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Abstract

Using generating functions a very simple explicit formula for the

determinants of the p-Cartan matrices of symmetric groups is given.

Our method works also when p is a composite number.

1 Introduction

In general, by a theorem of R. Brauer ([4], Theorem IV.3.11), the elementary
divisors of the p-Cartan matrix of a finite group G, p a prime, are known to
be the orders of the p-defect groups of the p-regular conjugacy classes of G.
In case of the symmetric group Sn explicit calculations were made in [7].
These included formulae for the multiplicity of any given power of p as an
elementary divisor in the p-Cartan matrix of Sn and in the Cartan matrix of
any p-block of Sn. From this information it should in principle be possible
to compute the determinants of these Cartan matrices, but the calculations
for specific blocks appear to be rather complicated.

In this paper we show that these determinants may be computed by very
simple formulae using generating functions, see Theorems 3.3 and 3.4. A
special rôle is played by the generating function T (q) =

∑

n≥1 t(n)qn, where
t(n) is defined as the number of divisors of the integer n.

Our calculations work also when p is composite. As explained in Section 3
this may have applications for a recently developed e-modular theory for
symmetric groups.
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2 The total length function

In this section we prove some results on the sums of the lengths of partitions
and this is applied in Section 3 to Cartan matrices.

As is easily seen the generating function T (q) for the number of divisors
of n may be expressed as follows:

T (q) =
∑

i≥1

(qi + q2i + ...) =
∑

i≥1

qi

1 − qi
(1).

We let p(n) denote the number of partitions λ ⊢ n of the integer n and
P (q) =

∑

n≥0 p(n)qn the corresponding generating function. When λ is a
partition of n then l(λ) is the length (number of parts) of λ. We consider
the integers l(n) =

∑

λ⊢n l(λ), the total length for n. Using the conjugacy
map on partitions (see e.g. [1], [5]), l(n) is also the sum of the first parts of
all λ ⊢ n.

It is convenient to use the exponential notation for partitions. Write
λ = (1a1(λ), 2a2(λ), ...), where ai(λ) is the multiplicity of i as a part in the
partition λ. Thus l(λ) =

∑

i≥1 ai(λ). The following result is known (see [9]),
but we include a proof, as we need to generalize it.

Proposition 2.1 Let L(q) =
∑

n≥0

l(n)qn be the generating function for l(n).

Then

L(q) = P (q)T (q) .

Proof. Using the well-known formula P (q) =
∏

i≥1
1

1−qi we see that

P (q)(1− qi) is the generating function for the number of partitions of n with
no part equal to i, and thus P (q)(1 − qi)qia counts the number of partitions
with ai(λ) = a. Thus the generating function for the numbers

∑

λ⊢n ai(λ)
may be expressed as

P (q)(1 − qi)
∑

a≥1

aqia = P (q)(qi + q2i + ...) = P (q)qi/(1 − qi) .

Therefore from (1) we obtain L(q) =
∑

i≥1

P (q)qi/(1 − qi) = P (q)T (q), as de-

sired. ✷

Let e ∈ N, e ≥ 2. We may divide the divisors of an integer n into
two disjoint sets according to whether e divides the divisor or not. For the
generating function T (q) this has as a consequence

T (q) = T (qe) + Te(q) (2),
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where Te(q) is the generating function for the number of divisors of n, which
are not divisible by e. By iterating this, we obtain

T (q) =
∑

j≥0

Te(q
ej

) (3).

Clearly

Te(q) =
∑

e∤i

qi

1 − qi
(4).

A partition λ of n is called e-class regular if ai(λ) = 0, whenever e|i. In
that case we write λ ⊢e n. When p is a prime, the p-class regular parti-
tions of n give the cycle types of the conjugacy classes of p-regular elements
in Sn. The generating function Pe(q) for the number pe(n) of e-class regular
partitions of n is (see [5])

Pe(q) = P (q)/P (qe) (5).

We refine the definition of l(n) above to le(n) =
∑

λ⊢en

l(λ). Then we have

Proposition 2.2 Let Le(q) =
∑

n≥0

le(n)qn be the generating function for le(n).

Then

Le(q) = Pe(q)Te(q) .

Proof. We modify the proof of Proposition 2.1 to see that for an integer i
the generating function for the numbers

∑

λ⊢en

ai(λ) is Pe(q)q
i/(1 − qi) if e ∤ i

and is 0 otherwise. Then the result follows from (4) above. ✷

Combining the propositions above with (2) and (5) we may deduce the
following interesting identity.

Corollary 2.3 For all e ∈ N, e ≥ 2 we have

L(q) = Pe(q)L(qe) + P (qe)Le(q) .

