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Abstract. We determine the elementary divisors of the
Cartan matrices of spin p-blocks of the covering groups of
the symmetric groups when p is an odd prime. As a conse-
quence, we also compute the determinants of these Cartan
matrices, and in particular we confirm a conjecture by Brun-
dan and Kleshchev that these determinants depend only on
the weight but not on the sign of the block.

The main purpose of this paper is to determine the elementary di-
visors of the Cartan matrices of spin blocks in odd characteristic p of
the covering groups Ŝn of the symmetric groups. It is known that the
invariant factors of the Cartan matrix of a p-block B of a finite group
G are in fact the orders of the defect groups of certain p-regular conju-
gacy classes which are associated to B in a so-called “block splitting”
of the conjugacy classes of G. These defect groups are referred to as
“lower defect groups” for B and thus it is possible to compute the el-
ementary divisors of the Cartan matrix of B by determining the lower

defect group multiplicities m
(1)
B (Q) for p-subgroups Q of G ([4], [12]).

We use this method in the present paper.
The corresponding question for the symmetric groups was studied

in [13]. The computations there were eased by the simplicity of the

subpair structure in Sn. In Ŝn the situation is considerably more com-
plicated [7]. Thus for our work here we also need extensions of the
existing general results. In particular section 2 below may be relevant
outside the concrete questions about Ŝn at hand.
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The paper is organized as follows. In sections 1 and 2 a general class
of groups is studied which includes the covering groups of symmet-
ric and alternating groups and their p-local subgroups. Here the new
Proposition 2.3 is of particular importance. It is applied in section 3
where we study spin blocks and doubling classes in Ŝn. As in [13] the
multiplicity of 1 as a lower defect group plays a key rôle, as it is always
a factor of the general multiplicities. The purpose of section 4 is then
to compute this multiplicity of 1 in terms of the weight and sign of a
spin block. It turns out that only the multiplicity of 1 is dependent on
the sign of the block. The multiplicities of non-trivial p-subgroups are
sign independent. As a consequence we are able to confirm a conjec-
ture by Brundan and Kleshchev [6], p. 434, that the determinant of the
Cartan matrix of a spin block is also independent of the sign (type) of
the block. In the final section a number of generating functions are de-
termined, from which the multiplicities of lower defect groups for spin
blocks and the determinants of the Cartan matrices may be computed
explicitly.

1. Spin characters and doubling classes

We want to describe the lower defect group multiplicities in Ŝn. Since
some of these are locally determined we need to consider a more general
situation, along the lines of [8].

We consider the class G of finite groups Ĝ with a central subgroup
Z = 〈z〉 of order 2 and a “sign” homomorphism s : Ĝ → {+1,−1}

with s(z) = 1. Let G denote the quotient group Ĝ/Z, and let π = πG

be the canonical epimorphism from Ĝ to G. We denote the kernel of s
by Ĥ , and set H = Ĥ/Z. Thus |G : H| ≤ 2.

Our main example is of course (Ĝ, G, Ĥ, H) = (Ŝn, Sn, Ân, An).

Let Ĝ ∈ G. For x ∈ G we let x̂ be an element in Ĝ with π(x̂) = x.

We call x doubling if x̂ and x̂z are not conjugate in Ĝ. Whether x ∈ G
is doubling or not is decided in CG(x). Indeed, let ĈG(x) := π(CĜ(x̂)).

Then if CG(x) = ĈG(x), then x is doubling. Otherwise x is not doubling

and |CG(x) : ĈG(x)| = 2. The doubling elements of G form a union
of conjugacy classes. The conjugacy classes of doubling elements are
called doubling classes in G. A conjugacy class in Ĝ is called doubling,
if its image under π is doubling in G.

A spin character of Ĝ is an irreducible character which does not have
z in its kernel. The remaining irreducible characters of Ĝ are called
linear.

Throughout this paper we assume that p is an odd prime integer.
Then each p-block of Ĝ contains only spin characters (a spin block ) or
only linear characters (a linear block ).

