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1 Introduction

The Mullineux map is an involutory bijection on the set of p-regular partitions of any
given integer n, where a partition is called p-regular if no part of it is repeated p or more
times. Many combinatorial properties of the Mullineux map make it reasonable to view
this map as a p-analogue of the transposition map T on the set of all partitions.

Based on the work of Kleshchev [7], it has been shown [2, 5, 14] that the Mullineux
map M has the following property:

If )\ is a p-regular partition of n and D? is the p-modular representation of the sym-
metric group S, labelled by A (see [6]) then

D* ® sgn = DM

where sgn is the sign representation of S;,,. Thus, also from a representation theoretic point
of view the Mullineux map is a p-analogue of the transposition map 7. The Mullineux
map plays a vital role not only in the representation theory of symmetric groups but also in
other contexts. The definition of M as given in [9] is quite complicated and to study various
questions involving this map it is desirable to have other descriptions. One alternative
inductive description of M using the concept of good bozes in a p-regular partition was
given by Kleshchev [7] and this was used by Walker to prove a result which is contained
in Theorem 4.5 below; this work was motivated by the investigation of Schur modules.
In this paper we study a third description of M based on the operator J on the set of
p-regular partitions defined in [13].

In sections 2 and 3 we study operators on the set of all partitions (section 2) and
the set of p-regular partitions (section 3) and the formal relations between them. The
wellknown or elementary results of section 2 serve to put the right perspective on the
operators in “characteristic p” presented in section 3. It is shown there that the operator



J has properties which make it a reasonable p-analogue of the operator “first row removal”.
Successive applications of the operator J give rise to an operator X on p-regular partitions
which satisfies M = XT'. It is thus clear that the operator J is a useful tool for studying
the relations between M and T'; section 4 is concerned with this. We give a combinatorial
proof of the fact that for a p-regular partition A\ we have AM = X" if and only if X is
a p-core. The main result then is the classification of the p-regular partitions for which
the Mullineux map is transposition followed by regularization; the previously mentioned
result of Walker is a consequence of this, and as indicated before it has consequences for
Schur modules.

2 Operators on partitions
For n € IN and p € IN, p > 1, we define

P(n) as the set of partitions of n

and we set

When A € P we let AT be the conjugate (transpose) partition.
The partition X is called p- (row)-regular if no part is repeated p or more times and is called
p-column-regular if AT is p-row-regular.

We define
Rp(n) as the set of p-regular (i.e. p-row-regular) partitions of n,
Cp(n) as the set of p-column-regular partitions of n
and we set
Rp = U Rp(n)a
n>0
Cp = U Cp(n).
n>0

Thus T' induces a bijection between R, and C,.
We are going to study some operators on the sets of partitions defined above. The
results on these operators in this section are rather obvious; their main purpose is to pre-

pare the p-generalizations that we are going to study in later sections.

A partition A = (Aq, Ag, ..., Ag) is visualized by a Young diagram with k rows of boxes
and \; boxes in the i’th row.

Example. The partition A = (5,2,2,1) has the Young diagram



The j’th box in the 7’th row is called the (7, j)-box. We say that (i,7) € A if 1 <i <k
and 1 <j < \;. A box (i,7) € Xis called a rim boz if (i + 1,7 + 1) ¢ A. The rim of X is
the set of rim boxes. If we remove the rim of A we get a new partition denoted \¥.

Example. We take again the partition A = (5,2,2,1). Then the boxes marked by e
correspond to the rim boxes of A:

TTTs]
A °

We have two other operations on P,

R: first row removal: A% = (Xg,..., \p)
C': first column removal: A¢ = (A —1,..., )\, — 1)
(where parts = 0 are omitted)

Example. For A = (5,2,2,1) we have A\® = (2,2,1) and \® = (4,1,1).

The following lemma on relations between the operators introduced so far is formulated
in order to present some easy facts, some of which become nontrivial in the case of p-regular
partitions.

