zv3 −+ . . . + (−1)a−1w(p1 . . . pa−1)zva+

+(−1)aw(p1 . . . pa)zva+1 + . . . + (−1)2n−1w(p1 . . . p2n−1)zv2n .

We now consider the matrix obtained from Cw
Q(x) by replacing the row corresponding to v1

by Z. W.l.o.g. we assume that zv1 is the first row. Since va+1 = v1, the row zv1 occurs twice
in Z, namely with factor 1 and with factor (−1)aw(p1 . . . pa) = (−1)aw(p̄). Hence, for the
determinant we obtain

det Cw
Q(x) = 1

1+(−1)aw(p̄) · det

2
6664

(1− w(p))c̄11 . . . . . . (1− w(p))c̄1n

c21 . . . . . . c2n

...
...

cn1 . . . . . . cnn

3
7775

where c̄1j is the contribution of paths starting at v1 but not with the arrow p1, and ending in vj .
(Note that indeed, in the alternating sum Z, the contributions coming from paths starting
with p1 cancel. This is completely analogous to previous proofs.)

Now we perform column operations. For a vertex vi, let svi denote the column of the above
matrix corresponding to vi.

We consider alternating sums given by going backwards along the cycle p with full relations,
starting with pa. Thus we set

S := sv1 − w(pa)sva + w(pa−1pa)sva−1 + . . . + (−1)a−1w(p2 . . . pa)sv2 + (−1)aw(p̄)sv1

+(−1)a+1w(p2np1 . . . pa)sv2n + . . . + (−1)2n−1w(pa+2 . . . p2np1 . . . pa)sva+2 .

Then the above determinant becomes

detCw
Q(x) =

1− w(p)
(1 + (−1)aw(p̄))2

· det




(1 + (−1)aw(p̄)) c̄12 · · · c̄1n

(1− w(p))c̄21
... C11

(1− w(p))c̄n1




=
(1− w(p))2

(1 + (−1)aw(p̄))2
· det




1 + (−1)aw(p̄)
1− w(p)

c̄12 · · · c̄1n

c̄21
... C11

c̄n1




where c̄j1 is the contribution of paths ending at v1 but not with the arrow pa, and starting
in vj . (Note that indeed, in the alternating sum S, the contributions coming from paths ending
with pa cancel. This is again completely analogous to previous proofs.)

The crucial fact to observe now is that the latter matrix, apart from the top left entry, is the
weighted Cartan matrix of the w̄-weighted locally gentle quiver Q̄ obtained from Q by removing
p1 and pa, and replacing them by a new arrow π from va to v2; the relations on Q̄ are in the
obvious way induced from the relations on Q. The new arrow π has weight w̄(π) = w(p1)w(pa);
all other weights are kept the same for the weight function w̄ of Q̄.

For instance, for the critical quiver Q with two vertices given at the beginning of this subsec-
tion, the corresponding quiver Q̄ has the following shape
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π
c

b

with relations bc = 0 and π2 = 0. For the weights we have w̄(π) = w(d)w(a), w̄(b) = w(b)
and w̄(c) = w(c).

By Lemma 4.5 we thus get

det Cw
Q(x) =

(1− w(p))2

(1 + (−1)aw(p̄))2
·

·
(

det Cw̄
Q̄(x) +

(
1 + (−1)aw(p̄)

1− w(p)
− 1

1− w(p)

)
det C11

)
.

The quiver Q̄ has the property that the vertex v1 only has valency 2. In particular, Q̄ is not
critical, and we can apply our previous reduction steps which prove the main theorem for non-
critical quivers. Note that Q̄ has exactly one minimal cycle without relations, and its w̄-weight
is the same as the w-weight of the minimal cycle of Q without relations, i.e., it is equal to w(p).
But the cycle with full relations is broken up, and the only minimal cycle with full relations in
Q̄ is p2 . . . pa−1π, of length a−1 and its w̄-weight is equal to the weight w(p̄). Thus by our main
theorem for non-critical quivers we get

det Cw̄
Q̄(x) =

1− (−1)a−1w(p̄)
1− w(p)

.

Moreover, the principal minor det C11 is the weighted Cartan matrix of the quiver Q̄′ obtained
from Q by removing the vertex v1 (and all arrows attached to it), and then replacing the non-
zero product pap1 by a new arrow of weight w(pa)w(p1), and the non-zero product p2npa+1 by
a new arrow of weight w(p2n)w(pa+1); let us call the corresponding new weight function w′.
Note that the quiver Q̄′ has the same cycle with no relations as Q, but it now has two minimal
cycles with full relations, namely one of length a−1 and w′-weight w(p̄), and the other of length
2n− a− 1 and w′-weight w(p′). By induction on the number of vertices, we get for the Cartan
determinant of the w′-weighted locally gentle quiver Q̄′ that

det C11 = det Cw′
Q̄′(x) =

(1− (−1)a−1w(p̄))(1− (−1)2n−a−1w(p′))
1− w(p)

.