For a subgroup X of G ∈ G we let X̂ := π−1(X).
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When Ĝ1, Ĝ2 ∈ G, their twisted (central) product Ĝ1×̂Ĝ2 is defined
as in [8], p. 450. Our main example of this occur in the case where
G1, G2 are subgroups of Sn operating on disjoint sets, i.e., G1 fixes the
points moved by elements of G2 and vice versa. Then G1 and G2 form
a direct product as subgroups of Sn, and for the inverse images under

π we have Ĝ1 × G2 = Ĝ1×̂Ĝ2.
We need that there is a surjective map ⊗̂ associating to a pair of

irreducible spin characters χ1, χ2 of Ĝ1 and Ĝ2 an irreducible spin char-
acter χ1⊗̂χ2 of Ĝ1×̂Ĝ2; see [11, Proposition 1.2] for the properties of

this map. If B1 and B2 are spin blocks of Ĝ1 and Ĝ2 then

B1⊗̂B2 := {χ1⊗̂χ2 | χ1 ∈ B1, χ2 ∈ B2} .

2. Brauer’s block splittings

There are different approaches to the theory of block splittings and
lower defect group multiplicities mB(Q) or more generally the sectional

lower defect group multiplicities m
(σ)
B (Q), where σ is a p-element, Q a

p-subgroup and B a p-block of G. However in this paper we consider
only block splittings of the p-regular conjugacy classes, so σ = 1. The
basic idea is to split the conjugacy classes (or the conjugacy classes in
a p-section determined by a p-element σ) into disjoint sets, one set for
each block, such that certain conditions are fulfilled. (We call this a
block splitting of the conjugacy classes.) When this is done then the
defect groups Q of the conjugacy classes associated to a block B are
exactly the lower defect groups for B and the number of occurrences of

Q is the lower defect group multiplicity mB(Q) or m
(σ)
B (Q). For details

we refer to [4] and [12]. (See also [5].)
To begin with we need some results from [3, Section 5] and [4]. Let

G be a finite group, p a prime. Then k(G) is the number of conjugacy
classes (or the number of ordinary irreducible characters) of G. We
denote by Clp(G) the set of p-regular conjugacy classes of G, and set
ℓ(G) = |Clp(G)|. For a conjugacy class C we take a representative
xC ∈ C. Furthermore, we denote by Bl(G) the set of p-blocks of G.
If B ∈ Bl(G), then ℓ(B) denotes the number of modular irreducible
characters in B, Irr(B) is the set of ordinary irreducible characters in
B and k(B) its cardinality.

Brauer’s results may (in part) be formulated as follows:

Theorem 2.1. There exists a set L(G) of ℓ(G) irreducible characters
of G such that det(χ(xC))χ∈L(G), C∈Clp(G) 6≡ 0 mod ℘.

Furthermore, there exists a disjoint decomposition

(∗) Clp(G) =
⋃

B∈Bl(G)

Cl(B)
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and for each B ∈ Bl(G) a subset L(B) of L(G) ∩ Irr(B), such that for
all B ∈ Bl(G)

(1) |L(B)| = |Cl(B)| = ℓ(B).
(2) det(χ(xC))χ∈L(B), C∈Cl(B) 6≡ 0 mod ℘.

Moreover for each decomposition (∗) satisfying (1) and (2) we have

(3) For all B ∈ Bl(G) the elementary divisors of the Cartan matrix
CB are exactly the orders of the p-defect groups of the conju-
gacy classes in Cl(B). More specifically, if Q is a p-subgroup
of G, then the number of conjugacy classes in Cl(B) with Q
as a defect group is exactly the lower defect group multiplicity

m
(1)
B (Q).

Given L(G) as in the theorem, we define a block splitting of Clp(G)
as a disjoint decomposition (∗) as above, such that for each B ∈ Bl(G)
there exists a subset L(B) of L(G)∩Irr(B) satisfying (1) and (2) of the
theorem. We then know that the defect group orders for the conjugacy
classes in Cl(B) are the elementary divisors of CB, as specified in the
following lemma.

Let Q be a p-subgroup of G. For N = NG(Q), Bl(N, B) is the set

of p-blocks b of N with bG = B. We have mB(1) = m
(1)
B (1), since

the trivial group 1 can only be a defect group for p-regular conjugacy
classes. In the following some general formulas are needed. (See [4,
(7E)] or [12, (6.3)] and [13, Lemma(3.8)]).

Lemma 2.2. Let B be a p-block of a finite group G. Then

(1) ℓ(B) − mB(1) =
∑

Q m
(1)
B (Q),

where Q runs through a set of representatives for the conjugacy
classes of nontrivial p-subgroups of G.