Lemma 2.1 The following relations hold between the operators T, K, R and C':
(1) RC=CR=K
(2) TCT =R, TRT =C
(2’) TC =RT, TR=CT

Proof. Trivial. ¢

The properties stated above are also reflected in the following commutative diagram
of operators:




To a partition A we may associate a symbol

where a; = |AX""| — [A\K'| and r; is the number of parts of AKX ", In particular ry = k
in the above notation. Phrased differently, a; is the length of the ith diagonal hook in A
and r; is its leg length plus 1; so Gy(A) is closely related to the Frobenius symbol which

records the arm and leg lengths of the diagonal hooks in A.

Example. Marking the boxes of the ith rim by ¢, we have for A = (5,2,2,1):

11111
1
1

o= NN

Hence the associated symbol is

GO(A)=<Z ;)

It is easy to recover A from Go()). Start with the hook (a; — r; + 1,17=1). To this
add a rim of length a;_1 starting at row r;_1 etc.

There is a simple relation between Go()\) and Go(AT).

Lemma 2.2 Let Go(A\) = ( @ azorro ), then
’,"1 r2 PECEY ’r‘t
Go(\T) = <a1 az - at> where s; —a; +1—1; .
S1 S9 [P St

Proof. By definition the a;’s are just the lengths of the diagonal hooks in A and the r;’s
are the leg lengths of the diagonal hooks increased by 1. Thus the lemma follows. ©

a1 ao e ag

Lemma 2.3 LetGo()\)=<T , ,
L ory e 1y

). Then we have

(1) GO()\C):<a'1 a:2 a%)

’r‘i 7’2 e ’r‘é
where
a; = a;—7i+Tit1
o= rigi+1.

!
Here 1411 := 0 and the column ?% 18 omitted when a; = 4.
t



n " n
» o= (5 )
where
aj = i1 —rig1+r
r! = r—1.
"

Here a;11 = riy1 := 0 and the column ’:}f, 1s omitted when ry = 1.
t

Proof. An easy calculation using the fact that the a;’s are diagonal hooklengths. ¢

Example. For A = (5,4,4,2) we have;

3

=N

2
2
1

GO(A):(i X f>,Go(AC):(Z X }>,G0(AR)=<§ ;‘)

3 Operators on p-regular partitions

We now want to prove p-analogues of Lemmas 2.1-2.3, where the map T will be replaced
with the Mullineux map M, K will be replaced by p-rim removal I, C is unchanged and
the first row removal R will be replaced by a new operator J.

The reason that first row removal R is not the right concept for p-regular partitions is
that by restricting to p-regular partitions the symmetry in rows and columns for general
partitions is abandoned. This is reflected in the definition of the p-rim of a p-regular
partition which includes the end box of each row of the partition but not the end box
of each column. On the other hand given the operators M, I and J on R, they may of
course be translated into similar operators on the set C, using the transpose bijection 7.
(The analogue of M on C, would be TMT, etcj

For A € R, the p-rim of X is by definition a part of the rim of A\ defined above. The
p-rim is composed of pieces of the rim of length at most p. Each piece except possibly
the last contains p boxes. The first piece of the p-rim consists of the first p boxes of the
rim starting from above with the largest row (it is the entire rim if the rim contains at
most p boxes). The next piece starts in the row next below the previous piece and so on
until the final row is reached. A maximal skew hook in the p-rim (which corresponds to a
connected component of the p-rim in the Young diagram) is called a p-segment if its length
is a multiple of p, resp. a p'-segment otherwise (in which case this is the final connected
component of the p-rim). Removing the p-rim from A we obtain a new p-regular partition
denoted Al € R,. Then the Mullineux symbol G,(}) is defined by

o= ()

'rl 7"2 “ e 'rt



where a; = ]\ "'| — |A"'| and r; is the number of parts of A"~ Thus r; is the number of
parts of A.

Example. For A\ = (9,22,1), p = 3, we mark the boxes in the ith p-rim in the Young
diagram of A by :

33 2 2 2111

3

2 1 7 4 3
11 G3(>‘)_<4 2 1>
1

So the first 3-rim of X has a 3-segment of length 3 and a 3'-segment of length 4.

Remark. The partition A may easily be recovered from its Mullineux symbol; it is the
unique p-regular partition with this Mullineux symbol.

The Mullineux map M (“Mullineux conjugation”) on R, is defined by an involutory
operation on the Mullineux symbols:

If
_ al a2 PECEY at
then AM is defined as the partition in R, with

Gp()\M)=<a1 az - at)

81 32 .o st

where
0 if a;
Si =i —T; T &, €i={1 if gb(az
7

Example. As before, p = 3, A = (9,22, 1).

