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Abstract

It is shown that the full symmetry class of tensors associated with the irre-

ducible character [2, 1n−2] of Sn does not have an orthogonal basis consisting

of decomposable symmetrized tensors.
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1 Introduction and Preliminaries

Let V be an m-unitary space. Let
n
⊗V be the nth tensor power of V and write

v1 ⊗ · · · ⊗ vn for the decomposable tensor product of the indicated vectors. To each

permutation σ in Sn there corresponds a unique linear operator P (σ):
n
⊗V →

n
⊗V

determined by P (σ)(v1 ⊗ · · · ⊗ vn) = vσ−1(1) ⊗ · · · ⊗ vσ−1(n). Let G be a subgroup of

Sn and let Irr(G) be the set of all the irreducible complex characters of G. It follows

from the orthogonality relations for characters that

{

T (G,χ) :
n
⊗V →

n
⊗V

∣

∣ T (G,χ) =
χ(1)

|G|

∑

σ∈G

χ(σ)P (σ), χ ∈ Irr(G)
}

is a set of annihilating idempotents which sum to the identity. The image of
n
⊗V

under T (G,χ) is called the symmetry class of tensors associated with G and χ and

it is denoted by V n
χ (G). The image of v1 ⊗ · · · ⊗ vn under T (G,χ) is denoted by

v1 ∗ . . . ∗ vn and it is called a decomposable symmetrized tensor.

The inner product on V induces an inner product on
n
⊗V whose restriction to

V n
χ (G) satisfies

〈u1 ∗ . . . ∗ un|v1 ∗ . . . ∗ vn〉 =
χ(1)

|G|

∑

σ∈G

χ(σ)
n

∏

i=1

〈ui|vσ(i)〉. (1)
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Let Γn
m be the set of all sequences α = (α1, . . . , αn) with 1 ≤ αi ≤ m. Then the

group G acts on Γn
m by σ · α = (ασ−1(1), . . . , ασ−1(n)), where σ ∈ G and α ∈ Γn

m.

Let O(α) = {σ · α| σ ∈ G} be the orbit of α, and Gα be its stabilizer subgroup , i.e.,

Gα = {σ ∈ G| σ ·α = α}, and consider a system ∆ of distinct representatives of the

G-orbits on Γn
m.

Suppose {e1, . . . , em} is an orthonormal basis of V . For α = (α1, . . . , αn) ∈ Γn
m,

denote by e∗α the decomposable symmetrized tensor eα1
∗ . . . ∗ eαn . Then, by (1),

one can easily obtain that for each α, β ∈ Γn
m,

〈e∗α|e
∗

β〉 =











χ(1)

|G|

∑

σ∈Gβ

χ(στ−1) if α = τ · β for some τ ∈ G,

0 if O(α) 6= O(β).

(2)

For α ∈ ∆, V ∗

α = 〈e∗σ·α| σ ∈ G〉 is called the orbital subspace of V n
χ (G), and we can

easily prove that

V n
χ (G) =

⊕

α∈∆

V ∗

α . (3)

Note that it is possible for some α ∈ ∆ to have V ∗

α = 0. But Freese [3] proved

dim V ∗

α =
χ(1)

|Gα|

∑

σ∈Gα

χ(σ), (4)

therefore, if we set

∆ =
{

α ∈ ∆
∣

∣

∑

σ∈Gα

χ(σ) 6= 0
}

,

then by (3) we obtain

V n
χ (G) =

⊕

α∈∆

V ∗

α . (5)

Of course we define the right-hand side of (5) to be 0, if ∆ = ∅.

Let W be a subspace of V n
χ (G). An orthogonal basis of W of the form

{

e∗α| α ∈ S
}

,

where S is a subset of Γn
m, is called an O-basis of W .

Symmetry classes of tensors associated with subgroups of symmetric groups and

their irreducible characters have been studied for a long time. Several papers are

devoted to the investigation of the non-vanishing and existence of an O-basis for

V n
χ (G), see for example [1, 2, 5, 6, 8, 9]. In recent years the non-vanishing problem
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of decomposable symmetrized tensors and so the non-vanishing problem of V n
χ (G),

in the case G = Sn, have been studied by several authors, see for example [4, 7],

and the non-vanishing problem in this case has been completely solved (see [4]).