(2) m
(1)
B (Q) =

∑

b m
(1)
b (Q),

where b runs through Bl(NG(Q), B).
(3) The multiplicity of pd as an elementary divisor of the Cartan

matrix of B is
∑

Q m
(1)
B (Q), where Q runs through a set of rep-

resentatives for the conjugacy classes of subgroups of order pd

in G.

We need also the following results for a group Ĝ ∈ G.

Proposition 2.3. Let p be odd and take a set L(Ĝ) of irreducible char-

acters of Ĝ ∈ G as in Theorem 2.1. Let Ll(Ĝ) and Ls(Ĝ) denote

the subsets of linear characters and spin characters in L(Ĝ), respec-

tively. Then Clp(Ĝ) has a splitting Clp(Ĝ) = Cll ∪ Cls such that
det(χ(xC))χ∈Ll(Ĝ), C∈Cll

6≡ 0 mod ℘ and det(χ(xC))χ∈Ls(Ĝ), C∈Cls
6≡

0 mod ℘.
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In any such splitting, Cll contains all non-doubling p-regular classes
of Ĝ and one of each pair of associated doubling p-regular classes in
Ĝ, while Cls contains the other of each pair of associated doubling p-
regular classes.

This splitting can then be refined to a block splitting of the p-regular
conjugacy classes of Ĝ ∈ G. Thus, in such a block splitting each non-
doubling p-regular class is associated to a linear block of Ĝ, and for
each doubling p-regular class in G one of the classes in Ĝ is associated
to a linear block and the other to a spin block of Ĝ. In particular, all
classes associated to spin blocks are doubling.

Proof. As in Brauer’s proof of (5A) in [3] we consider a Laplacian ex-
pansion of the determinant det(χ(xC))χ∈L(G), C∈Clp(G) where we gather
together the terms corresponding to linear and spin characters, respec-
tively; each summand is then a product of a subdeterminant corre-
sponding to the linear characters and a subdeterminant corresponding
to the spin characters in L(Ĝ). Hence there must be a splitting of the
p-regular conjugacy classes into two subsets such that the correspond-
ing subdeterminants both do not vanish mod ℘. As all spin characters
vanish on all non-doubling classes in Ĝ, these classes must all be asso-
ciated to Ll(Ĝ).

Now let C be a doubling p-regular class in G, and C+ and C− the
corresponding classes in Ĝ. By definition, any linear character of Ĝ
has the same value on both classes C+ and C−. Thus, these classes
cannot both be associated to the linear characters, and at least one
of the two classes has to be associated to Ls(Ĝ). Now the number
ℓd(G) of doubling p-regular conjugacy classes in G is the number of

p-modular irreducible spin representations of Ĝ, and this is thus the
maximum number of spin characters which are linearly independent
(mod ℘) on the p-regular classes. Thus the set Ls(Ĝ) must contain
exactly ℓd(G) spin characters, and for each pair of doubling p-regular

conjugacy classes in Ĝ exactly one is associated to the spin characters.
By Brauer’s argument (again expanding the determinant) this split-

ting may then be refined to a block splitting. �

3. Spin blocks and doubling classes in Ŝn

We need some notation for partitions. If λ = (t1, t2, ..., tl) is a parti-
tion of n, we write λ ⊢ n (or |λ| = n), the ti’s are the (non-zero) parts
of λ and the number l of parts in λ is called the length l(λ) of λ. The
sign δ(λ) is defined as (−1)n−l(λ). Partitions with positive (negative)
sign are called positive (negative). We primarily use the “exponential”
notation for partitions λ = (iai(λ)) signifying that λ has ai(λ) parts
equal to i.

The labels of the doubling conjugacy classes of Sn (the doubling
partitions) were described in [16]. They are the partitions in T (n) =
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O(n)∪D−(n), i.e., an arbitrary partition with all parts odd or an odd
partition with distinct parts.

The structure of centralizers of elements in Sn is well-known. Let the
element x be contained in a conjugacy class labelled by the partition
λ ⊢ n. Thus x contains ai(λ) disjoint cycles of length i for each i
and the centralizer CSn

(x) is factored as a direct product of wreath
products Zi ≀ Sai(λ).

We write λ ⊢p n and call the partition p-class regular, if ai(λ) = 0
whenever p | i. Then the p-defect group of the p-regular conjugacy
class labelled by a p-class regular partition λ is isomorphic to the p-
Sylow subgroup of the direct product

∏

Sai(λ). The p-Sylow subgroup

of the symmetric group Sa has order pdp(a), where

dp(a) =
∑

j≥1

[

a

pj

]

.

