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Abstract. Based on Kleshchev's branching theorems for the p-modular irreducible rep-

resentations of the symmetric group and on the recent proof of the Mullineux Conjecture,

we investigate in this article the corresponding branching problem for the p-modular

irreducible representations of the alternating group A

n

. We obtain information on the socle

of the restrictions of such A

n

-representations to A

n�1

as well as on the multiplicities of

certain composition factors; furthermore, irreducible A

n

-representations with irreducible

restrictions to A

n�1

are studied.

Mathematics Subject Classi�cation: 20C05, 20C30

1 Introduction

The purpose of this paper is to provide information about the restrictions to A

n�1

of

modular irreducible representations of the alternating groups A

n

. The results are based

on Kleshchev's branching theorems (see [8], [9], [11]) for the symmetric group and on the

proof of the Mullineux Conjecture (see [2], [5], [10], [13]).

The starting point in this article is the well-known branching theorem for characteristic 0

representations of the symmetric group S

n

. Let S

�

be the irreducible representation of S

n

in characteristic 0 labelled by the partition � of n. Then

S

�

j

S

n�1

=

M

A

S

�nA

where the sum is over all removable nodes of � (see section 2). On the other hand the

decomposition of the restriction of S

�

to the alternating group A

n

is also easy to describe.

It depends on the transposition map on partitions, since S

�


 sgn ' S

�

0

[6], section 2.5.

Combining these facts it is quite easy to deduce a branching result for irreducible repre-

sentations of A

n

. This is done in section 2 below to give a perspective to our results in

positive characteristic.
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Examples show that the branching phenomena in characteristic p > 0 are much more com-

plicated. If D

�

is the p-modular irreducible representation of S

n

labelled by the p-regular

partition � of n, then D

�

j

S

n�1

may contain also composition factors D

�

, where � is not

obtained by removing a node from �. Moreover, D

�

j

S

n�1

is in general not multiplicity-free.

The recent progress on this branching problem started with the Jantzen-Seitz conjecture [7]

describing the class of p-regular partitions � for whichD

�

j

S

n�1

is irreducible. The Jantzen-

Seitz conjecture was proved by Kleshchev as a consequence of his much stronger modular

branching theorems [8]-[11] (see Theorem 3.1 below). In order to exploit Kleshchev's re-

sult for investigations on the representations of the alternating groups it is necessary to

understand the restrictions of the modules D

�

to A

n

. For p 6= 2, these depend on the

Mullineux map M on p-regular partitions [13], since

D

�


 sgn ' D

�

M

(see [2], [5], [10]). In contrast to the situation at characteristic 0, both the branching

and restriction to A

n

are quite complicated in characteristic p and in order to deal with

the representations of the alternating groups we have to control both processes simul-

taneouly. This is possible using the residue symbols and signature sequences introduced

by the authors in [2]. In the case of characteristic 2 we have to invoke a result of Benson [1].

The paper is organized as follows. In section 2 we treat branching for representations of

A

n

in characteristic 0. In section 3 we present the necessary background dealing with

positive characteristic, that is, Kleshchev's results and residue symbols. In the next sec-

tion, we describe the classi�cation of the modular irreducible A

n

-representations based on

Benson's result at p = 2 resp. on the Mullineux map at p 6= 2. Section 5 deals with the

case of odd characteristic and section 6 with the case of characteristic 2. We obtain infor-

mation on the socle of the restrictions of irreducible A

n

-representations to A

n�1

as well

as on the multiplicities of certain composition factors of these restrictions. Furthermore,

we describe the labels of those irreducible modules of A

n

which remain irreducible upon

restriction to A

n�1

at characteristic p 6= 2, and combinatorial conditions for such labels

are given at p = 2.

For general facts on representations of the symmetric groups we refer the reader to [6].

Throughout the paper we will always assume that our representations are over �elds which

are splitting �elds for the alternating groups, e.g. one may take the �elds to be algebraically

closed.

2 Branching of representations of the alternating groups at

characteristic 0 or large p

Let � be a partition of n. It is well-known that at characteristic 0 resp. at prime charac-

teristic p with p > n, the character [�] resp. the corresponding representation of S

n

splits

on restriction to A

n

if and only if � is symmetric, i.e. � = �

0

. In this case, it splits into two

(via the transposition (12)) conjugate A

n

-characters f�g

+

and f�g

�

. So for a branching

2



formula for A

n

-characters one needs to study conjugation properties together with the

usual well-known branching of ordinary irreducible S

n

-representations.

First we recall some notations and de�nitions for partitions.

Let � = (�

1

; �

2

; : : : ; �

k

) be a partition of n, i.e. �

1

; : : : ; �

k

are integers with �

1

� �

2

�

� � � � �

k

> 0 and

P

k

i=1

�

i

= n. Then

Y (�) = f(i; j) 2 ZZ� ZZ j 1 � i � k; 1 � j � �

i

g � ZZ� ZZ

is the Young diagram of �, and (i; j) 2 Y (�) is called a node of �. If A = (i; j) is a node of

� and Y (�) n f(i; j)g is again a Young diagram of a partition, then A is called a removable

node and � nA denotes the corresponding partition of n� 1.

Similarly, if A = (i; j) 2 IN � IN is such that Y (�) [ f(i; j)g is the Young diagram of a

partition of n+ 1, then A is called an indent node of �.

The non-symmetric case: � 6= �

0

Assume that � has a removable node A such that

� n A = (� nA)

0

= �

0

nB

for a suitable node B in �

0

. In this case we say that � is almost symmetric.

Since � is not symmetric, the `conjugate node' A

0

to A does not belong to �.

Hence for every other removable node C 6= A in � we have

� n C 6= (� n C)

0

Even stronger: for every pair of removable nodes C 6= A,

e

C in � we have

� n C 6= (� n

e

C)

0

Now, if we assume that there is no node A as above, then we can easily see that also in

this case for every pair of removable nodes C,

e

C in � we have

� n C 6= (� n

e

C)

0

Thus we obtain for the branching of the character f�g:

(i) If � is almost symmetric (with respect to the node A), then

f�gj

A

n�1

=

d

f� n Ag+

X

C 6=A

f� n Cg

where

d

f�g = f�g

+

+ f�g

�

for a symmetric partition �, and the partitions � n C, C 6= A,

are all pairwise non-conjugate, so that the restriction is multiplicity-free.

(ii) If � is not almost symmetric, then

f�gj

A

n�1

=

X

C

f� n Cg
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where the partitions � n C are all pairwise non-conjugate, so that again the restriction is

multiplicity-free.

The symmetric case: � = �

0

In this case there exists at most one removable node A (on the main diagonal) with

� n A = (� n A)

0

Moreover, it is clear that for every other removable node C 6= A in � we have a removable

node

e

C 6= C in � with

� n C = (� n

e

C)

0

Before we can state the restrictions of the two conjugate characters f�g

+

and f�g

�

to

A

n�1

, we �rst have to be precise about the choice of our labelling (see [6], section 2.5).