We can now plug in this information into the above equations for the Cartan determinant of Q
to get

det Cw
Q(x) =

(1− w(p))2

(1 + (−1)aw(p̄))2

(
1− (−1)a−1w(p̄)

1− w(p)
+

(−1)aw(p̄)
1− w(p)

· det C11

)

=
1− w(p)

1 + (−1)aw(p̄)

(
1 +

(−1)aw(p̄)(1 + (−1)2n−aw(p′))
1− w(p)

)

=
1− w(p)

1 + (−1)aw(p̄)

(
1− w(p) + (−1)aw(p̄) + (−1)2nw(p)

1− w(p)

)

= 1 ,

as claimed. ¤
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4.6. Critical quivers and combinatorial configurations. Let Q be a critical locally gentle
quiver. Then Q is connected, and all arrows belong to a single oriented cycle of length 2n, and
they also all belong to a single oriented cycle with full relations of length 2n, where n = |Q0|.
The quiver may then also be described in a different way as follows. We label the vertices from
1 to n and start walking on the oriented cycle at vertex 1, not repeating any arrow; this gives a
(circular) sequence of length 2n, where each number 1, . . . , n appears twice. Note that no two
consecutive numbers on this circular sequence are equal, since otherwise there would be a loop
at the corresponding vertex, a situation excluded by our condition on the quiver. Thus we may
visualize this by an oriented 2n-polygon with n secants, each connecting two vertices with the
same label. The walk along a path with zero relations in the quiver corresponds in this picture
to a walk of the following type: take a step on the polygon, then slide along the secant to the
vertex with the same label, take again a step on the polygon, then go over the secant and so
on; let us call this a secant walk. Indeed, the secants correspond exactly to the dotted lines
indicating the zero relations in our quiver pictures. Such secant configurations in 2n-polygons
have appeared also in other contexts, sometimes in a slightly disguised form, e.g., see [12], [13],
[19].
In fact, we have a more special situation above. In an arbitrary configuration as above, there will
be several cyclic secant walks which do not cover all arrows of the polygon. Our critical quivers
correspond to configurations where we have a cyclic secant walk covering all arrows (and secants);
we call these closed configurations. The number of labelled configurations of this type can be
determined by using a formula due to Harer and Zagier [13], for which a combinatorial proof
was given by Goulden and Nica [12]. We now explain the connection between our configurations
and the situation in [12]; first we introduce the notation from [12] and state the formula.

In the symmetric group S2n, let Pn denote the conjugacy class of involutions without fixed
points. We denote by γ = (1 2 . . . 2n − 1 2n) the cyclic shift permutation in S2n. Then set
An = {µγ | µ ∈ Pn} (here is a slight change in comparison with [12] in that we take the
products with γ instead of with γ−1, but this does not affect the following counts). Now let an,k

be the number of permutations in An with exactly k cycles in the disjoint cycle representation.
Recall that for any n one sets (2n− 1)!! := 1 · 3 · . . . · (2n− 3) · (2n− 1). With these notations
the formula obtained by Harer and Zagier reads as follows (see [12]):

Theorem 4.6. [13] For n ≥ 1,
∑

k≥1

an,kx
k = (2n− 1)!!

∑

k≥1

2k−1

(
n

k − 1

)(
x

k

)
.

From this formula, we may easily derive an explicit formula for an,1:

Corollary 4.7. For n ≥ 1,

an,1 =





(2n− 1)!!
n + 1

if n is even

0 if n is odd
.

Clearly, a secant configuration on a labelled oriented 2n-polygon may equivalently be described
by an involution by walking along the vertices v1, . . . , v2n on the oriented cycle, and then defining
the involution as the product of all transpositions (i j) with vi = vj (i.e., vi and vj are joined
by a secant). This is an involution without fixed points, and hence an element in Pn. But note,
that in our secant configurations we never join two neighbouring vertices, so we only get σ ∈ Pn

with σ(i) 6= i ± 1 (modulo 2n) for all i, and indeed, we obtain all those involutions; we denote
this subset of Pn by P ′

n.
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Computing the product µγ for µ ∈ P ′
n corresponds exactly to taking secant walks in the secant

configuration, i.e., the cycles in this product correspond to the cyclic secant walks in the 2n-
polygon. In particular, the configuration corresponding to µ is closed exactly if µγ is a 2n-cycle
in S2n. Now note that if σ ∈ Pn with σ(i) = i+1 for some i, then i is a fixed point of σγ; hence
σ does not give a contribution to an,1. This shows that an,1 is the number of permutations in
A′n = {µγ | µ ∈ P ′

n} which are 2n-cycles. By the previous discussion, we have thus shown that
an,1 is also the number of closed secant configurations on the labelled oriented 2n-polygon, and
hence this is the number of critical quivers at the beginning of this section.

Motivated by the quiver situation, we are even more interested in counting unlabelled con-
figurations as above (or equivalently, counting the configurations on a regular 2n-polygon up to
dihedral symmetry). Even without the restriction on counting only closed secant configurations
this is a difficult problem, see [19] where the values up to n = 8 were computed; with somewhat
improved methods and today’s computers one can easily extend this list but a closed formula
still does not seem to be known.
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[18] J. Schröer, A. Zimmermann, Stable endomorphism rings of modules over special biserial algebras, Math. Z.

244 (2003), 515-530.
[19] D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Comb. Theory (B) 19 (1975) 1-4.
[20] D. Vossieck, The algebras with discrete derived category, J. Algebra 243 (2001), 168-176.

C. Bessenrodt
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover,
Welfengarten 1, D-30167 Hannover, Germany

E-mail address: bessen@math.uni-hannover.de



WEIGHTED LOCALLY GENTLE QUIVERS AND CARTAN MATRICES 21

T. Holm
Otto-von-Guericke-Universität Magdeburg, Institut für Algebra und Geometrie, Universitätsplatz
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