Here [...] signifies “integral part of”. Thus the p-defect of the class of λ
is given by

dp(λ) =
∑

i,j≥1

[

ai(λ)

pj

]

.

If all parts of λ are distinct, then dp(λ) = 0.

We have that k(Ŝn) − k(Sn) equals the number of doubling classes

of Sn and that l(Ŝn) − l(Sn) equals the number of p-regular doubling
classes of Sn.

The spin characters of Ŝn are labelled by partitions in D(n) (and a
sign). They are

{〈λ〉 | λ ∈ D+(n)} ∪ {〈λ〉± | λ ∈ D−(n)}

Here the characters labelled by partitions in D+ are selfassociate, i.e.,
〈λ〉 = sgn · 〈λ〉, and the other characters are non-selfassociate; they
are related via 〈λ〉+ = sgn · 〈λ〉−. The following (often referred to as
Morris’ conjecture) was proved in [9], [7]:

Proposition 3.1. Let λ, µ ∈ D(n).

(1) A spin character labelled by λ is in a p-block of defect 0 if and
only if λ is a p̄-core.

(2) If λ is not a p̄-core then the characters labelled by λ and µ are
in the same spin block if and only if λ and µ have the same
p̄-core.

This shows that a spin block B has a well-defined core γ(B), the
p̄-core of the partitions labelling the characters in B, and also a well-
defined weight w(B) = (n − |γ(B)|)/p. Based on this we define the
sign δ(B) of B by δ(B) := (−1)w(B)δ(γ(B)). It follows by an easy
calculation that we also have δ(B) = (−1)n−l(γ(B)). Corresponding to
its sign, we call the block a positive or negative spin block. By [15],
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this corresponds to all modular irreducible representations in B being
selfassociate or non-selfassociate, respectively. It should be remarked
that this definition of the sign δ(B) of a spin block is different from the
sign σ(B) of a spin block defined in [13, section 3] and also used in [15]
which was simply δ(γ(B)). This change make our formulas (generating
functions) somewhat simpler. For details we refer to section 5.

In the following the integer t is defined by t = (p − 1)/2. The
partitions λ ∈ D(n) having a given p̄-core γ ⊢ n−wp are distinguished
by their p̄-quotients. They are (t+1)-tuples of partitions (λ0, λ1, · · · , λt)
satisfying that λ0 ∈ D and |λ0|+|λ1|+· · ·+|λt| = w. The corresponding
generating function is D(q)P (q)t = P (q)t+1/P (q2), where P (q) is the
generating function for the number p(n) of partitions of n and D(q) is
the generating function for the number of partitions of n into distinct
parts.

We denote by Dp the set of p-class regular partitions in D. It should
be remarked that λ ∈ Dp exactly when the first partition λ0 in the
p̄-quotient of λ is empty. The corresponding generating function for
the number of partitions λ ∈ Dp(n) having a given p̄-core γ ⊢ n − wp
is then P (q)t =

∑

w≥0 k(t, w)qw.
If 〈λ〉 ∈ B or 〈λ〉pm ∈ B then the signs of λ and B are related by

δ(λ) = (−1)l(λ0)δ(B),

as is easily seen.

Lemma 3.2. Let λ ∈ Dp.

(1) If µ is obtained from λ by removing a p-bar, then µ ∈ Dp and
δ(λ) 6= δ(µ).

(2) Let w = w(λ). Then δ(λ) = (−1)wδ(λ(p̄)).

Proof. (1) As λ ∈ Dp, we may remove a p-bar only in two ways. We
either subtract p from one of the parts, say λj, or we remove two parts
j and p − j, where j ∈ {1, . . . , t}. In the first case, the parity of
λj is changed, in the second case an even part is removed. Thus in
both cases the parity of λ is changed. The assertion in (2) now follows
immediately. �

From the results above we immediately obtain

Corollary 3.3. The spin characters 〈λ〉, λ ∈ D+
p , are in positive spin

blocks, and the spin characters 〈λ〉±, λ ∈ D−
p , are in negative spin

blocks.