The only critical conjugacy class of A

n

where the characters f�g

+

and f�g

�

di�er are the

two classes of cycle type h(�) = (h

11

; : : : ; h

rr

), where h

ii

denotes the length of the ith

principal hook of � and r is the order of the Durfee square of �. Let

�

h(�)

+ = (1 : : : h

11

)(h

11

+ 1 : : : h

11

+ h

22

) � � � (

r�1

X

i=1

h

ii

+ 1 : : :

r

X

i=1

h

ii

)

be an element in the conjugacy class of cycle type h(�) and of +-type, and choose the

labelling of the characters such that

f�g

�

(�

h(�)

+
) =

1

2

0

@

[�](�

h(�)

)�

v

u

u

t

[�](�

h(�)

)

r

Y

i=1

h

ii

1

A

:

If � = �

0

has a removable node A on the main diagonal, then h

rr

= 1 and so h(� n

A) = (h

11

; : : : ; h

r�1 r�1

). The sign choice for the conjugacy classes in A

n�1

of type

(h

11

; : : : ; h

r�1 r�1

) is made compatibly with the choice above, and the signs for the char-

acters are chosen similar as before. Then

f� n Ag

�

(�

h(�nA)

+
) =

1

2

0

@

[� nA](�

h(�nA)

)�

v

u

u

t

[�](�

h(�)

)

r�1

Y

i=1

h

ii

1

A

:

Hence we have the following branching behaviour: (i) If � has a removable node A on the

main diagonal, then

f�g

�

j

A

n�1

= f� n Ag

�

+

X

C 6=A

f� n Cg

where C only runs through the removable nodes of � above the main diagonal.

(ii) If � has no removable node on the main diagonal, then

f�g

�

j

A

n�1

=

X

C

f� n Cg
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where C only runs through the removable nodes of � above the main diagonal.

In particular, the restrictions are again multiplicity-free.

In the discussion above, some of the properties become even more obvious when one uses

the Frobenius symbol displaying the principal hooks of � rather than working in terms of

the parts of �.

3 Modular branching of S

n

-representations and Residue sym-

bols

In this section we collect some de�nitions and results that are needed in the following

sections.

Let p be a prime; this is needed in the representation theoretic context, for the combina-

torial statements p may be an arbitrary odd integer > 1.

We de�ne a (p)-signature sequence X as a sequence

X : c

1

"

1

c

2

"

2

� � � c

s

"

s

where the c

i

are residues mod p, and the "

i

are signs, for i = 1; : : : ; s.

For 0 � i � s and 0 � � � p� 1 we de�ne

�

X

�

(i) =

X

fk�ijc

k

=�g

"

k

;

here we make the conventions that an empty sum is 0 and that + is counted as +1 and �

as �1 in the sum. The end value �

X

�

of � in X is then de�ned to be

�

X

�

= �

X

�

(s) :

Furthermore, we de�ne the peak value of � in X to be

�

�

(X) = maxf�

X

�

(i) j 0 � i � sg :

We call c

i

2 X normal of residue � if �

X

�

(i) > �

X

�

(j) for all j � i � 1 and �

X

�

(i) > 0.

This is only possible when c

i

"

i

= �+. In this case we also call �

X

�

(i) the height ht c

i

of c

i

. Moreover, c

i

2 X is called good of residue � (for short also: �-good) if c

i

is normal

of residue � and i is minimal with

�

X

�

(i) = �

�

(X) :

Note that if c

i

is good of residue � then ht c

i

= �

�

(X).

Before we associate these de�nitions with partitions we recall some further notation and

de�nitions for partitions.

A partition � = (l

a

1

1

; l

a

2

2

; : : : ; l

a

t

t

) is called p-regular, if 1 � a

i

� p� 1 for i = 1; : : : ; t.
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The p-regular partitions of n label in a canonical way the p-modular irreducible represen-

tations D

�

of S

n

[6].

The p-residue of a node A = (i; j) in the Young diagram of � is de�ned to be the residue

modulo p of j � i, denoted res A = j � i (mod p). The p-residue diagram of � is obtained

by writing the p-residue of each node of the Young diagram of � in the corresponding place.

Example. Take p = 5, � = (6

2

; 5; 4). Then the 5-residue diagram of � is

0 1 2 3 4 0

4 0 1 2 3 4

3 4 0 1 2

2 3 4 0

For a partition �, its node sequence N(�) is a signature sequence de�ned as follows. Let

A

1

; : : : ; A

l

be all the indent and removable nodes of �, read successively from top to bottom

and from right to left in the Young diagram of �. For each i 2 f1; : : : ; rg, let c

i

be the

residue of A

i

and let the sign "

i

be + if A

i

is removable and � if A

i

is an indent node.

Then the node sequence is de�ned to be

N(�) : c

1

"

1

c

2

"

2

� � � c

s

"

s

A removable node A of � is then called normal resp. good if the corresponding entry in

the node sequence is normal resp. good; the height ht A is then the height of this entry.

The �-peak value of � is the peak value of � in its node sequence.

Example. Let p = 5 and � = (12; 7

2

; 5

3

; 3; 1

3

). Below, we have only indicated the

removable and indent nodes in the 5-residue diagram of �.

21

1

4

2

4

1 2

4

1

0

Then the node sequence of � is

N(�) : 2� 1+ 1� 4+ 2� 4+ 2� 1+ 4� 1+ 0�
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where we have underlined the normal entries in the node sequence. Note that then the

corresponding removable nodes of � are also normal.

These combinatorial concepts play a vital rôle in the following theorem due to Kleshchev

(see [8]-[11]).

Theorem 3.1 Let � be a p-regular partition of n, n 2 IN, n � 2. Then the following

holds:

(i) soc (D

�

j

S

n�1

) '

M

A good

D

�nA

.

(ii) D

�

j

S

n�1

is completely reducible if and only if all normal nodes in � are good.

(iii) Let A be a removable node of � such that � n A is p-regular. Then the multiplicity

of D

�nA

in D

�

j

S

n�1

is given by

h

D

�

j

S

n�1

: D

�nA

i

=

�

ht A if A is normal in �

0 else

As a consequence of this theorem one can determine the p-regular partitions � of n for

which the restriction D

�

j

S

n�1

is irreducible. We recall the following de�nition:

De�nition 3.2 Let � = (l

a

1

1

; : : : ; l

a

t

t

) be a p-regular partition, where l

1

> l

2

> � � � > l

t

,

0 < a

i

< p for i = 1; : : : ; t. Then � is called a JS-partition if its parts satisfy the congruence

l

i

� l

i+1

+ a

i

+ a

i+1

� 0 mod p for 1 � i < t :

The type � of � is de�ned by � � l

1

� a

1

mod p.

Note that the type of a JS-partition is just the residue of the unique normal (and thus

good) node at the top corner of �. The letters JS are an abbreviation of Jantzen and Seitz;

these authors conjectured the equivalence of (i), (iii) in the following corollary (see [3],

[8], [9]). We denote the partition obtained by removing the i th corner node from � by �(i).

Corollary 3.3 With notation as above, the following are equivalent:

(i) D

�

j

S

n�1

is irreducible (and in this case D

�

j

S

n�1

' D

�(1)

).

(ii) � has exactly one normal node (which is then the only good node in �).

(iii) � is a JS-partition.

For later purposes we also have to introduce a di�erent notation for p-regular partitions,

which will allow us to have both the removal of good nodes and the p-analogue of conju-

gation given by the Mullineux map (de�ned in the next section) under control.

Let � be a p-regular partition of n. The p-rim of � is a part of the rim of � ([6], p.

