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Abstract

From character relations for symmetric groups or Hecke algebras such as the

Murnaghan-Nakayama formula and the Jantzen-Schaper formula, we obtain a lower

bound for the diagonal entries of Cartan matrices. Moreover, we prove an analogous

character relation for covering groups of symmetric groups and obtain a similar lower

bound. As an application, we show in these situations that for wild blocks simple

modules must lie at the end of the Auslander-Reiten quiver, which is equivalent to the

fact that the hearts of projective indecomposable modules are indecomposable.
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1 Introduction

Let S

n

be the symmetric group on n letters. One of the purposes of this paper is to

obtain information about the decomposition numbers for S

n

and then a lower bound for

the diagonal entries of the Cartan matrix. This is obtained by applying as one main tool

an equivalent version of the Murnaghan-Nakayama Rule, formulated as relations on the

values of irreducible characters of S

n

(see 21.7 in [8] or Theorem 2.1 below), and by using

in critical cases of blocks of small weight the character value relations coming from the

Jantzen-Schaper formula ([9]). Though the bound for the diagonal of the Cartan matrix is

rough, it can be used to show that all simple modules in wild blocks of S

n

lie at the end of

the stable Auslander-Reiten graph. Auslander-Reiten theory is now one of the main tools

in the representation theory of algebras. It is quite interesting that character relations have

some consequences on representation theory of block algebras. A similar conclusion can

be obtained also for Iwahori-Hecke algebras of type A, since analogues of the above results

and approach are available also for representations of these Hecke algebras. Therefore, we

state the assertions in the setting of Hecke algebras instead of the group algebras of the

symmetric groups.

We deal also with the double covers

~

S

n

of S

n

. However, it seems that character

relations like those coming from the Murnaghan-Nakayama Rule can not be found in the

literature for the spin characters

~

S

n

. Thus, another purpose of this paper is to provide

such relations for the spin characters as well. Starting from there, we then obtain similar

results as in the case of S

n

. Finally, we also treat the cases of the alternating groups and

their double cover.

After giving some background materials in Section 2, we prove the character relations

for

~

S

n

in Section 3. Using those relations a lower bound for the diagonal entries of the

Cartan matrix is obtained in Section 4. It is applied to obtain the positions of simple

modules in the Auslander-Reiten graph in Section 5.
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2 Preliminaries: notation and background results

We introduce some notation and some fundamental background material on representa-

tions of Hecke algebras and

~

S

n

. For details, we refer the reader to [4], [10] and [19].

We denote by P (n) the set of partitions of n. For � = (�

1

; �

2

; � � � ; �

`

) 2 P (n), ` = `(�)

denotes the length of the partition, i.e., the number of (non-zero) parts of �. For � 2 P (n),

j�j = n. We usually identify a partition with the corresponding Young diagram

Y (�) = f(i; j) 2 IN

2

j 1 � i � `(�); 1 � j � �

i

g

which consists of rows of symbols called nodes; more precisely, it has �

1

nodes in the �rst

row, �

2

nodes in the second row, � � � , �

`

nodes in the last row. The node in the ith row and

jth column of it is called its (i; j)-node. A hook at the (i; j)-node in Y (�) consists of the

(i; j)-node together with the remaining �

i

� j nodes to the right of it and the remaining

nodes below it. The length of a hook is the number of nodes in it, and if its length is r,

then it is called an r-hook. The arm length of the hook at the node (i; j) is �

i

� j + 1,

and if it is an r-hook, then its leg length is r � �

i

+ j. For a hook h we denote its leg

length by L(h). A removal of an r-hook h from � means taking o� the nodes in h and then

moving up each (i

0

; j

0

)-node in � which is below h to the (i

0

� 1)th row and the (j

0

� 1)th

column. Thus the resulting Young diagram corresponds to a partition � of n� r. Though

Y (�) n Y (�) is usually called a skew r-hook, we describe the above situation simply by

� n � = h.