Proposition 3.4. (1) Assume we are given a block splitting for the

p-regular conjugacy classes of Ŝn as in Proposition 2.3. Let B
be a spin block, and let Cλ be a conjugacy class of type λ ∈ D−

p

associated to B. Then B is a negative spin block.
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(2) The number of D−
p -classes associated to a negative spin block of

weight w > 0 is k(t, w).

Proof. (1) There are only two spin characters which are non-zero on Cλ,
namely 〈λ〉±, hence one of these must be in B. Hence B is a negative
spin block. (2) follows then from the remarks on p̄-quotients above. �

Remark 3.5. In the case of two associate negative spin blocks of weight
w = 0, the corresponding D−

p -class is associated to one of the blocks,
while an Op-class is associated to the other, where Op denotes the p-
class regular partitions in O.

4. A reduction theorem for the multiplicity of 1

In this section we study the multiplicity of 1 (the trivial p-subgroup)

as a lower defect group in a spin block of Ŝn. As mentioned earlier,
only p-regular conjugacy classes can have 1 as a defect group, so for

any p-block B we have mB(1) = m
(1)
B (1). In order to compute mB(1)

for a spin block we need to use Lemma 2.2. Our goal is to show that
for a spin block B, ℓ(B)−mB(1) depends only on the weight of B. By
Lemma 2.2 (1) it suffices to show that for any p-subgroup Q 6= 1 the

multiplicity m
(1)
B (Q) depends only on the weight of B. We are thus led

to study N̂ , where N = NSn
(Q).

Whenever Q is a p-subgroup of Sn then the weight w(Q) of Q is
defined as the integer v such that Q fixes exactly n − vp points in
{1, 2, .., n}. Thus the elements of Q move a total of vp points. It is not
difficult to see the following:

Lemma 4.1. Let λ ∈ Op. The weight of the defect group of the conju-
gacy class labelled by λ is

∑

i≥1

i

[

ai(λ)

p

]

.

Lemma 4.2. Let Q be a nontrivial p-subgroup of Sn of weight v. We
may also consider Q as a p-subgroup of Ŝn (via the map π). Let N =
NSn

(Q). We consider Q as a subgroup of Svp and then N = N0 × N1,

where N0 = NSvp
(Q) and N1 = Sn−vp. We have that N̂ = N̂0×̂N̂1. The

group N̂0 has only one spin block b̂0.

Proof. It is clear that N has a direct factorization as stated. Since N0

and N1 operate on disjoint sets, we get that N̂ is as stated. Analogous
to [13], Proposition (1.2) we get that N̂0 has a unique spin block b̂0. �

Using Cabanes’ description of the subpairs for Ŝn [7, Theorem A],
we have
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Lemma 4.3. Let B be a spin block of weight w and let Q and N̂ be
as in the previous lemma. Let b̂1 be a spin block of Ŝn−vp with the

same core as B. (This spin block is unique unless v = w, where b̂1 has

defect 0.) Then Bl(N̂ , B) contains the unique block b̂ = b̂0⊗̂b̂1.

We need to define a variation of the multiplicity numbers. Let B be
a spin block of weight w. For w > 0 we then define m+

B(1) as mB(1),
if B is positive and as mB(1)− k(t, w(B)), if B is negative. For w = 0
we define m+

B(1) = 1.

Lemma 4.4. Let the notation be as in Lemma 4.3. We have

m
(1)
B (Q) = m

(1)

b̂
(Q) = m

(1)

b̂0
(Q)m+

b̂1
(1).

Proof. The first equality follows from Lemma 2.2(2) and Lemma 4.3.
We consider only p-regular classes throughout. We consider block split-
tings for N̂0 and N̂1 as in Section 2. The (p-regular) conjugacy classes

associated to b̂0 and b̂1 contain only doubling classes. By [12], Corollary

(3.10) we may restrict ourselves to conjugacy classes of N̂ with Q as a
defect group. They are contained in the inverse images under π of the
conjugacy classes of N with Q as a defect group. These are products of
conjugacy classes of N0 with Q as a defect group and conjugacy classes
of N1 of defect 0. Conjugacy classes of N̂0 with Q as a defect group
are in bijection with the conjugacy classes of Ŝpv with Q as a defect
group. As Q is non-trival, classes in D cannot occur. Thus the conju-
gacy classes of N̂0 in question are doubling, contain even permutations
and they do not split in the relevant alternating group. To get dou-
bling classes for N̂ the conjugacy classes of N̂1 need to have the same
property (see the proof of [8, Theorem 4.4]). Thus the D−

p -classes of N̂1

do not give a contribution. Note that these are only associated to the
negative blocks (Proposition 3.4) and that in the exceptional case of
two conjugate negative blocks of defect 0, one of the two is associated
to a D−

p -class. Hence by definition of m+

b̂1
(1) we get in any case exactly

m+

b̂1
(1) classes of N̂1 associated to b̂1 giving a contribution. �

Theorem 4.5. Let B be a spin block. Then ℓ(B)−mB(1) and m+
B(1)

depend only on the weight w(B) of B.