56), which is composed of p-segments. Each p-segment except possibly the last contains p

points. The �rst p-segment consists of the �rst p points of the rim of �, starting with the
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longest row. (If the rim contains at most p points it is the entire rim.) The next segment

is obtained by starting in the row next below the previous p-segment. This process is

continued until the �nal row is reached. We let a

1

be the number of nodes in the p-rim

of � and let r

1

be the number of rows in �; if a

1

is a multiple of p, the p-rim is called

p-singular. Removing the p-rim of � we get a p-regular partition of n � a

1

, and we let

a

2

; r

2

be the length of the p-rim and the number of parts of this new partition respectively.

Continuing in this way we get the sequences of numbers a

1

; : : : ; a

m

, r

1

; : : : ; r

m

.

The residue symbol R

p

(�) of � is then de�ned as

R

p

(�) =

�

x

1

x

2

� � � x

m

y

1

y

2

� � � y

m

�

where x

j

is the residue of a

m+1�j

� r

m+1�j

modulo p and y

j

is the residue of 1� r

m+1�j

modulo p. The partition � can be recovered from the residue symbol R

p

(�) as the unique

p-regular partition with this residue symbol (see [2]).

A column

x

i

y

i

in the residue symbol is called singular if y

i

= x

i

+ 1 and regular otherwise.

Note that a residue symbol can never start with the singular column

0

1

as this does not

correspond to a p-regular partiton.

Now we de�ne the Mullineux (signature) sequence M(�) via the residue symbol of �.

With R

p

(�) as above, we set

M(�) = 0� x

1

+ (x

1

+ 1)� y

1

+ (y

1

� 1)�

x

2

+ (x

2

+ 1)� y

2

+ (y

2

� 1)�

.

.

.

.

.

.

x

m

+ (x

m

+ 1)� y

m

+ (y

m

� 1)�

Starting with the signature 0� corresponds to starting with an empty partition at the

beginning which just has the indent node (1; 1) of residue 0.

In [2] the following result was proved.

Theorem 3.4 Let � be a p-regular partition.

Then for all �, 0 � � � p� 1 we have

�

�

(M(�)) = �

�

(N(�)) :

As a consequence we can recognize the normal and good nodes of � also in R

p

(�):

Corollary 3.5 The following statements are equivalent for a p-regular partition � (0 �

� � p� 1).

(i) � has a normal (good) node of residue �.

(ii) M(�) has a normal (good) entry of residue �.
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In [2] the following result on the behaviour of residue symbols with respect to removing

good nodes was proved:

Theorem 3.6 Suppose that the p-regular partition � has a good node A of residue �. Let

R

p

(�) =

�

x

1

x

2

� � � x

m

y

1

y

2

� � � y

m

�

:

Then for some j, 1 � j � m, one of the following occurs:

(1) x

j

is �-good for M(�) and

R

p

(�nA) =

�

x

1

x

2

� � � x

j

� 1 � � � x

m

y

1

y

2

� � � y

j

� � � y

m

�

:

(2) y

j

is �-good for M(�), and in this case if j = 1 and � = 0 then x

1

= 0 and

R

p

(�nA) =

�

x

2

� � � x

m

y

2

� � � y

m

�

;

i.e. the �rst column is removed, or else if (j; �) 6= (1; 0) then

R

p

(�nA) =

�

x

1

x

2

� � � x

j

� � � x

m

y

1

y

2

� � � y

j

+ 1 � � � y

m

�

:

4 Modular irreducible A

n

-representations

For a classi�cation of the modular irreducible A

n

-representations we need to know which

modular irreducible S

n

-representations split when restricted to A

n

.

For p = 2, the answer was given by Benson [1]:

Theorem 4.1 Let � = (�

1

; : : : ; �

m

) ` n be a 2-regular partition of n 2 IN, n � 2, D

�

the

corresponding modular irreducible S

n

-representation.

Then the restriction D

�

j

A

n

is reducible if and only if the parts of � satisfy the following

two conditions (where we set �

m+1

= 0 if m is odd):

(i) �

2j�1

� �

2j

� 2 for all j;

(ii) �

2j�1

+ �

2j

6� 2 (mod 4) for all j.

If D

�

j

A

n

is reducible, then it splits into two non-isomorphic irreducible summands, say

D

�

j

A

n

' C

�

+

� C

�

�

.
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We call the 2-regular partitions satisfying the conditions (i) and (ii) above S-partitions.

From Theorem 4.1 we can now deduce the classi�cation of the 2-modular irreducible A

n

-

representations:

Corollary 4.2 A complete list of 2-modular irreducible A

n

-representations is given by:

C

�

+

; C

�

�

for � ` n a 2-regular S-partition

C

�

for � ` n a 2-regular non-S-partition

For p 6= 2, the split restrictions are those of modules �xed by tensoring with the sign

representation.

This case is determined by the Mullineux map which we describe on the residue symbols:

De�nition 4.3 Let the residue symbol of the p-regular partition � be

R

p

(�) =

(

x

1

� � � x

m

y

1

� � � y

m

)

:

Then the Mullineux conjugate �

M

is the p-regular partition whose residue symbol is

R

p

(�

M

) =

(

"

1

� y

1

� � � "

m

� y

m

"

1

� x

1

� � � "

m

� x

m

)

where

"

j

=

(

1 if x

j

+ 1 = y

j

0 otherwise

:

As a consequence of Theorem 3.6 we state the following property of good nodes with

respect to the Mullineux map:

Theorem 4.4 ([2], [5]) Let � be a p-regular partition, A a good node of �. Then there

exists a good node B of the Mullineux image �

M

such that (� n A)

M

= �

M

n B.

In 1979, Mullineux conjectured that the map M de�ned above describes the result of

tensoring an irreducible representation by the sign representation. After a long struggle

this conjecture was �nally solved by work of Kleshchev and Ford and Kleshchev. As

an application of his Branching Theorems for modular S

n

-representations Kleshchev had

reduced the Mullineux Conjecture to the purely combinatorial statement in Theorem 4.4 on

the removal of good nodes from a partition which was then proved by Ford and Kleshchev.

Theorem 4.5 Let � be a p-regular partition. Then

D

�


 sgn ' D

�

M

:

Based on this and Cli�ord theory, we have a combinatorial description for the splitting of

the modular irreducible S

n

-representations over A

n

also for odd primes p (see [4]):

10



Theorem 4.6 Let p be an odd prime, and let � = (�

1

; : : : ; �

m

) ` n be a p-regular partition

of n, D

�

the corresponding modular irreducible S

n

-representation.

Then the restriction D

�

j

A

n

is reducible if and only if � is a �xed point under the Mullineux

map, i.e. �

M

= �.

If D

�

j

A

n

is reducible, then it splits into two non-isomorphic irreducible summands C

�

+

,

C

�

�

, so D

�

j

A

n

' C

�

+

� C

�

�

.

As before, this implies the classi�cation of the p{modular irreducible A

n

-representa-

tions [4]:

Corollary 4.7 A complete list of p-modular irreducible A

n

-representations is given by the

modules:

C

�

+

; C

�

�

� ` n p-regular; � = �

M

C

�

= C

�

M

� ` n p-regular; � 6= �

M

5 Branching and p-conjugation at odd p

In this section, we always assume that p > 2; otherwise p is an arbitrary odd integer in the

combinatorial statements and has to be a prime in the representation theoretic statements.