Now we give the de�nition of Hecke algebras. Let R be a principal ideal domain and

q an invertible element in R. The Iwahori-Hecke algebra H

R

of type A

n�1

is an R-free

R-algebra with basis fT

w

jw 2 S

n

g, where multiplication is given by

T

w

T

v

=

�

T

wv

if

~

`(wv) =

~

`(w) + 1;

qT

wv

+ (q � 1)T

w

otherwise,

where v is a basic transposition in S

n

and w 2 S

n

, and

~

` : S

n

! IN

0

is the standard length

function with respect to the basic transpositions. (See [4] or [9] for details.) It is a q-

analogue of RS

n

(take q = 1), and ifR is a �eld, thenH

R

is a symmetric algebra. Let } be a

non-zero prime ideal of R and e the smallest positive integer such that 1+q+q

2

+� � �+q

e�1

2

}. If no such integer exists, set e =1. We assume that, for all m,

1 + q + q

2

+ � � �+ q

m

6= 0 in R:

For each � 2 P (n), one can de�ne an H

R

-module S

�

, which is called the Specht

module corresponding to �. We denote by [�] the character of S

�

. It is well known that

f[�]j� 2 P (n)g forms a complete set of irreducible characters of H

K

, where K is the �eld

of fractions of R. For each � 2 P (n), the reduction modulo } of S

�

gives a module S

�

over

H

R=}

. We are interested in the following, which is a version of the Murnaghan-Nakayama

Rule.

Theorem 2.1 ([8] 21.7, [9] 4.28) Let � be a partition of n� e. Then in the Grothendieck

group of H

R=}

we have

X

�2P (n);

�n�=h e-hook

(�1)

L(h)

S

�

= 0 :
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If q = 1, then H is the group algebra of S

n

and e = Char(R=}). The above equation

yields vanishing relations for the characters of S

n

on the set of e-regular elements in S

n

.

In fact, it even follows that it is zero on all classes except possibly those containing an

e-cycle. In the next section, we will prove a similar assertion for the double covers of S

n

,

but here we will only introduce the necessary notation and recall some results that are

needed later.

First we have to introduce some notation for this context. We let

e

S

n

denote a double

cover of S

n

, i.e. a non-split extension of S

n

by a central subgroup of order 2. There are two

such double covers (except for n = 6, when they are isomorphic) but their representation

theory is the same in all respects we investigate here.

The set of partitions of n into odd parts only is denoted by O(n), and the set of

partitions of n into distinct parts is denoted by D(n).

We write D

+

(n) resp. D

�

(n) for the sets of partitions � in D(n) with n � `(�) even

resp. odd; the partition � is then also called even resp. odd.

Apart from the irreducible characters coming from S

n

, we also have faithful irreducible

characters of

e

S

n

, which are called spin characters. They are non-zero only on conjugacy

classes of

~

S

n

corresponding to elements of S

n

of cycle type in O(n) or D

�

(n). These

classes split into two classes on the level of

e

S

n

, but the values of a spin character on two

such associate classes only di�er by a sign.

The associate classes of spin characters of

~

S

n

are labelled canonically by the partitions

in D(n). For each � 2 D

+

(n) there is a self-associate spin character h�i = sgn h�i, and to

each � 2 D

�

(n) there is a pair of associate spin characters h�i; h�i

0

= sgn h�i. We write

h�i

o

for a choice of associate, and

c

h�i =

�

h�i , if � 2 D

+

(n)

h�i+ h�i

0

, if � 2 D

�

(n)

"

�

=

�

1 , if � 2 D

+

(n)

p

2 , if � 2 D

�

(n)

The rôle played by hooks and hook partitions in the case of S

n

characters is taken on

by bars and bar partitions in the case of the spin characters of the covering groups; here

we mean by a bar partition (or bar diagram) just a partition (resp. diagram) of the form

(x� y; y), 0 � y �

�

x�1

2

�

, i.e. a partition with at most two distinct parts.