ThenGg()\M):<Z ;1 3) , AM = (542 1),

1

3 21
2 21
M,
AT 111

_— N W W

In view of Lemma 2.2 this definition exhibits M as a combinatorial p-analogue of T'.
But of course, as mentioned in the introduction, M also is of importance in the represen-
tation theory of S, in characteristic p.

In [1] the following results were proven:

Lemma 3.1 If G,()\) = ( gz at ) then

7"1 7“2 . /r't

ot e

G0 = ()



where

a; =a;—1i+rig1, rp="rig1 + 0, rep1 =0
5 =10 if pla
(2 - - !

1 if pfa; ’

and the last column ‘;} is omitted if ay = 4.
t

bl b2 bt
S1 S9 SCI: 21
of length s1+0 topu, 0 <0 <p—1, then

Lemma 3.2 If Gp(u) = and A € Ry, is obtained by adding a column

b1 +d+e1 bz—(52—62)+(51—61) bt—(5t+&‘t)+(5t—1—5t—1) St —Et
Gp(A) =
s1+ 0 51— €1 St—1 — €t St — €t
where
__fo iplb
' L ifp fb;

and the last column is omitted when sy = ¢; = 1.

Clearly Lemma 3.1 is a reasonable p-analogue of Lemma 2.3(1). However, although for
A ER, also A (obtained by deleting the largest part of ) is in Rp, there is no analogue
of Lemma 2.3(2) for A, Just think of the example where A € R,, has only one part n, i.e.
A = (n). Then Gp(X) has length at least 5 But AE =

We now proceed to define the operator J introduced in [13], which will turn out to be
a suitable p-analogue of the operator R.
For A € R, we define \” € R, as follows: If A = (A1, Aa,..., A\x) and M = (1, o, - .., k)
(where possibly some of the last entries are 0!) and if the p-rim of A contains a; = [A|— |\
boxes then
A = (1 +1,.. . ppet + L g + )

where
5= { 0 if pfa
11 if play
Example. p =3, A = (7,3,2,1?).
In the following Young diagram of A we have marked boxes in the first 3-rim by bullets;
the boxes removed by J are marked by a circle.

[« [®]@)]

Thus the Young diagram of A\’ is given by



2\

Lemma 3.3 We have for all A € R, that
NE =\
Proof. In the notation used in the definition of J above we have

AJC = (Mh:u?a' .. 7/1197177/)

where
L — g+ 6 —1 if pp+0>0
- 0 if pup+d=0

In the latter case ur + 0 = 0 forces pr = 0 so v = py in this case. If px + 9 > 0 then
d = 1. If this were not the case we would have p; > 0 and p fa;, which contradicts the
definition of p-rim. Thus ur + 0 — 1 = g, whence v = py, in this case too. ©

In general, MCM # R on R,, but comparing the result below with Lemma 2.3(2)
shows that J = MCM is a good p-analogue of R.

eps . _ [ a a2 --- a¢
Proposition 3.4 Let A € R, with G,()\) = ( oy ey >
Then
)\MC’M )\J
and
" " "
MCM J ap G ay
GP(A ) G ()\ )_ ( ,r,lll TIQI ,r,gl >
where

0 i a;
ai = ait1 — (rig1 — Eiy1) + (ri — &), 51':{ /bl ai
ri =ri—Ei, Q1 =1 =0

and the last column is omitted if ry = ;.

Proof. We show that AM“M and A\’ have the same Mullineux symbol. Then they must

be equal. Let Gp(A) = ( Zl j2 Zt ); we first compute G,(AMEM).
LTy Ty
Let again ¢; = { (1) ii g |* ;f .
2

As in the definition of G(AM) let

S;=a; —r; +¢&;, (1)



SO
G(}\M)_(al az - at)
» = .