Recall the phenomena occurring \at characteristic 0" (described in section 2) to imagine

what to expect now. In the following, we denote by F a �eld of characteristic p, again

assumed to be su�ciently large.

First a

Lemma 5.1 Let M be an FS

n

-module. Then

soc(M j

A

n

) = soc(M)j

A

n

Proof. Since A

n

is normal in S

n

and of index prime to p, the Jacobson radicals of FS

n

and FA

n

are related by J(FS

n

) = J(FA

n

)FS

n

due to a result by Villamayor [12], p.524.

Since the socle of a module is the set of elements annihilated by the Jacobson radical [15],

Th. 1.8.18, the assertion follows. �

For convenience, we let C

�

o

denote the module C

�

o

= C

�

if � is not a Mullineux �xed

point, and C

�

o

2 fC

�

+

; C

�

�

g if � is a Mullineux �xed point.

Proposition 5.2 D

�

j

S

n�1

is completely reducible if and only if C

�

o

j

A

n�1

is completely

reducible.

Proof. This follows immediately from the preceding Lemma and Theorem 4.6. �

In the proof of the following result we require the content vector of a partition � which

is de�ned to be c(�) = (c

0

; : : : ; c

p�1

), where c

i

is the number of nodes in the p-residue

diagram of � which are of residue i. The basic fact that we need is that with c(�) as above,

the content vector of the Mullineux conjugate is c(�

M

) = (d

0

; : : : ; d

p�1

), where d

�

= c

��

(see [2], [14]).
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Theorem 5.3 (The almost-p-symmetric case.)

Let � be p-regular, and assume � 6= �

M

. Furthermore, assume that � has a good node A

with � nA = (� n A)

M

.

(i) Then all the columns in the residue symbol of � are Mullineux-�xed except for one

column

x

y

=

8

>

>

>

>

>

<

>

>

>

>

>

:

x

1� x

with x 6= 0

or

x

�1� x

with x 6= �1

where the marked entry corresponds to the good node A in the sense of Theorem 3.6.

In particular, res A 6= 0.

(ii) There are no normal nodes B and

e

B with B 6= A 6=

e

B such that � n B and � n

e

B are

p-regular and satisfy

� n B = (� n

e

B)

M

:

In particular, there are no good nodes B and

e

B di�erent from A for which this holds.

Proof. (i) Theorem 3.6 immediately tells us that all the columns in the residue symbol

of � are Mullineux-�xed except for the one column with the good entry corresponding to

the good node A. As � itself is not Mullineux-�xed, this exceptional column can not be a

0-column at the start of the residue symbol since this would vanish on removing A.

So let us assume that

x

y

is the exceptional column, and consider �rst the case where the

upper entry x is the good entry corresponding to A. Then the corresponding column

x�1

y

in R

p

(� n A) has to be Mullineux-�xed. If this column is regular, then we have

y = 1 � x and x 6= 0 as claimed. If we assume it is singular, then y = x { contradicting

the assumption that the upper entry x in R

p

(�) was good. Similarly, if the lower entry y

in the exceptional column is the good entry corresponding to A, then in the case of the

corresponding column

x

y+1

for � n A being regular, we obtain y = �x � 1, and we must

have x 6= �1 since otherwise in the (singular) column

x

y

=

�1

0

the lower entry is not good.

If we assume

x

y+1

to be singular, then y = x and the �xed point condition gives x = �x,

hence in this case the exceptional column is

0

0

and hence Mullineux-�xed { contradicting

our assumption.

The conditions we have derived above immediately imply that res A 6= 0.

(ii) Let c(�) = (c

0

; c

1

; : : : ; c

p�1

) be the content vector of �, and let r = res A, so r 6= 0

by (i). Then the condition � n A = (� n A)

M

implies c

r

� 1 = c

p�r

and c

i

= c

p�i

for all

residues i 6= r; p� r. Now let B,

e

B be nodes of �, di�erent from A, with residues i and j

respectively, such that their removal gives p-regular partitions with � nB = (� n

e

B)

M

. In

the �rst part of the proof we show that i = r = j; here we do not need the condition that

these nodes are normal (and that A is good). Since the Mullineux map leaves the content

of residue 0 invariant, either none or both of B and

e

B are of residue 0. If i = 0 = j, then

c

k

= c

p�k

for all residues k 6= 0, a contradiction since r 6= 0. Hence i 6= 0 6= j.

12



We assume �rst, that i 6= r 6= j. If j 6= p� i, then comparing the content at residue i and

using the relation above gives

c

i

� 1 = c

p�i

= c

i

{ a contradiction. If j = p � i, then we obtain c

k

= c

p�k

for all residues k, again a

contradiction.

Hence we only have to consider the case where B 6= A 6=

e

B are normal nodes of � with

residues i = r = j. As these nodes are normal but not good, the r-peak value goes down

by 2 on removing these nodes (the +1-contribution before the good node is replaced by a

�1-contribution), hence

�

r

(� n

e

B) = �

r

(�)� 2

= �

r

((� n B)

M

) = �

�r

(� nB)

= �

�r

(�) + "(B)

where "(B) 2 f0; 1g; the last equation follows as res B = r 6= �r (r 6= 0) and hence the

e�ect of removing B can at most be an increase of 1 in the peak values for the residues

r � 1.

On the other hand, removing a good node only decreases the peak value for the corre-

sponding residue by 1, and the e�ect on other residues is similar as above, so

�

r

(�)� 1 = �

r

(� n A) = �

�r

((� nA)

M

)

= �

�r

(� nA) = �

�r

(�) + "(A)

where "(A) 2 f0; 1g (note that for the last equation we have used again that r 6= 0 and p

is odd, so that r 6= �r).

Hence we conclude

�

r

(�)� �

�r

(�)� 1 = "(B) + 1 = "(A) ;

thus we deduce "(B) = 0 and "(A) = 1.

Now by removing a removable node of residue r we can either create new removable nodes

of residue r�1 or indent nodes of such residues can vanish; the overall e�ect is in all cases

to lift the paths for these residues by 1 at this position.

If A and B both are higher (resp. both are lower) than the good node of such residues then

the corresponding peak value in � nA and � nB is increased in both cases by 1 (resp. is in

both cases unchanged) compared to the peak value in �. Since B is normal of the same

residue as the good node A, it is higher in � than A; hence we also might have an increase

of the critical peak value by 1 in � n B and an unchanged peak value when removing A

(but not the other way round!). Hence the situation "(B) = 0 and "(A) = 1 is impossible,

and thus the claim is proved. �

The Theorem above allows us to deduce information on the restrictions of the A

n

-represen-

tations; similar as in characteristic 0 we denote by

c

C

�

the module C

�

+

�C

�

�

if � = �

M

,

resp. the module C

�

= C

�

M

if � 6= �

M

.

Theorem 5.4 Let � be p-regular with � 6= �

M

, and assume that � has a good node A with

� n A = (� n A)

M

.

Then

13



(i)

soc(C

�

j

A

n�1

) '

d

C

�nA

�

M

B 6=A

good

C

�nB

and this socle is multiplicity-free.

(ii) Let B be a removable node of � such that � n B is p-regular. Then the multiplicity

of C

�nB

o

in C

�

j

A

n�1

is given by

h

C

�

j

A

n�1

: C

�nB

o

i

=

�

ht A if B = A

ht B +

h

D

�

j

S

n�1

: D

(�nB)

M

i

else

Proof. This follows from the Branching Theorem for modular S

n

-representations, the

classi�cation of the modular irreducible A

n

-representations and part (ii) of Theorem 5.3.