As we have described above, we only have to know the spin character values on classes

of type O(n) and of type D

�

(n). On any D

�

class, only the two associate spin characters

with the cycle type as their partition label have a non-zero value, and this is given by an

easy formula. On the classes of type O, by the work of Morris [16] there is a recursion

formula for the spin character values available which is an analogue of the Murnaghan-

Nakayama formula (here the hooks are replaced by bars).

In [21], Stembridge introduced a projective analogue of the outer tensor product, called

the reduced Cli�ord product, and proved a shifted analogue of the Littlewood-Richardson

rule which we will need in the sequel. To state this, we �rst have to de�ne some further

combinatorial notions.

Let A

0

be the ordered alphabet f1

0

< 1 < 2

0

< 2 < :::g. The letters 1

0

; 2

0

; : : : are said

to be marked, the others are unmarked. The notation jaj refers to the unmarked version
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of a letter a in A

0

. To a partition � 2 D(n) we associate a shifted diagram

Y

0

(�) = f(i; j) 2 IN

2

j 1 � i � `(�); i � j � �

i

+ i� 1g

A shifted tableau T of shape � is a map T : Y

0

(�) ! A

0

such that T (i; j) � T (i + 1; j),

T (i; j) � T (i; j + 1) for all i; j; each column has at most one k 2 f1; 2; : : : g; each row has

at most one k

0

2 f1

0

; 2

0

; : : : g. For k 2 f1; 2; : : : g, let c

k

be the number of nodes (i; j) in

Y

0

(�) such that jT (i; j)j = k. Then we say that the tableau T has content (c

1

; c

2

; : : : ).

Analogously, we de�ne skew shifted diagrams and skew shifted tableaux of skew shape

� n � if � is a partition with Y

0

(�) � Y

0

(�). For a (possibly skew) shifted tableau S we

de�ne its associated word w(S) = w

1

w

2

� � � by reading the rows of S from left to right and

from bottom to top. By erasing the marks of w, we obtain the word jwj.

Given a word w = w

1

w

2

: : : , we de�ne

m

i

(j) = multiplicity of i among w

n�j+1

; : : : ; w

n

, for 0 � j � n

m

i

(n+ j) = m

i

(n) + multiplicity of i

0

among w

1

; : : : ; w

j

; , for 0 < j � n

This function m

i

corresponds to reading the rows of the tableau �rst from right to left

and from top to bottom, counting the letter i on the way, and then reading from bottom

to top and left to right, counting the letter i

0

on this way.

The word w satis�es the lattice property if, whenever m

i

(j) = m

i�1

(j), then

w

n�j

6= i; i

0

, if 0 � j < n

w

j�n+1

6= i� 1; i

0

, if n � j < 2n

The shifted analogue of the Littlewood-Richardson rule is now given as follows:

Theorem 2.2 ([21], 8.1 and 8.3) Let � 2 D(k), � 2 D(n � k), � 2 D(n). Form the

reduced Cli�ord product h�i �

c

h�i. Then we have

((h�i �

c

h�i) "

~

S

n

; h�i) =

1

"

�

"

�[�

2

(`(�)+`(�)�`(�))=2

f

�

��

;

unless � is odd and � = �[� (multiset partition union). In that latter case, the multiplicity

of h�i is 0 or 1, according to the choice of associates.

The coe�cient f

�

��

is the number of shifted tableaux S of shape � n � and content �

such that the tableau word w = w(S) satis�es the lattice property and the leftmost i of jwj

is unmarked in w for 1 � i � `(�).

3 Vanishing relations for spin characters

In this section, we derive vanishing relations for spin characters by using Morris' recursion

formula. First, we have to provide some auxiliary results.