Proof. The proof is by induction on the weight w = w(B) of B, the
result being trivially true for w = 0 and also true for w = 1 by Theorem

(9.1) of [12]. We use Lemma 2.2, and thus need to consider m
(1)
B (Q),

where Q is a non-trivial p-subgroup of Ŝn. Assume that w(Q) = v > 0.

Let N̂ = NŜn
(Q). By the previous three lemmas N̂ is a twisted central

product N̂ = N̂0×̂N̂1, where N0 = NSvp
(Q) and N1 = S(n − vp).
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Moreover N̂0 has only one spin block b̂0. If b̂1 is the spin block of Ŝn−pv

with the same core as B, then m
(1)

B̂
(Q) = m

(1)

b̂0
(Q)m+

b̂1
(1). Now m

(1)

b̂0
(Q)

equals the number αQ(v) of doubling p-regular conjugacy classes of Ŝvp

with Q as a defect group. By Lemma 2.2 (2) we get now

ℓ(B) − mB(1) =
∑

v>0

α(v)m+

b̂1
(1),

where α(v) is the number of doubling p-regular conjugacy classes of

Svp with defect groups of weight v. Since v > 0 and b̂1 has weight

w − v we get that m+

b̂1
(1) is independent of the sign of b̂1 and thus

x(B) := ℓ(B) − mB(1) depends only on w. In both cases (B positive
or negative) m+

B(1) = k(t, w) − x(B). Thus also m+
B(1) depends only

on the weight. �

We have now seen that the multiplicity m+
B(1) for a spin block B

depends only on w = w(B). We denote this multiplicity simply by
m+(w). Thus the formula of Lemma 4.4 now reads

(1) m
(1)
B (Q) = αQ(w(Q))m+(w(B) − w(Q)).

Remark. Formula (1) may be generalized to arbitrary sectional mul-

tiplicities m
(σ)
B (Q), σ a p-element not necessarily 1, as follows:

m
(σ)
B (Q) = α

(σ)
Q (w(Q))m+(w(B) − w(Q)),

where α
(σ)
Q (w(Q)) is the number of doubling conjugacy classes in the

p-section determined by σ (inside Ŝpw(Q)) with Q as a defect group.

As a consequence of formula (1) we get one of our main results,
confirming in particular a conjecture made by Brundan and Kleshchev
in [6] that the determinants of the spin Cartan matrices only depend
on the weight.

Theorem 4.6. The Cartan matrices for spin blocks of the same weight
have the same elementary divisors 6= 1. In particular the determinant
of the Cartan matrix CB of a spin block B depends only on the weight
w = w(B).

Proof. In case w = 0 we have blocks of defect 0 and there is nothing
to prove. Let B be a spin block of weight w > 0 of Ŝn. By Lemma 2.2
(3) the multiplicity of pd as an elementary divisor in the Cartan matrix

CB of B equals
∑

{Q | |Q|=pd} m
(1)
B (Q). Moreover, if Q is a p-subgroup of

positive weight v ≤ w then by Theorem 4.5 m
(1)
B (Q) = m̂(Q)m+(w−v),

where m̂(Q) is the number of doubling p-regular conjugacy classes of

Ŝpv with Q as a defect group. If v > w, the multiplicity m
(1)
B (Q) is 0.

Thus all multiplicities of elementary divisors 6= 1 in B are independent
of the core and sign of B, proving the theorem. �
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It should be remarked that an explicit formula for the determinant
of CB may be obtained using Theorem 5.6 below; this provides an
alternative proof for the formula given in [6].

5. Explicit formulas for multiplicities and determinants

In this section we compute a number of generating functions along
the lines of [13] and [2], from which the (regular) multiplicities of lower
defect groups for spin blocks may be computed and also the elementary
divisors and the determinant of their Cartan matrices. This is possible
because, as we have seen, these numbers only depend on the weight
and the sign of the spin block.