3 Cartan matrices

We keep the notations of the previous section.
The structure of centralizers of elements in Sn is well-known. Let the

element x be contained in a conjugacy class labelled by the partition λ ⊢ n.
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Thus x contains ai(λ) disjoint cycles of length i for each i and the centralizer
CSn

(x) is factored as a direct product of wreath products Zi ≀ Sai(λ).
Let p be a prime. When λ ⊢p n is p-class regular, i.e., ai(λ) = 0 whenever

p | i, then the p-defect group of the conjugacy class labelled by λ is isomor-
phic to the p-Sylow subgroup of the direct product

∏

Sai(λ). The p-Sylow
subgroup of the symmetric group Sa has order pdp(a), where

dp(a) =
∑

j≥1

[

a

pj

]

.

Here [...] signifies “integral part of”. Thus the p-defect of the class of λ is
given by

dp(λ) =
∑

i,j≥1

[

ai(λ)

pj

]

(6).

Then by a result of Brauer, the determinant of the p-Cartan matrix Cp(n)
of Sn is pcp(n), where

cp(n) =
∑

λ⊢pn

dp(λ) (7).

The formula (6) makes sense also when p is not a prime. For e ∈ N,
e ≥ 2, and λ e-class regular we define the e-defect of λ by the formula

de(λ) =
∑

i,j≥1

[

ai(λ)

ej

]

(8).

As shown by the work [3], [6] it may be reasonable to consider an e-modular
theory for characters of symmetric groups. A better understanding of this
may contribute to the positive solution of a conjecture of Mathas (for further
details on this see [3]). Also the theory provides a nice application of the
theory of π-blocks. Mathas’ conjecture about the Cartan matrices for Hecke
algebras of type A at an e-th root of unity is settled affirmatively if it can
be proved that the determinant of a suitably defined e-Cartan matrix Ce(n)
of Sn is a power of e. This Cartan matrix is in the non-prime case not
unique. Choose a Z-basis (a “basic set”) for the Z-space of the restrictions
of generalized characters of Sn to the e-regular classes. The matrix De(n)
of coefficients expressing the restrictions of the irreducible characters of Sn

to the e-regular classes as linear combinations of the characters in the basic
set is considered as an e-analogue of the decomposition matrix and then as
usual Ce(n) = De(n)tDe(n) is an e-analogue of the Cartan matrix. We may
make the conjecture even more explicit:
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Conjecture. In analogy with (7) above, the determinant of Ce(n) equals ece(n),
where

ce(n) =
∑

λ⊢en

de(λ) (9).

It should be remarked that when e = p is a prime, then the elementary
divisors of Cp(n) are exactly the pdp(λ)’s but this is false in general.

We proceed to compute the generating function Ce(q) for the ce(n)’s. In
the case of a prime this gives a very simple formula for the determinant of
the p-Cartan matrix in terms of the numbers of p-regular partitions of the
non-negative integers n − pv, v ≥ 1.

A partition λ ⊢e n is said to be of e-class defect 0, if de(λ) = 0. This is the
case, if and only if ai(λ) ≤ e− 1 for all i (i.e., λ is also e-regular in the usual
sense). The number of such partitions is denoted d0

e(n). The corresponding
generating function is

D0
e(q) =

P (q)P (qe2

)

P (qe)2
=

Pe(q)

Pe(qe)
(10)

(see e.g. Lemma (2.3) in [7]).

Proposition 3.1 The following relation holds:

ce(n) =
∑

v≥1

(ce(v) + le(v)) d0
e(n − ev) .

Proof. Let λ ⊢e n. Write for each i ≥ 1 ai(λ) = mi(λ)e + ri(λ), where
0 ≤ ri(λ) ≤ e − 1. Let µ = (imi(λ)) and ρ = (iri(λ)). Clearly µ is e-class
regular and ρ is of e-class defect 0. Moreover |µ|e+ |ρ| = n and λ is uniquely
determined by µ and ρ. Now since ai(µ) = mi(λ) for all i we have

de(λ) =
∑

i,j≥1

[

ai(λ)

ej

]

=
∑

i,j≥1

[

mi(λ)e

ej

]

=
∑

i,j≥1

[

ai(µ)

ej

]

+
∑

i≥1

ai(µ) = de(µ)+l(µ),

which is independent of ρ. Thus sorting the partitions λ ⊢e n according to
the size v of µ we obtain

ce(n) =
∑

λ⊢en

de(λ) =
∑

v≥1

(

∑

µ⊢ev

(de(µ) + l(µ))
)

d0
e(n − ev)

=
∑

v≥1

(ce(v) + le(v)) d0
e(n − ev) ,

as desired. ✷

In terms of generating functions, Proposition 3.1 may be formulated as
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Corollary 3.2 Let Ce(q) =
∑

n≥0

ce(n)qn be the generating function for ce(n).

Then

Ce(q) = (Ce(q
e) + Le(q

e)) D0
e(q) .

We may now prove the first main result.

Theorem 3.3 We have

Ce(q) = Pe(q)T (qe) .