Lemma 3.1 Let r; n 2 IN, r � n. Let � 2 D(n�r), � 2 D(r) be partitions. Then, unless

� and � are bar diagrams, the character

h�i � h�i := (h�i �

c

h�i) "

~

S

n

contains no constituent h�i where � is a bar diagram.
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Proof. This follows directly from Theorem 2.2. �

Lemma 3.2 Let r; n; b; t 2 IN, r < n, b � t. De�ne

s

b;t

(x) =

�

0 , if x = b or x = t

1 , else

and s

t

= s

0;t

:

Then the following holds:

(i) Let r � n� r. Then

hn� ri � hri =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

r

X

x=0

2

s

r

(x)

\

hn� x; xi+ non-bar terms , if n even, n 6= 2r

r�1

X

x=0

2

s

r

(x)

\

hn� x; xi+ non-bar terms , if n even, n = 2r

r�1

X

x=0

\

hn� x; xi+ hn� r; ri

o

+ non-bar terms , if n odd

Note that for n odd, the last term depends on the choice of associates.

(ii) Let a 2 IN with a < n� r < 2a. Set e = max(0; n� 2a). Then

ha; n� r � ai � hri =

8

>

>

>

>

<

>

>

>

>

:

r

X

x=e

2

s

e;r

(x)

\

ha+ x; n� a� xi+ non-bar terms , if n 6= 2a

r

X

x=1

2

s

r

(x)

\

ha+ x; n� a� xi+ non-bar terms , if n = 2a

(iii) Let a; b 2 IN with a < n� r < 2a, b < r < 2b. Then

ha; n� r � ai � hb; r � bi =

8

>

>

>

<

>

>

>

:

2ha+ b; n� (a+ b)i+ non-bar terms , if 2a = n� r + 1; 2b = r + 1

2

�(n)

�

e

X

x=0

2

s

e

(x)

\

ha+ b� x; n� (a+ b) + xi , else

+non-bar terms

for some e > 0 (which is explicitly determined below), where �(n) = 1 or 0 depending

on n being even or odd, respectively.

Proof. (i) Assume �rst that n is odd. Then we have r < n� r and (n � r; r) 2 D

�

(n),

so by [21] we know that (hn� ri � hri; hn� r; ri) = 1 with a suitable choice of associates

(the associate character hn� r; ri

0

then does not appear). Furthermore, the only other

possible bar constituents in hn� ri� hri are bar partitions � = (n�x; x) with 0 � x < r.

For these we have by [21], 8.1 and 8.3:

(hn� ri � hri; h�i) = (hn� ri � hri; h�i

0

) =

(

f

�

(n�r)(r)

, if x = 0

1

2

� f

�

(n�r)(r)

, if 0 < x < r
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where f

�

= f

�

(n�r)(r)

counts the number of shifted tableaux of shape �n(n�r) and contents

(r). Because of the condition that the tableau word has its left-most 1 unmarked we have

f

�

=

�

1 , if x = 0

2 , if 0 < x < r

Hence all coe�cients of these constituents are 1, i.e. we have proved the assertion in the

case of odd n.

Now assume that n is even. Again, using [21], we have in this case (hn� ri�hri; hni) =

(hn� ri � hri; hni

0

) = 1, and for the bar partitions (n � x; x) with 0 < x � r the multi-

plicities are

(hn� ri � hri; hn� x; xi) =

�

1 , if x = r; n 6= 2r

2 , if 0 < x < r

This gives the assertion in the case when n is even.

(ii) Let a 2 IN with a < n� r < 2a and set � = (a; n � r � a), � = (r). We consider

again the multiplicity of a bar partition � = (n � x; x) in h�i � h�i. It is easy to check

that in this situation one always has "

�

6= "

�[�

, hence the multiplicity is

1

"

�

"

�[�

2

(`(�)+`(�)�`(�))=2

f

�

�;�

= f

�

�;�

where f

�

�;�

counts the number of shifted tableaux of shape � n � and contents � = (r).

Clearly, this number is zero if a > n� x or if n� a > n � x. If a � n� x we obtain for

these tableaux counts:

f

�

�;�

=

8

<

:

1 , if � = (a+ r; n� r � a) , or 2a > n and � = (a; n� a) ;

or 2a < n and � = (n� a; a)

2 , if � = (n� x; x) with max(a; n� a) < n� x < a+ r and x < n� x

This implies the assertions in (ii).