�

Remark. Note that in the case of B 6= A in part (ii) above, we do not know how to

compute the second summand.

Theorem 5.5 (The far-from{p-symmetric case.)

Let � be p-regular with � 6= �

M

, and assume that � has no good node A with � n A =

(� nA)

M

.

Then there are no good nodes B and

e

B with

� n B = (� n

e

B)

M

:

Proof. Assume there are good nodes B and

e

B with

(�) � n B = (� n

e

B)

M

:

Then these nodes are di�erent from A, and their residues r = res B, s = res

e

B are di�erent,

and both di�erent from 0.

We consider again the p-content vector c(�) = (c

0

; c

1

; : : : ; c

p�1

) of �, and then compare

the content vectors of � nB and (� n

e

B)

M

.

For s 6= p� r, this gives the equations:

c

p�r

= c

r

� 1 ; c

r

= c� p� r

and hence a contradiction. Thus we must have s = p � r, i.e. B and

e

B are good nodes

with conjugate residues.

Next we consider the residue symbols of � nB and (� n

e

B)

M

. Let the residue symbol of �

be

R

p

(�) =

(

x

1

� � � x

m

y

1

� � � y

m

)

:

14



Since B and

e

B are good (and not of residue 0), their removal from � only has an e�ect on

an entry r resp. p� r in the residue symbol at the i th and j th column (say).

Let us �rst consider the case where the i th column in � is

r

y

, with the marked entry

corresponding to the good node B. If i 6= j, then (�) implies that the i th column in

R

p

(� n B) satis�es:

r � 1

y

=

8

>

>

>

>

>

<

>

>

>

>

>

:

�y

�r

if y 6= 1 + r

or

�r

1� r

if y = 1 + r

In both cases we immediately obtain a contradiction. If i = j, then the i th column in

� is

r

�r

, with the second marked entry corresponding to the good node

e

B, hence this

column is Mullineux-�xed. But by (�), also all other columns in the residue symbol are

Mullineux-�xed, hence so is � { a contradiction.

Next we �rst consider the case where the i th column in � is

x

r

, with the marked entry

corresponding again to the good node B; note that this column then has to be regular. If

i 6= j, then (�) implies now that the i th column in R

p

(� n B) satis�es:

x

r + 1

=

�r

�x

;

immediately giving a contradiction. If i = j, then the i th column in � is now

�r

r

,

hence again this column is Mullineux-�xed. But as before (�) implies that also all other

columns in the residue symbol are Mullineux-�xed, hence so is � { again a contradiction. �

From this we deduce:

Theorem 5.6 Let � be p-regular with � 6= �

M

, and assume that � has no good node A

with � nA = (� n A)

M

.

Then

(i)

soc(C

�

j

A

n�1

) '

M

B

good

C

�nB

and this socle is multiplicity-free.

(ii) Let B be a removable node of � such that � n B is p-regular. Then the multiplicity

of C

�nB

in C

�

j

A

n�1

is given by

h

C

�

j

A

n�1

: C

�nB

i

= ht B +

h

D

�

j

S

n�1

: D

(�nB)

M

i
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Theorem 5.7 (The p-symmetric case.)

Let � be p-regular with � = �

M

.

(i) If N is a removable node of � with � nN = (� nN)

M

, then res N = 0.

(ii) For any good node B there is a good node

e

B with res B = � res

e

B and

� n B = (� n

e

B)

M

:

In particular, a good node A in � of residue 0 satis�es � n A = (� n A)

M

.

(iii) If � has only one good node, then this is of residue 0.

Proof. (i) We consider the content vector c(�) = (c

0

; : : : ; c

p�1

). As � = �

M

, we have

c

i

= c

p�i

for all i. Let N be a removable node of residue r 6= 0; if � nN = (� nN)

M

, then

this implies c

r

� 1 = c

p�r

, and hence a contradiction.

(ii) If B is a good node of � of residue r, then we have

(� n B)

M

= �

M

n B

0

= � nB

0

where B

0

is a good node of � of conjugate residue p � r. If B is good of residue r = 0,

then we must have B

0

= B.

(iii) follows immediately from (ii). �

For the branching of the representations this implies:

Theorem 5.8 Let � be p-regular with � = �

M

. Then we have:

(i) The restrictions of the two conjugate modules C

�+

and C

��

have conjugate socles

(C

�nA

0

)

�

�

M

B good

res B2f1;:::;

p�1

2

g

C

�nB

where the �rst summand only occurs if � has a good node A

0

of residue 0. In

particular, these restrictions are multiplicity-free.

(ii) Let B be a normal node of � such that � n B is p-regular. Then

h

c

C

�

j

A

n�1

: C

�nB

o

i

=

�

2 ht B if (� n B)

M

6= � n B

ht B if (� n B)

M

= � n B

As has been described in x3 we know by Kleshchev's Branching Theorems which irreducible

S

n

-modules split on restriction to S

n�1

. We are now going to use this together with the

description of the residue symbols of JS-partitions given in [3] for dealing with the analogue

of the Jantzen-Seitz question for the alternating groups. We �rst recall the description of

JS-partitions which are �xed under the Mullineux map.

16



Theorem 5.9 Let � be a p-regular partition.

Then � is a JS-partition and a Mullineux �xed point if and only if its residue symbol

R

p

(�) =

(

x

1

� � � x

k

y

1

� � � y

k

)

can be constructed iteratively by the following procedure:

(

x

1

y

1

)

=

(

0

0

)

If the �rst k � 1 columns of the residue symbol are already constructed then we have two

possibilities for a regular extension, namely

(

x

k

y

k

)

=

(

1� y

k�1

y

k�1

� 1

)

or

(

y

k�1

� 1

1� y

k�1

)

and if y

k�1

= 1, then we have furthermore one possibility for a singular extension, namely

(

x

k

y

k

)

=

(

0

1

)

:

The construction rule given in the theorem can be described alternatively by a diagram

in the following way. The JS-partitions which are Mullineux �xed points are obtained by

adding on columns to the residue symbol according to a walk starting at

(

0

0

)

in the

diagram (�) below (we omit the brackets for simpli�cation); the symbol � in the diagram

means that we have a loop at the corresponding node of the graph.

(�)

%

0

0

!

1

�1

!

2

�2

! � � � !

p�3

2

�

p�3

2

�

0

1

l l l � � � l

-

�1

1

 

�2

2

 

�3

3

 � � �  

�

p�1

2

p�1

2

Since the starting column

(

0

0

)

already guarantees a normal node of residue 0, it is clear

that the unique good node of such JS partitions is of residue 0, i.e. that they are of type 0.

Furthermore, Mullineux �xed JS-partitions have empty or square p-cores and the p-core

only depends on the end of the walk in the diagram above (see [3]). Thus we can give the

p-cores of Mullineux �xed JS-partitions by putting the corresponding p-core at the end

point of the walk in the diagram:

% (1) ! (2

2

) ! (3

3

) ! � � � ! (

p�1

2

p�1

2

)

� ; l l l � � � l

- ;  (1)  (2

2

)  � � �  (

p�3

2

p�3

2

)

Theorem 5.10 Let n � 2, p an odd prime, and let � be a p-regular partition of n. Then

the following are equivalent:
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(i) C

�

o

j

A

n�1

is irreducible.