Sl 82 .o St

Applying Lemma 3.1 to AM we get

Gp()\MC) — ( a’ll aIQ (l; )

s\ sh - 8l
where
aj =a;—Si+Siy1, 8, =81+ 0, Sp1 =0
5 =10 if pla (2)
g 1 it pfa}

and the last column is omitted when a; = s;. Using (1) the statement a; = s; is equivalent
to ry = &;.
By the definition of M we now get that

where using (1) and (2)

n !
a; =a; =a;— 8+ 841 =

=a; — (a; —ri + &) + (aiy1 — Tip1 + €it1)
= ait1 — (rit1 — €ip1) + (ri — &)
and

" / /
T :ai_3i+6i=ai_3i+3i+1_3i+1_6i+5i

=a; —S; =T1; —&; .

As mentioned above the last column is omitted when r; = &;.

To compute G,(\’) we note that by Lemma 3.3 A/ = MO where MO is the
partition obtained from A’ by adding a column of length &’ to A/, where &' is the number
of parts of AY. The number of parts in X is r; and from the definition of A/ we see that
the number &’ of parts in A\’ is in fact 7| — 1. Moreover A’ has by definition ro parts, so
MCT has § =1y —rg — £y parts equal to 1.

We apply Lemma 3.2 with § = 71 — r9 — &1 to the partition Al. We have G,(\) =

( Z2 it ), so in the notation of Lemma 3.2 b; = a;11,8; = a;+1. We get
o ooy

G.\JChy— [ 2 G
» ) a 92 - Gt
where the last column is omitted when r; = ¢;, and by Lemma 3.2 the entries satisfy:

c1 :a2+(7“1—7“2—61)+62:ag—(T2—82)+(T1—61)
i =rot+(r—ro—e)=r—er



and for 2 <i:<t—1

¢ =aiy1 — (Tig1 —€ig1) + (1 — €5)
g =Ti— €.

If’l“t ;é Et then Ct = (qt =Tt — Et.
By comparison we see that G,(AMM) = Gp(AIC_l), as desired. o

Before we formulate the p-analogue of Lemma 2.1, we introduce a further operator X
(see [13]).

Definition 3.5 For a p-regular partition X, define AX = (j1,...,70) by
=T =N =1, L.

We will see in statement (3) below that in fact AX is a p-column-regular partition.
Note that in Lemma 2.1 we have omitted the trivial statement for which property (3)
below is the p-generalization.

Proposition 3.6 The following relations hold between the operators defined above:
(1) JC=CJ=1
(2) MCM =J, MIM =C

(2’) MC =JM, MJ=CM
(8) X = MT.

Proof. First we prove (1) and (2). We know JC = I (Lemma 3.3) and that MCM = J
(Proposition 3.4). Since M? = id we get MJM = C and also that MC = JM and
MJ = CM. By the definitions we have I = MIM, so

I=MIM=MJCM = (MJM)(MCM) = C.J .
Finally to prove (3) we note that

i = )\Ji—l B )\Ji
-]

‘AMCi_lM‘ o ‘)\MC"M‘

_ ‘)\M0171

. ‘ \MC

Thus j; is the length of the 4’th column in AM whence AX = (AM)T. o

We have the following commutative diagram of operators:

10



Proposition 3.6 (3) yields an alternative (easier) description of the Mullineux map on
diagrams using J-rims.

Example. p = 3, A = (7,3,12).

N DN DN
W w w

M- 2= (5,321

— N W
e e

In the left diagram the boxes marked 1 are in A\ A’, those marked 2 in A7 \ \7” etc.

4 Relations between transposition and the Mullineux map

A partition with no hook length divisible by p is called a p-core; it is necessarily p-regular.
These partitions play an important réle not only in combinatorics but also e.g. in the
context of p-modular representation theory of the symmetric groups where they have been
introduced in the study of the so-called p-blocks of representations.

The following result has been known to be true using results from modular repre-
sentation theory of the symmetric groups; here we provide an elementary combinatorial
proof.

Proposition 4.1 Let \ be a p-reqular partition. Then XM = XT if and only if X is a
p-core.