Proof. Define C∗
e (q) = Ce(q)/Pe(q). We need to show C∗

e (q) = T (qe). By
Corollary 3.2 and (10) we have

Ce(q) = (Ce(q
e) + Le(q

e))D0
e(q) = (Ce(q

e) + Le(q
e)) Pe(q)/Pe(q

e) .

Then Proposition 2.2 implies

C∗
e (q) = C∗

e (q
e) + Te(q

e) .

Iterating this and using (3) we obtain

C∗
e (q) =

∑

j≥1

Te(q
ej

) = T (qe) . ✷

Example. The 3-Cartan matrix of S12 is a square 36 × 36-matrix with
elementary divisors 243, 81, 27, 96, 313, 114, where the exponents are the mul-
tiplicities. Thus the determinant is 337. By Theorem 3.3 the exponent 37 may
be calculated as c3(12) = p3(9) · t(1)+ p3(6) · t(2)+ p3(3) · t(3)+ p3(0) · t(4) =
16 · 1 + 7 · 2 + 2 · 2 + 1 · 3.

Next we consider the “block version” of Theorem 3.3. It is well-known
that the p-Cartan matrix of a finite group, p a prime, may be arranged in a
diagonal block form if the characters are arranged according to the p-blocks
of G. In case of the symmetric groups the ordinary irreducible and p-modular
irreducible characters are distributed into p-blocks according to the so-called
“Nakayama Conjecture” (see [5], 6.1.21). Two irreducible characters are in
the same p-block if and only if the partitions labelling them have the same
p-core. Thus each p-block B of Sn has an associated combinatorial invariant
w = wB, called the weight of B ([5], Section 6.2).

In [8] and [7] it was proved that the elementary divisors of the Cartan
matrix CB of a p-block B of Sn depend only on the weight wB. Thus the
same is true for the determinant of CB. In [6] this was generalized to suitably
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defined e-blocks of Sn. In this case two irreducible characters are defined to
be in the same e-block if the partitions labelling them have the same e-core
and the weight of an e-block is defined correspondingly. Then the elementary
divisors and the determinant of the Cartan matrix of an e-block depend only
on the weight w of the block. Thus assuming that the conjecture mentioned
above is true, this determinant should be a power of e, say ece(w). Using
Theorem 3.3 we may compute the generating function for these numbers.
From the above it is clear that the number of e-blocks of weight w in Sn

is equal to the number de(n − ew) of e-core partitions of n − ew, “e-blocks
of defect 0”. It is known (see e.g. [7]) that the generating function for the
numbers de(n) is

De(q) =
P (q)

P (qe)e
(11).

Theorem 3.4 Let Ce(q) be the generating function for ce(n). Then

Ce(q) = P (q)e−1T (q) .

Proof. We decompose ce(n) according to the e-blocks. Since there are
de(n − we) e-blocks of weight w in Sn, we see that

ce(n) =
∑

w≥0

ce(w) de(n − ew) .

For the generating functions we then obtain using (11) that

Ce(q) = Ce(q
e)De(q) = P (q)

Ce(q
e)

P (qe)e
.

On the other hand Theorem 3.3 and (5) imply

Ce(q) = Pe(q)T (qe) = P (q)
T (qe)

P (qe)
.

Thus
Ce(q

e)

P (qe)e
=

T (qe)

P (qe)
.

Replacing qe by q, the theorem now follows. ✷

Remarks. (a) The coefficient k(e− 1, w) of qw in P (q)e−1 is in fact the size
of the Cartan matrix of an e-block of weight w.
(b) For e = 2, we obtain for the generating function C2(q) the very simple
formula

C2(q) = P (q)T (q) = L(q) .
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Example. The Cartan matrix of the principal 3-block of S12 (weight 4)
is a square 20 × 20-matrix with elementary divisors 243, 81, 27, 94, 37, 16,
where the exponents are the multiplicities. Thus the determinant is 327.
By Theorem 3.4 the exponent 27 may be calculated as c3(4) = k(2, 3) · t(1)+
k(2, 2) · t(2) + k(2, 1) · t(3) + k(2, 0) · t(4) = 10 · 1 + 5 · 2 + 2 · 2 + 1 · 3.

Report on recent developments. After this paper was submitted for
publication there have been significant developments, which we briefly de-
scribe here. Brundan and Kleshchev have published a paper [2] where the
conjecture of Mathas mentioned above is proved. Indeed, let Hn be the
Iwahori-Hecke algebra associated to Sn at a primitive e-th root of unity.
Then the determinant of the Cartan matrix of a block of e-weight w of Hn

is ece(w). It is shown in [3] that an e-analogue Ce(n) of the Cartan matrix
for Sn has the same determinant as the Cartan matrix of Hn. As described
in Section 6 of [6] this implies that the conjecture mentioned above is true.

Thus for an arbitrary e ≥ 2 we have det(Ce(n)) = ece(n). Correspondingly it
is also true that the determinant of the Cartan matrix of an e-block of weight
w in Sn is ece(w).
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