(ii) One of the following holds:

(a) D

�

j

S

n�1

is irreducible.

(b) D

�

j

S

n�1

' D

�(1)

�D

�(1)

M

and �

M

= � but �(1)

M

6= �(1).

(iii) One of the following holds:

(a) � is a JS-partition.

(b) The residue symbol R

p

(�) is obtained by adding on columns along a walk in the

extended diagram (��) below, starting at any regular column

x

�x

, with x 6= 0.

(iii') One of the following holds:

(a) � is a JS-partition which is not Mullineux �xed.

(b) R

p

(�) is obtained by adding on columns along a walk in the diagram (�) above

starting at

0

0

, or along a walk in the extended diagram (��) below, starting at

any regular column

x

�x

, with x 6= 0.

(��)

0

0

!

1

�1

!

2

�2

! � � � !

p�3

2

�

p�3

2

% & % & % & %

�

0

1

l �

0

1

l �

0

1

l � � � �

0

1

l

- . - . - . -

�1

1

 

�2

2

 

�3

3

 � � �  

�

p�1

2

p�1

2

Proof. First we assume (i).

If �

M

6= �, then D

�

j

A

n�1

' C

�

j

A

n�1

is irreducible, so this implies immediately that

D

�

j

S

n�1

is irreducible.

So we now consider a �xed point �

M

= �. Note that C

�

+

and C

�

�

are conjugate repre-

sentations, so by assumption also the conjugate modules C

�

+

j

A

n�1

and C

�

�

j

A

n�1

are both

irreducible.

If D

�

j

S

n�1

is irreducible, there is nothing to prove.

In the other case we deduce by Proposition 5.2 and Kleshchev's Branching Theorem:

D

�

j

S

n�1

' D

�nA

�D

�nB

where A and B are the two good nodes of �. Moreover, since � = �

M

, we must have

(� n A)

M

= � n B. Since we always have a normal node at the �rst corner of a partition,

giving a composition factor of the restriction in the block corresponding to the removal of
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the good node of the same residue, the �rst removable node itself must be good. Hence

we obtain

D

�

j

S

n�1

' D

�(1)

�D

�(1)

M

with �(1) 6= �(1)

M

.

Thus \(i) ) (ii)" is proved.

For \(ii) ) (iii)" we have to show that a non-JS-partition � with � = �

M

, �(1) 6= �(1)

M

and

D

�

j

S

n�1

' D

�(1)

�D

�(1)

M

can be constructed along the diagram (��) above. Note that �(1)

M

= �(g) for some g 6= 1,

corresponding to removing a good node at the g th corner of �

Consider the residue symbol R

p

(�) =

(

x

1

� � � x

k

y

1

� � � y

k

)

.

The condition � = �

M

amounts to the equations

x

i

= �y

i

for regular columns (note that x

i

6=

p�1

2

).

x

i

= 0, y

i

= 1 for singular columns (here we must have i 6= 1).

We know from the decomposition of D

�

j

S

n�1

, that � has only the good nodes � n�(1) and

� n �(g), and no further normal nodes [11].

Note also that the two good nodes must have conjugate residues r 6= �r, say.

Now consider the Mullineux sequence for �:

M(�) = 0� x

1

+ (x

1

+ 1)� (�x

1

)+ (�(x

1

+ 1))�

x

2

+ (x

2

+ 1)� y

2

+ (y

2

+ 1)�

.

.

.

x

k

+ (x

k

+ 1)� y

k

+ (y

k

+ 1)�

If x

1

= 0, then y

1

+ = (�x

1

)+ gives a normal node of residue 0 (hence the good one of

residue 0), contradicting the above properties of our two good nodes.

Hence x

1

6= 0 is the �rst good node. Since x

1

6=

p�1

2

, we have �x

1

6= x

1

+ 1, and hence

�x

1

= y

1

is the next good node. Since we then have no further normal node, we must

have x

2

= x

1

+ 1 or �(x

1

+ 1) or 0.

If x

2

= 0, then y

2

= 0 is not possible, but only y

2

= 1, i.e. a singular column, and then

the situation for the next column in the residue symbol is as before.

Thus we have a certain number of singular columns

n

0

1

o

, and then the next regular column

n

x

i

2

y

i

2

o

has to satisfy x

i

2

= x

1

+ 1 or �(x

1

+ 1), y

i

2

= �x

i

2

.

Then again, we may have a number of singular columns, and then the next regular column

n

x

i

3

y

i

3

o

satis�es x

i

3

= x

i

2

+ 1 or �(x

i

2

+ 1), y

i

3

= �x

i

3

.

This repeats, so we obtain indeed a walk in the extended diagram (��), starting at a reg-

ular column di�erent from

0

0

.

Now to \(iii) ) (i)".

Case 1. Assume � is a JS-partition with � 6= �

M

.
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If �(1) 6= �(1)

M

, then clearly

D

�

j

A

n�1

' D

�(1)

j

A

n�1

' C

�

j

A

n�1

is irreducible.

So we may assume now: �(1) = �(1)

M

.

Consider the residue symbol R

p

(�) =

(

x

1

� � � x

k

y

1

� � � y

k

)

.

By Theorem 3.6 we know that the residue symbol R

p

(�(1)) of �(1) can only be one of

(

x

1

� 1 � � � x

k

y

1

� � � y

k

)

or

(

x

1

� � � x

k

y

1

+ 1 � � � y

k

)

or

(

x

2

� � � x

k

y

2

� � � y

k

)

where

(

x

1

� 1

y

1

)

M

=

(

x

1

� 1

y

1

)

resp.

(

x

1

y

1

+ 1

)

M

=

(

x

1

y

1

+ 1

)

resp. x

1

= y

1

= 0

and furthermore

(

x

1

y

1

)

M

6=

(

x

1

y

1

)

and all other columns are Mullineux-�xed and hence of the form

(

x

�x

)

or

(

0

1

)

:

By these conditions, the second and third possibility for the residue symbol of �(1) are

immediately excluded; in particular, this implies that the type � of � satis�es � 6= 0. So

we have the following possibilities now for the �rst column of R

p

(�):

(

x

1

y

1

)

2

((

�

�+ 1

)

; � 6= 0 ;

(

�

0

)

; � 6= 0; p� 1 ;

(

0

�

)

; � 6= 0; 1

)

Then R

p

(�(1)) starts with one of

(

�� 1

�+ 1

)

;

(

�� 1

0

)

;

(

0

�+ 1

)

respectively; but the �rst one is not Mullineux-�xed, the second only for � = 1 and the

third only for � = p � 1, hence R

p

(�) has to start with

(

1

0

)

and � = 1, or with

(

0

p� 1

)

and � = p� 1.

The restrictions for the further columns do not allow any regular extensions from these

�rst columns. But also, the construction rules for singular columns do not give Mullineux

�xed columns as required. Hence we must have

R

p

(�) =

(

1

0

)

or

(

0

p� 1

)
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which corresponds to � = (2) resp. � = (1

2

), and then (i) obviously holds.

Case 2. We assume now that � is a JS-partition with � = �

M

.

Then � is of type 0, and it is immediately seen that also �(1) = �(1)

M

, and then (i) holds.

Case 3. Assume now that � is not a JS-partition, so � is constructed along a path in

diagram (��), in particular � = �

M

.