But even for G = Sn, no reasonable result for the structure of O-basis of an V n
χ (G)

is available. In this note we consider G = Sn and investigate the existence of an

O-basis of V n
χ (Sn), for a special irreducible character of Sn.

2 Main Result

Let n be a positive integer. A partition λ = (λ1, . . . , λl) of n is a weakly decreasing

sequence λ1 ≥ . . . ≥ λl > 0 of integers with
∑l

i=1 λi = n, for short we write

λ ⊢ n. The number l is called the length of λ, denoted by l(λ). We often gather

together equal parts of a partition and write, for example, (52, 33) for (5, 5, 3, 3, 3).

If λ = (λ1, . . . , λl) ⊢ n, then λ′ = (λ′

1, . . . , λ
′

s), defined by

λ′

i =
∣

∣

{

1 ≤ j ≤ l| λj ≥ i
}∣

∣,

is a partition of n called the partition conjugate to λ.

Frobenius obtained in 1900 an explicit classification of the irreducible complex

characters of Sn; they are naturally labelled by partitions of n. We denote the

irreducible complex character labelled by the partition λ by [λ], so the set of all

irreducible complex characters of Sn is Irr(Sn) = {[λ]| λ ⊢ n}.

Let now V be an m-unitary space. The symmetry class of tensors associated with

Sn and [λ], where λ ⊢ n, is called full symmetry class of tensors associated with λ

and for short denoted by V n
λ . Holmes [5] proved that if m,n ≥ 3, then V n

(n−1,1) is

non-zero and does not have an O-basis. In this note we consider the special case

λ = (2, 1n−2), that is the partition conjugate to (n− 1, 1); we prove the analogue of

Holmes’ result for the space V n
λ .

The following result was already proved in [7].

Proposition 2.1 Let V be an m-unitary space. Let λ be a partition of n. Then

the full symmetry class of tensors associated with λ, i.e., V n
λ , is non-zero if and only

if m ≥ l(λ). In particular, if m ≥ n − 1, then V n
λ 6= 0 for all λ 6= (1n).

We are now ready to state our main result. Note that by Proposition 2.1, V n
λ is

non-zero for λ = (2, 1n−2) if and only if m ≥ n − 1.

Main Theorem Let n ≥ 3 and consider λ = (2, 1n−2). Let V be an m-unitary
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space, m ≥ n − 1. Then the full symmetry class of tensors associated with λ, i.e.,

V n
λ , does not have an O-basis.

3 Proof of the Main Theorem

For the proof of the Main Theorem we need a combinatorial result on permutations.

We denote by π the natural permutation character of Sn, i.e., for σ ∈ Sn, π(σ) is

the number of fixed points of σ.

Lemma 3.1 Set F =
{

σ ∈ Sn| π(σ) = π
(

σ (1 2)
)}

. Then we have F =
{

σ ∈

Sn| {σ(1), σ(2)} ∩ {1, 2} = ∅
}

.

Proof. Let σ ∈ Sn. There are four possibilities. If {σ(1), σ(2)} ∩ {1, 2} = ∅,

then σ and σ (1 2) have exactly the same fixed points. If {σ(1), σ(2)} = {1, 2},

then the number of fixed points of σ and σ (1 2) differ by 2. Now assume that

{σ(1), σ(2)} = {1, a}, with a 6= 2. Then in one-line notation the permutations σ

and σ (1 2) are (not necessarily in that order) 1aσ(3) . . . σ(n) and a 1σ(3) . . . σ(n),

hence their fixed point numbers differ by 1. The case where {σ(1), σ(2)} = {2, a},

with a 6= 1 is similar. This proves the claim. �

Lemma 3.2 Let F =
{

σ ∈ Sn| π(σ) = π
(

σ (1 2)
)}

, and let σ1, . . . , σk be distinct

permutations of Sn such that σiσ
−1
j ∈ F for all i 6= j. Then k ≤

[

n
2

]

.