We start with the generating functions Kδ(q), Lδ(q) and M δ(q) for
(respectively) the number of ordinary irreducible characters, the num-
ber of modular irreducible characters and the multiplicity of 1 as an
elementary divisor of the Cartan matrix for a spin block of weight w
and sign δ. The two former were computed in [14] and [15], but are
included here for completeness and because the definition of the sign
of a spin block is different here.

As before P (q) is the generating function for the number of partitions
and t = (p − 1)/2.

Proposition 5.1. Let B be a spin block of Ŝn of weight w and sign δ.
Then the numbers k(B) and ℓ(B) of ordinary and modular spin charac-
ters in B depend only on w and δ. If we denote k(B) = kδ(p̄, w), ℓ(B) =
ℓδ(p̄, w) then the corresponding generating functions are

Kδ(q) =
1

2
P (q)t−1

(

3
P (q)2

P (q2)
− δ

)

L+(q) = P (q)t, L−(q) = 2P (q)t.

In particular,
K−(q) − K+(q) = P (q)t−1

and
L−(q) − L+(q) = P (q)t .

In view of the results of Section 4 we have also for the multiplicities
of 1 as an elementary divisor that

(2) M−(q) − M+(q) = P (q)t

in analogy with the last part of the above proposition. Also M+(q) =
∑

w≥0 m+(w)qw, where m+(w) is as defined in Section 4. We proceed

to compute a formula for M+(q). First we note a simple consequence
of Lemma 4.1

Lemma 5.2. Let v ≥ 1. The number α(v) of p-regular doubling classes

of Ŝpv with a defect group of weight v equals |Op(v)|.
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The generating function for |Op(w)| is easily seen to be

Op(q) =
P (q)P (q2p)

P (q2)P (qp)
.

We can now show:

Theorem 5.3. The generating function M+(q) for the multiplicity of
1 as an elementary divisor in positive spin blocks is

M+(q) =
P (q)t

Op(q)
=

P (q)t−1P (q2)P (qp)

P (q2p)
.

The corresponding generating function M−(q) for negative spin blocks
is given by

M−(q) = M+(q) + P (q)t.

Proof. Set α(0) = 1. Proposition 5.1 and the proof of Proposition 4.5
show that if B is a positive spin block of weight w then

ℓ(B) = k(t, w) =
∑

v≥0

α(v)m+(w − v).

For the generating functions this means

P (q)t = Op(q)M
+(q),

proving the first statement. Then apply equation (2) to get the second
statement. �

Recall that for a p-class regular partition λ its p-defect is given by

dp(λ) =
∑

i,j≥1

[

ai(λ)

pj

]

.

We put ep(λ) = dp(λ) + l(λ).
Let λ ∈ Op(n). Write for each i ≥ 1 ai(λ) = mi(λ)p + ri(λ),

where 0 ≤ ri(λ) ≤ p − 1. Notice that mi(λ) =
[

ai(λ)
p

]

. Let µ =

(1m1(λ)3m3(λ) . . .) and ρ = (1r1(λ)3r3(λ) . . .). Clearly µ, ρ ∈ Op and ρ is
of defect 0. Moreover |µ|p + |ρ| = n and λ is uniquely determined by
µ and ρ. Now since ai(µ) = mi(λ) for all i we have

dp(λ) =
∑

i,j≥1

[

ai(λ)

pj

]

=
∑

i,j≥1

[

mi(λ)p

pj

]

=
∑

i,j≥1

[

ai(µ)

pj

]

+
∑

i≥1

ai(µ) = dp(µ) + l(µ) = ep(µ) ,

which is independent of ρ.
For the defect groups we have that if µ∗ is defined by ai(µ

∗) =

pai(µ) = p
[

ai(λ)
p

]

then the conjugacy classes labelled by λ ∈ Op(n)

and µ∗ ∈ Op(p|µ|) have isomorphic defect groups of weight |µ|.
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For i ≥ 1 let

fi(v) = |{µ ∈ Op(v)|ep(µ) = i}|.

Then we can show

Theorem 5.4. Let i ≥ 1. The multiplicity of pi as an elementary
divisor of the Cartan matrix CB of a spin block B of weight w ≥ 1 is
ri(w) =

∑

v≥1 fi(v)m+(w − v).