Reversing the arguments for (ii) ) (iii), we have

D

�

j

S

n�1

' D

�nA

�D

�nB

where A, B are good nodes of � of conjugate residues 6= 0, and (� n A)

M

= � nB.

Then C

�

o

j

A

n�1

' D

�nN

j

A

n�1

, N 2 fA;Bg, and hence this restriction is irreducible.

The equivalence of (iii) and (iii') is clear. �

From the proof of the Theorem one easily deduces:

Corollary 5.11 We assume the notation of the Theorem. Then if C

�

o

j

A

n�1

is irreducible,

we have C

�

o

j

A

n�1

' C

�(1)

o

.

Remarks. (i) In part (iii) of the Theorem above, it would be nice to have a description

in terms of the parts of � as the one available for JS-partitions.

(ii) We have already observed that JS-partitions have special p-cores [3]; also the \almost

JS-partitions" constructed along a path in (��) (resp. also those constructed in a more

general fashion in the construction diagram for JS-partitions [3]) have special cores which

depend in an easy way on the start and the end of the path in the diagram.

6 Branching at p = 2

As we have already seen in section 4, the behaviour of the A

n

-representations at char-

acteristic 2 is very much di�erent from that at odd primes. While in some respects the

combinatorics of S-partitions is easier than that of Mullineux �xed points, the 2-modular

representation theory presents more di�culties since A

n

is a normal subgroup of index

p = 2 in S

n

.

First we give a description of S-partitions (see Theorem 4.1) in terms of residue symbols

as an analogue of the description of Mullineux �xed points via residue symbols.

Proposition 6.1 The 2-residue symbols of S-partitions are constructed by a walk in the

following directed graph, where we start at one of the marked columns and we may loop
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around any of the three vertices in the graph:

�

0

0

!

 

1

1

�

&- %.

0

1

S

In other words, the residue symbols start with a regular column, and they have no column

1

0

.

Proof. As long as the smallest part of � is at least 2, the 2-rim consists of horizontal

dominoes and thus is 2-singular. In removing such singular 2-rims from a given S-partition

� we again obtain S-partitions. Doing this as long as possible, we reach an S-partition,

which we may assume to be of even length by adding a part 0 if necessary. This S-partition

then ends on one of the following pairs of parts:

1; 0 2; 1 3; 1

Then in the next step removing the 2-rim leads to the following corresponding columns in

the residue symbol:

0

0

1

1

1

1

and the partition obtained after the removal is again an S-partition.

So S-partitions can be built up along residue symbols. As we can never start a residue

symbol with the singular column

0

1

, and since

1

0

is not an S-partition, the start has to

be at one of the two marked columns.

Using the list of end pairs given above, it is then easily seen that at each step all three

columns in the diagram above give possible extensions to an S-partition. �

Corollary 6.2 Let � be an S-partition with residue symbol R

2

(�). Let m

0

be the number

of columns

0

0

in R

2

(�), resp. let m

1

be the number of columns

1

1

.

Then the 2-core of � is given by

�

(2)

=

8

>

<

>

:

(2(m

0

�m

1

)� 1; 2(m

0

�m

1

)� 2; : : : ; 2; 1) if m

0

�m

1

> 0

(2(m

1

�m

0

); 2(m

1

�m

0

)� 1; : : : ; 2; 1) if m

1

�m

0

> 0

; if m

0

= m

1

Proof. Note that the p-content c = (c

0

; c

1

; : : : ; c

p�1

) of a partition determines its p-

core. The associated ~n-vector is given by ~n = (c

0

� c

1

; c

1

� c

2

; : : : ; c

p�2

� c

p�1

; c

p�1

� c

0

).

By [2] we can easily compute the ~n-vector of � via its residue symbol. Hence we obtain the

2-core of the partition � given via its residue symbol R

2

(�) as above; we omit the details. �
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Lemma 6.3 Let � be a 2-regular partition.

(a) If � is an S-partition and A is a removable node of � such that � n A is 2-regular,

then we have:

� nA is an S-partition if and only if res A = 0.

(b) If � is not an S-partition, then there is at most one node A in � such that � n A is

an S-partition, and such a node is of residue 1.

Proof. By de�nition, the parts of S-partitions come in one of the following pairs (pictured

in the 2-residue diagram):

0

0� � �

� � � 1

1� � �

� � � 0

1� � �

� � �

From this, (a) and (b) easily follow. �

Analogous to the notation at odd characteristic, we let C

�

o

= C

�

if � is not an S-partition

and C

�

o

2 fC

�

+

; C

�

�

g if � is an S-partition.

For the A

n

-representations at characteristic 2 we can now deduce:

Theorem 6.4 Let � be a 2-regular partition of n.

(a) Assume � is an S-partition of n. Then the module soc(C

�

�

j

A

n�1

) has a constituent

C

(�nA

0

)

�

if A

0

is a good node of residue 0, and it has a constituent C

�nA

1

if A

1

is a

good node of residue 1.

Furthermore, if B is a removable node with � nB 2-regular, then

h

c

C

�

j

A

n�1

: C

�nB

o

i

=

�

ht B if B is normal

0 else

and ht B is even for all normal nodes B of residue 1 such that � n B is 2-regular.

(b) Assume � is not an S-partition. Then the module soc(C

�

j

A

n�1

) has a constituent

C

�nA

0

if A

0

is a good node of residue 0, and it has a constituent C

�nA

1

if A

1

is a

good node of residue 1 with �nA

1

not an S-partition resp. a constituent

d

C

�nA

1

if A

1

is a good node of residue 1 with � nA

1

an S-partition.

The latter occurs only if � is almost an S-partition except for one pair of parts

(2k; 2k � 2), with A

1

at the end of the �rst of these two parts.

Furthermore, if B is a removable node with � nB 2-regular, then

h

C

�

j

A

n�1

: C

�nB

o

i

=

�

ht B if B is normal

0 else

The case C

�nB

o

= C

�nB

�

arises only if � is almost an S-partition except for one

pair of parts of the form (2k; 2k�2) or (2k; 2k�3), with B at the end of the part 2k

normal of residue 1.

23



For p = 2, the characterization of the irreducible restrictions is not as complete as for odd

primes p, but there are at least very strong combinatorial restrictions. First we compare

the A

n

-situation with the S

n

-situation:

Theorem 6.5 Let � be a 2-regular partition. Then the following are equivalent:

(i) C

�

o

j

A

n�1

is irreducible.

(ii) One of the following holds:

(a) D

�

j

S

n�1

is irreducible and � 6= (2l; 2l � 2) if n � 2 (mod 4).

(b) D

�

j

S

n�1

'

D

�(2)

D

�(2)

(where this denotes a uniserial module with top and socle

D

�(2)

), and � = (�

1

; : : : ; �

k

) is an S-partition with �

1

even.

Proof. First we assume (i).

Case 1. Suppose � is not an S-partition; hence D

�

j

A

n�1

' C

�

j

A

n�1

is irreducible, and so

D

�

j

S

n�1

' D

�(1)

must be irreducible, i.e. � is a JS-partition. Furthermore, as D

�(1)

j

A

n�1

is irreducible, also �(1) is not an S-partition. Thus � is not of the form (2l; 2l � 2) for

some l > 1, as was to be proved in this case.