Proof. By [10] it is known that the Mullineux map acts as conjugation on p-cores. We
give here a different proof using the operator J. By Proposition 3.6 we may reformulate
the statement AM = \T to XA = AX.
Let A = (\1,..., ) be a p-core, and set AX = (51,...,5m). Then its p-rim clearly equals
its rim, so j; = A\; and A7 = (X\a,..., \;). Since this implies that A\’ is also a p-core, we
know by induction that AY = (A\)X = (ja,...,jm). Hence A = \X, as was to be proved.
Conversely, assume that A = (A(,...,\;) is a p-regular partition with \M = AT. So by
Proposition 3.6 A = AX = (j1,...,Jm). As j1 = A1, no hook in the first row of A can be of
length divisible by p, since otherwise there is a proper first p-segment of the p-rim ending
at the foot of a column, but then the J-rim would have no box in this column. Thus the
p-rim equals the rim, and

M =AF = (g, M)

11



Hence by definition
AN = (j2,...) = Nay..) =2\

By induction, we now know that A\’ = A% is a p-core, hence there are also no hooks of
length divisible by p below the first row of A, and hence X is a p-core. ©

For an arbitrary partition p, we let x™® denote its p-regularization (see [6, p. 282]),
which is a p-regular partition obtained by sliding the boxes of y up on the ladders of slope
p — 1 in the Young diagram of p.

Example. Let p = 3, u = (5,2%). Below we have drawn only the one ladder on which a
box moves; the other ladders are parallel to this one.

[ 1] [ ]

[ / e 4
/

Using representation theoretic results the following general dominance relation is not
hard to prove; recall that a partition « = («q,...,ax) is dominated by a partition § =
(Biy- .., Bm), written as o < 3, if and only if for all i = 1,...,k we have

) 7
o<y B
j=1 j=1

Proposition 4.2 Let A be a partition, p a prime. Then
()\T)reg < ()\reg)M .

Proof. We consider the Specht module associated with A. It is wellknown [6] that the
p-modular irreducible module DA™ is contained in the reduction mod p of the Specht
module S* with multiplicity 1, and that the labels of all other irreducible modules D* in
this reduction satisfy 4 > A"® in the dominance order. Now tensoring the Specht module
with the sign, gives a composition factor DA™ in the reduction of $*" mod p. By the
fact mentioned above, we thus obtain the claimed relation. ¢

Remark. A combinatorial proof of this dominance relation still is not known.
The relation between the Mullineux map and ordinary conjugation is also interesting
from the point of view of Schur modules; for the relevant notation and background we

refer to [3, 4, 8, 11]
Donkin [3] and Kouwenhoven [8] have shown:

12



Theorem 4.3 Let p be a prime and X\ a p-reqular partition. Then the Schur module Hy(X)
has a unique simple quotient which is isomorphic to the simple module L(AMT).

This motivates to study the map MT.

For certain classes of p-regular partitions Walker gave a simpler and more explicit
description of this map via column regularization, which we denote by colreg. This is the
transpose of the usual regularization, i.e.

(}\reg)T — (}\T)colreg

So the column regularization is obtained by sliding the boxes in the Young diagram of A
down as far as possible on the ladders of slope 1/(p — 1). In these terms the dominance
relation above reads:

Corollary 4.4 Let A be a p-regular partition. Then

)\MT < )\colreg .

To state Walker’s results we need some more definitions. A partition is called p-
horizontal if and only if in each of its columns either all or none of the hook lengths are
divisible by p; a partition is row-stable if successive parts always differ by at least p — 1.

Theorem 4.5 ([11, 12]) Let X be a horizontal or a row-stable partition. Then

)\MT — )\colreg )

In the rest of this section we want to introduce a class of partitions clearly containing
both the horizontal and row-stable partitions, for which we will then prove that this is
exactly the class of partitions on which X = MT coincides with column-regularization.

We are interested in this class of partitions also from another combinatorial point of
view. In searching for the right involution on the set of p-regular partitions which describes
the tensor product with the sign representation and thus generalizes transposition on
partitions, a first guess for a map that gives the right answer for a number of partitions
and for the extreme cases p = 2 and large p is the map given by transposition followed by
regularization. Now, unfortunately, this answer is false in general and the correct answer
given by the Mullineux map M is much more complicated, but a natural question is:

For which p-regular partitions X is it true that AM = (\T)res ?

This is clearly equivalent to the problem of characterizing the class of p-regular partitions
with AMT' = Xcolree motivated by the investigations on Schur modules.

Definition 4.6 Let L(n) be the class of p-reqular partitions X\ b n such that every hook
H;j of X of length divisible by p has the property that its leg is extremely short (Li.e.s.) in
comparison to its arm, i.e.