Proof. By Lemma 4.4 and Theorem 4.5 we have for a p-subgroup Q

of Sn of weight v that m
(1)
B (Q) = f(Q)m+(w − v), where f(Q) is the

number of doubling classes of Ŝpv with Q as defect group. Thus by
Lemma 2.2 (3) we get that ri(w) =

∑

|Q|=pi f(Q)m+(w−w(Q)) (where
the sum is over a set of representatives of the conjugacy classes of
subgroups with the given property). Thus we need to show for v ≥ 1
that

∑

{Q|w(Q)=v,|Q|=pi} f(Q) = fi(v).

But this is an immediate consequence of the discussion preceding this
result. �

Put sp(n) =
∑

λ∈Op(n) dp(λ). Then by Theorem 2.1 the determinant

of the spin Cartan matrix of Ŝn is psp(n). In addition let up(n) =
∑

λ∈Op(n) l(λ) and let zp(n) be the number of partitions in Op(n) of

defect 0.
If we sort the partitions λ ∈ Op(n) according to the size v of µ (as

above) we obtain

sp(n) =
∑

λ∈Op(n)

dp(λ) =
∑

v≥1

(

∑

µ∈Op(v)

ep(µ)

)

zp(n − pv)

=
∑

v≥1

(

sp(v) + up(v)
)

zp(n − pv) .

For the corresponding generating functions Sp(q), Up(q), Zp(q) this
means

(3) Sp(q) = (Sp(q
p) + Up(q

p))Zp(q).

It is fairly straightforward to find expressions for Zp(q) and Up(q),
along the lines of [2]. Indeed

(4) Zp(q) =
Op(q)

Op(qp)
=

P (q)P (q2p)2P (qp2

)

P (qp)2P (q2p2)P (q2)
.
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The generating function T (q) for the number t(n) of divisors of n
may be expressed as follows:

T (q) =
∑

i≥1

(qi + q2i + ...) =
∑

i≥1

qi

1 − qi
.

Let T2(q) = T (q)−T (q2), the generating function for the number of odd
divisors of n, and set T ∗

p (q) = T2(q) − T2(q
p), the generating function

for the number t∗p(n) of odd divisors of n prime to p. Arguing as in [2,
Proposition 2.2] we obtain

(5) Up(q) = Op(q)T
∗
p (q).

We can now prove

Theorem 5.5. The generating function for the exponent sp(n) of the

determinant of the spin Cartan matrix of Ŝn is

Sp(q) = Op(q)T2(q
p) .

Proof. Define So
p(q) = Sp(q)/Op(q). To prove the theorem we need to

show So
p(q) = T2(q

p).
We divide the equation (3) by Op(q) and apply equations (4) and (5)

to get

So
p(q) =

Sp(q
p) + Up(q

p)

Op(qp)
= So

p(q
p) + T ∗

p (qp) .

Iterating this we obtain

So
p(q) =

∑

j≥1

T ∗
p (qpj

) = T2(q
p) ,

proving the proposition. �

In view of Theorem 4.6 we may now easily prove:

Theorem 5.6. The generating function for the exponent cp(w) of the

determinant of the Cartan matrix of a spin block of weight w in Ŝn is

Cp(q) = P (q)tT2(q) .

Proof. If rp(n) is the number of p̄-cores of n, then by Proposition 3.1

there are for w ≥ 1 exactly rp(n − pw) spin blocks of Ŝn of weight w.
Note that spin blocks of weight w = 0 also have defect 0 and thus have
a Cartan matrix determinant p0 = 1. Thus for the exponents of Cartan
matrix determinants we obtain

sp(n) =
∑

w≥1

cp(w)rp(n − pw)

or for the corresponding generating functions

(6) Sp(q) = Cp(q
p)Rp(q).
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As noticed before, the arithmetic of the p-bar abacus implies that
the generating function Rp(q) satisfies

Rp(q)P (qp)t = Dp(q) ,

where Dp(q) is the generating function for the number of p-class regular
partitions in Dp. As |Dp(n)| = |Op(n)| for all n, we thus have

Rp(q) =
Op(q)

P (qp)t
.

The assertion now follows easily from equation (6) and Theorem 5.5.
�

Note that since T2(q) = T (q)−T (q2), the formula above agrees with
the generating function computed by Brundan and Kleshchev in [6] (in
their article, this was only obtained for positive spin blocks).
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