Case 2. Suppose � is an S-partition; hence

D

�

j

A

n

' C

�

+

� C

�

�

with C

�

+

6' C

�

�

. Now

D

�

j

A

n�1

' C

�

+

j

A

n�1

� C

�

�

j

A

n�1

a direct sum of two conjugate irreducibles, hence we have one of the following two possi-

bilities:

(a) � is a JS-partition and �(1) is an S-partition.

(b) D

�

j

S

n�1

� 2 �D

�

, where � is not an S-partition.

Case (a). As � = (�

1

; : : : ; �

k

) is a JS-partition, we have �

1

� �

2

� : : : � �

k

(mod 2).

Since � is also an S-partition, we have:

�

2j�1

� �

2j

= 2 and �

1

� �

2

� : : : � �

k

� 1 (mod 2)

But then �(1) is always an S-partition, so this condition can be omitted in (a). Note also

that in this case again � = (2l; 2l � 2) does not occur.

Case (b). Since the socle of D

�

j

S

n�1

is multiplicity-free, the module D

�

j

S

n�1

can not be

completely reducible. Hence we must have

soc (D

�

j

S

n�1

) ' D

�(i)

;

where � = �(i) = � n A, A being the only good node of �. Furthermore, the Branching

Theorem tells us that there is no normal node of residue 6= res A, and there is exactly one
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other normal node B of residue res A; moreover, for this normal node B, the partition

� n B is not p-regular and we have

D

�

j

S

n�1

'

D

�(i)

D

�(i)

Since the �rst removable node of � is always normal, this must be the normal node B. Note

also that �(i) is not an S-partition, since otherwise we have a contradiction to condition

(i) of the theorem.

Hence we have �

1

� �

2

= 1, so res (� n �(1)) = res (� n �(2)), and thus � n �(2) is also

normal, and hence it has to be the good node A.

Thus we must have i = 2, i.e.

D

�

j

S

n�1

'

D

�(2)

D

�(2)

as claimed. Furthermore, as �(2) is not an S-partition, the S-partition � must start with

an even part.

Now assume that (ii) is satis�ed.

Case 1. First suppose that D

�

j

S

n�1

is irreducible, so � is a JS-partition, but � is not of

the form (2l; 2l � 2) for some l > 1.

If � is an S-partition, then also �(1) is an S-partition by the same argument as in Case (a)

above. Hence

(D

�

j

S

n�1

)

A

n�1

' D

�

j

A

n�1

' C

�

+

j

A

n�1

� C

�

�

j

A

n�1

' D

�(1)

j

A

n�1

' C

�(1)

+

� C

�(1)

�

and so both C

�

+

j

A

n�1

and C

�

�

j

A

n�1

are irreducible.

If � = (�

1

; : : : ; �

k

) is not an S-partition, then also �(1) is not an S-partition. To see this,

assume that �(1) = (�

1

� 1; : : : ; �

k

) is an S-partition. As � is a JS-partition we have

�

1

� �

2

� : : : � �

k

(mod 2), and hence �

1

+ �

2

� 2 (mod 4), �

2j�1

+ �

2j

6� 2 (mod 4) for

j 6= 1, and �

2j�1

� �

2j

= 2 for all j.

Hence we must have �

j

� 0 (mod 2) for all j, but then �

2j�1

+ �

2j

� 2 (mod 4) for all j,

and this implies that � has only two parts, i.e. � = (2l; 2l�2). But this case was excluded

in condition (ii) of the theorem.

Having shown all these properties of � and �(1), it is now clear that condition (i) of the

theorem is satis�ed.

Case 2. We now consider the situation where � is an S-partition with even �rst part �

1

and D

�

j

S

n�1

'

D

�(2)

D

�(2)

.

Here � = (�

1

; : : : ; �

k

) must satisfy �

1

� �

2

= 1, �

1

even, and then �(2) = (�

1

; �

1

� 2; : : :)

is not an S-partition. Hence

D

�

j

A

n�1

'

D

�(2)

D

�(2)

j

A

n�1

� 2 � C

�(2)
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and thus

C

�

+

j

A

n�1

' C

�

�

j

A

n�1

' C

�(2)

is irreducible, as was to be proved. �

Remark. Note that the proof of the Theorem tells us exactly what the restriction

C

�

o

j

A

n�1

is in the cases when it is irreducible.

For a partition � = (�

1

; : : : ; �

m

) of n into distinct parts we de�ne its doubling to be the

partition

dbl(�) =

��

�

1

+ 1

2

�

;

�

�

1

2

�

;

�

�

2

+ 1

2

�

;

�

�

2

2

�

; : : : ;

�

�

m

+ 1

2

�

;

�

�

m

2

��

:

Via the process of regularisation (see [6]) we then obtain a 2-regular partition dbl

2

(�) :=

dbl(�)

R

.

Proposition 6.6 Let p = 2, and let � be a 2-regular partition satisfying one (and hence

both) of the conditions in the Theorem above.

Then � is a JS-partition 6= (2l; 2l � 2) or it is of the form � = dbl

2

(�), where � is a

partition of n into distinct parts satisfying �

i

� �

i+1

> 4 for i = 1 : : : ;m � 1, and the

residues of �

1

; �

2

; : : : modulo 4 follow a path in the diagram below, starting at 3:

\

0

% &

3 $ 1

Proof. If � is not a JS-partition we have already seen in the proof of the Theorem that

� has the following properties:

(i) � is an S-partition.

(ii) �

1

even.

(iii) �

1

� �

2

= 1.

(iv) The �rst two removable nodes are the only normal nodes of �.

Property (i) immediately implies that � = dbl

2

(�) for some 2-regular partition � =

(�

1

; �

2

; : : :) with �

i

� �

i+1

� 4 and �

i

� �

i+1

> 4 if �

i

� 0 (mod 4), and �

i

6� 2 (mod 4)

for all i. By properties (ii) and (iii), we have �

1

� 3 (mod 4).

Consider the sequence r

1

; r

2

; : : : of end residues of the rows of � in its 2-residue diagram.

By properties (ii) and (iv) we have:

0 � jfj � i j r

j

= 1gj � jfj � i j r

j

= 0gj � 2

Since a part �

i

� 0, 1 or 3 (mod 4) leads to the residue pairs (0; 1), (0; 0) resp. (1; 1), the

condition above easily translates into the admissible walks in the triangle graph above,
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and it is clear that then �

i

� �

i+1

> 4 must hold for all i. �

Remarks. (a) There are examples of the phenomenon occurring in part (ii)(b) of

Theorem 6.5 above:

For all l we have

D

(2l;2l�1)

j

S

2l�2

'

D

(2l;2l�2)

D

(2l;2l�2)

This follows by using e.g. [1].

There are also such examples with partitions with more than 2 parts:

D

(6;5;1)

j

S

11

'

D

(6;4;1)

D

(6;4;1)

D

(6;5;3;1)

j

S

14

'

D

(6;4;3;1)

D

(6;4;3;1)

(b) It is not clear whether the combinatorial condition in the Proposition characterizes the

partitions giving irreducible A

n

-restrictions, thus providing an analogue of (iii) in Theo-

rem 5.10.

(c) By the description of the partitions given in the Proposition above, it is clear that

we can have the irreducible restrictions of modular A

n

-representations of the second type

only if n � 0 or 3 (mod 4), and the corresponding irreducible representations belong to

the principal 2-block resp. to the 2-block with 2-core (2; 1).
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