(p— 1)l < ayj

13



where a;; and l;; are the arm and leg length of the (i,j)-hook H;;, respectively. We call
this condition the p-lies-condition.
We then put L =J,, L(n), and we call these partitions p-lies-partitions!.

Remarks. (i) The p-core partitions obviously belong to £ as none of their hook lengths
is divisible by p.

(ii) The row-stable partitions are easily seen to belong to £, since all their hooks have
short legs in comparison with their arms.

(iii) Let A be a horizontal partition and H;; a hook of length divisible by p. Then by
definition of horizontal, all hook lengths h;; in A are divisible by p. But if two consecutive
hook lengths h;; and h;1 1 ; are divisible by p, then the corresponding rows differ by at least
p — 1. Hence the hook H;; satisfies the restriction on its leg length. So also all horizontal
partitions belong to L.

Example. For p = 3, the partition A = (7,1%) is an example of a partition in £ which
does not belong to any of the classes (i)-(iii) above.

Theorem 4.7 If X\ € L, then \ has the form A\ = (aq,..., 0, p1,---,pm) where a =
(a1,...,a) and p = (p1,...,pm) satisfy the following properties:

(i) a; —ajp1 >p—1fori=1,....k—1.
(ii) ap —p1 > p.
(11i) p is a p-core.

Thus a typical partition X\ € L looks like this:

Proof. Take A € £ and consider a p-segment of the p-rim of A. This is a skew hook of
length a multiple of p, say tp, stretching over at least ¢ rows since in the p-rim there are at
most p boxes in each row; now by definition of £ the corresponding hook has a short leg,
hence its leg must have length exactly ¢, and the p-segment must be a stair of ¢ horizontal
steps, each of length p. These p-segments are then possibly followed by a p'-segment, on
which part the p-rim coincides with the rim. If there is a hook of length a multiple of p in

!There is a proverb in German saying “Lies have short legs.” Indeed, as we will see in Theorem 4.8, the
p-lies-partitions are exactly those giving the wrong impression that the Mullineux map is just transposition
followed by regularization.

14



these final rows then the short leg condition forces the corresponding skew hook to have a
final horizontal step of length p or to have a horizontal step of length > p. In the first case,
either the final step of the skew hook is the last row of A, but then the segment considered
cannot be a p’-segment, or the p-rim would be broken at the corresponding row; in the
second case again the p-rim would differ from the rim at the row corresponding to the step
of length > p.

Hence A € L has the special form claimed in the theorem. ¢

Theorem 4.8 For all n € IN we have
L(n) = {\F n p-regular | XX = \colres}
Proof. We set

C(n) = {\ F n p-regular | \X = \olree} = ¢ = UC(”) .
n

First we want to show the inclusion £(n) C C(n) by induction on n.
For this, we use the previous result on the special form of the partitions in L.
Take A € L, so by the above we know that A\ = (aq,...,ak,p1,...,pm) Where a =
(a1,...,ar) and p = (p1,...,pm) satisfy:
(i) ; —ajpy >p—1fori=1,...,k—1.
(ii) g — p1 > p.
(iii) p is a p-core.

Thus we obtain, by definition of J,

M=(ar=(p—1),..,ap = (p—=1),p2....om) -

In the diagram below, the J-rim is indicated so as to help visualize the following ar-
guments.

Now compare the (4, j)-hooks in A’/ with the corresponding ones in X. If j > p; and i <
k, then the hook H;;(A”7) is a hook in the row stable partition (a1 —(p—1),...,ar—(p—1))
and thus has a short leg. If 7 < p1, then we have the following relations between the arm
and leg lengths of the (7,7)-hooks in A and \”:

ai;(A) = ai;(A) — (p— 1) ,1;;(\) = 1;;(\) — 1.

15



So if the (4, §)-hook in A’ is of length divisible by p, then so is the corresponding hook in
A, and since the A\-hook has a short leg, the same holds for the \’-hook by the equations
above. If i > k, then H;;(A\’) corresponds to the hook H;i;;()), which belongs to the
p-core p and hence is of length prime to p.

Hence A’/ € L, so the operator J leaves the set £ invariant.