Proof. Set tr = σ1σ
−1
r+1 for r = 0, . . . , k−1, so t0 = id and t1, . . . , tk−1 ∈ F . Then

t−1
r ts = σr+1σ

−1
1 σ1σ

−1
s+1 = σr+1σ

−1
s+1 ∈ F for all r 6= s, r, s ∈ {1, . . . , k − 1}. Hence

by Lemma 3.1,
{

t−1
r ts(1), t

−1
r ts(2)

}

∩
{

1, 2
}

= ∅, or equivalently,
{

ts(1), ts(2)
}

∩
{

tr(1), tr(2)
}

= ∅ for all r 6= s, r, s ∈ {1, . . . , k − 1}. Thus

2k =
∣

∣

{

tr(j)| r = 0, . . . , k − 1, j ∈ {1, 2}
}
∣

∣ ≤ n

and so k ≤
[

n
2

]

. �

Remark 3.3 The bound
[

n
2

]

in Lemma 3.2 is sharp, and the proof shows how to

construct such sets of permutations. In particular, we obtain such a set by setting

σ1 = id and (in cycle notation) σj = (1 2j − 1) (2 2j) for j = 2, . . . ,
[

n
2

]

.

We are now ready to prove the Main Theorem. Let {e1, . . . , em} be an or-

thonormal basis of V . Assume that V n
λ , λ = (2, 1n−2), has an O-basis. Put

γ = (1, 1, 2, 3, . . . , n − 1), then n ≥ 3 and m ≥ n − 1 implies that γ ∈ Γn
m. Consider

the action of Sn on Γn
m and choose ∆ such that γ ∈ ∆. It is easy to see that the
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stabilizer subgroup of γ is equal to (Sn)γ = {(1), (12)}. Therefore
∑

σ∈(Sn)γ

[λ](σ) = (n − 1) + (−1)(n − 3) = 2,

so it is non-zero and we obtain γ ∈ ∆.
(

In fact, this sum is non-zero for any partition

λ 6= (1n), so γ ∈ ∆ for any λ 6= (1n).
)

Now, by (5), we can decompose V n
λ into the

orthogonal direct sum of orbital subspaces indexed by ∆. Since V n
λ has an O-basis,

and γ ∈ ∆, the orthogonality of this decomposition implies that V ∗

γ has an O-basis.

But, by (4), we have

dimV ∗

γ =
n − 1

2
· 2 = n − 1,

so we can assume {e∗g1·γ
, . . . , e∗gn−1·γ

} is an O-basis for V ∗

γ . Therefore for each i 6= j,

1 ≤ i, j ≤ n − 1, we have 〈e∗gi·γ
|e∗gj ·γ

〉 = 0. On the other hand if α = gi · γ and

β = gj · γ, then gig
−1
j · β = α, so if we set τ = gig

−1
j and use (2), then we obtain

〈e∗gi·γ
|e∗gj ·γ

〉 =
[λ](1)

|Sn|

∑

σ∈(Sn)γ

[λ](g−1
i gjσ)

=
n − 1

n!

(

ε(gig
−1
j )

(

π(gig
−1
j ) − 1

)

+ ε
(

gig
−1
j (12)

)(

π
(

gig
−1
j (12)

)

− 1
)

)

=
n − 1

n!
ε(gig

−1
j )

(

π(gig
−1
j ) − π

(

gig
−1
j (12)

)

)

,

where ε is the sign character. Now the condition 〈e∗gi·γ
|e∗gj ·γ

〉 = 0, for each i 6= j,

1 ≤ i, j ≤ n− 1, implies that for such i, j we have π(gig
−1
j ) = π

(

gig
−1
j (12)

)

. Hence

we deduce from Lemma 3.2 that n − 1 ≤ [n2 ]. Since n ≥ 3, the last inequality is a

contradiction and thus V n
λ , λ = (2, 1n−2), does not have an O-basis. �
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