To check that £ C C, we compute the column regularization of a partition A € L as
above by going through an intermediate configuration (not necessarily a partition), which
is obtained by sliding some boxes down along the ladders.

We put = A/, which is in £ by the above, and thus belongs to C by induction.
Because of the special form of A proved above, we know that the last full ladder in X is
the one going through the end box in row k£ + 1. In particular, we have for the first part
v1 of the column regularization v = A%!"¢ and the first part j; of AX:

=p+klp—-1) =7 .

We now slide the complete part of the first k£ rows of A to the right of this ladder one row
down along the ladder. We then obtain the following intermediate configuration towards
the column regularization y = \°res:

(717M17"'7ﬂk7p27"'7PM) .

As the first part of this configuration is exactly the first part of -, we obtain

’)’R — ,ucolreg — ,uX — ()\X)R

where the second equality holds as 1 € C by induction, and the third holds by definition.
This then implies v = A¥, as required.
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We now turn to the second inclusion C C £, which we prove again by induction.
First we show that again that the partitions in C have a special form:

IfXeC,then A = (a,..., 0k, p1,- .-, pm), Wherea = (aq,...,ax) and p = (p1,..., Pm)
satisfy the following properties:

(i) o —ajpy >p—1fori=1,...,k—1.
(ii) ar —p1 > p.

(iii) p1 equals the first part of p¥.

To prove this, let us consider the p-segments of the p-rim of A; these are rim hooks
and we call the arm length of the corresponding hook the width of the segment. Now any
such p-segment gives a contribution to j; which is its width reduced by 1, as the box at
the foot of each column of the segment except its final box belongs to the J-rim. The
final p’-segment (if it exists) gives its full width as a contribution to j;. These are all the
contributions to the J-rim.

On the other hand, almost all p-segments give their full width as a contribution to the
first part of the column regularization, except the p-segments which are stairs of horizontal
steps of length p, these give a contribution which is at least their width reduced by 1. The
final p’-segment also contributes its width to the first part of the column regularization.
Furthermore, there might be contributions coming from the columns between the segments.

But since A € C, the first parts j; of AX and ~; of y = \°°!"8_ respectively, agree, and
thus we conclude that all p-segments must be stairs of steps of length p.

Then the first & rows of A over which the p-segments stretch form the partition «, and
the final rows constitute the partition p, with the properties (i)-(iii) as stated.

For our induction argument, we next show that A\’ also belongs to C.
From the special form of A we deduce as before that

}‘J = (011 - (p_ 1),...,0% - (p_ 1)7p27-'-7pm)
and that the column regularization y = A" gatisfies
Mm=p+klp-1).

Now again, we use 'partial’ regularization by sliding the block to the right of the last
full ladder and in the first £ rows down one row along the ladder and obtain:

A = (p1 4+ k(p—1),010 — (p— 1), sar — (p—1),p2, -+, pm) OB
Hence, since A € C, we have
(}\J)X — (}\X)R — (}\colreg)R — (}\J)colreg

so M ecC.
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By induction, we now conclude that A7 € L.

Finally, we now have to check the hook condition for A.
Take an (i,7)-hook H;;(A) in A. If j > p; then the hook belongs to the row stable
partition o and thus satisfies the leg length condition. So we now assume j < p;. For
i =1,...,k we have the following relation between the arm and leg lengths of the (i, j)-
hooks in A and \’:

aij(XN) = ai;(\) — (p— 1) ,1;;(N) = 1;;(\) — 1.

So if the (i, )-hook in ) is of length divisible by p, then so is the corresponding hook in A7,
and since the A\”-hook has a short leg, the same holds for the A\-hook by the equations
above. For ¢ = k + 1, there cannot be any hook of length divisible by p, since otherwise
property (iii) above would be violated. For 7 > k41, the hook corresponds to the (i—1, j)-
hook in A7, and hence also satisfies the length restriction (in fact, p® is a p-core, so indeed
none of these hooks has length divisible by p).

Hence A € L, and the theorem is proved. ¢

Remark. In particular in view of Proposition 4.2 it is natural to pose the following
generalization of our earlier problem and thus ask for a generalization of Theorem 4.8 to
all partitions:

For which partitions A is it true that (\'8)M = (\T)ree ?
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