(iii) Now let a; b 2 IN with a < n � r < 2a, b < r < 2b, and set � = (a; n � r � a),

� = (b; r�b). W.l.o.g. assume b � a. Again, we consider the multiplicity of a bar partition

� = (n� x; x), x < n < 2x, in h�i � h�i. In this case this is

1

"

�

"

�[�

2

(`(�)+`(�)�`(�))=2

f

�

�;�

=

�

2f

�

�;�

, if n is even

f

�

�;�

, if n is odd

where again f

�

�;�

counts the number of shifted tableaux of shape � n � and contents

� = (b; r � b).

The highest bar partition occurring with non-zero multiplicity is � = (a+b; n�(a+b)),

for which we have f

�

�;�

= 1. Then, for all bar partitions (a + b� x; n� (a + b) + x) with

0 < x < min(b; 2a + r � n) and 2x < 2(a + b) � n � 1 and x < 2b � r we have f

�

�;�

= 2.

The lowest bar partition corresponds to

x =

�

min(b; 2a+ r � n; a+ b� k � 1; 2b � r) , if n = 2k + 1

min(b; 2a+ r � n; 2b� r) , if n = 2k and x � a+ b� k
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where f

�

�;�

= 1. So we have an interval of bar partitions with coe�cients a common fac-

tor 1 resp. 2 depending on n being odd or even, respectively, times a contribution 1 for

the end terms and 2 for the interior terms, unless we are in the case n even, r odd and

2a = n� r + 1, 2b = r + 1, where we only have one bar partition (a+ b; n� (a+ b)) as a

constituent, with multiplicity 2. �

Lemma 3.3 Let r; n 2 IN, r � n, and assume that r is odd. Let � 2 D(n � r) be a

partition. Then the generalized character

(h�i �

c

[

r

2

]

X

i=0

(�1)

i

\

hr � i; ii) "

~

S

n

is zero on all classes corresponding to partitions not containing r as a part.

Proof. Set 	 =

[

r

2

]

X

i=0

(�1)

i

\

hr � i; ii. By de�nition, h�i �	 is zero outside

e

S

(n�r;r)

.

Consider the restriction of 	 to

e

S

(r�t;t)

for 0 < t < r.

Take � 2 D(r � t), � 2 D(t). Then

(h�i � h�i;	) =

[

r

2

]

X

i=0

(�1)

i

(h�i � h�i;

\

hr � i; ii)

If � or � is not a bar partition, then this sum is zero by Lemma 3.1. So we may now assume

that � and � are bar partitions. Since r is odd, by Lemma 3.2 the bar diagrams in h�i�h�i

form an interval of length � 2 with coe�cients (up to a common factor 2) contributing to

the sum above either 1� 2 + 2� 2� : : :� 2 + 1 = 0 or 1� 2 + 2� 2� : : :+ 2� 1 = 0 or

1� 1 = 0.

Hence 	 is zero on all classes except possibly those corresponding to partitions with r

as a part. �

Note that if z = �

r

2

e

S

r

denotes an element of type (r) then hr � i; ii(z) = (�1)

i

, so

in this case

	(z) = 1 +

[

r

2

]

X

i=1

(�1)

2i

2 = r :

We are now able to prove the vanishing result for spin characters.

Theorem 3.4 Let r; n 2 IN, r � n, and assume that r is odd. Let � 2 D(n � r) be

a partition. If r is not a part of �, then set �

0

= � [ frg and let b

0

= �

0

n � be the

corresponding r-bar of �

0

.
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Then the generalized character � of

e

S

n

given by

� =

8

>

>

>

>

>

<

>

>

>

>

>

:

X

�2D(n);�6=�

0

�n�=b r-bar

(�1)

L(b)

c

h�i+ (�1)

L(b

0

)

h�

0

i , if r 62 � 2 D

�

(n� r)

X

�2D(n)

�n�=b r-bar

(�1)

L(b)

c

h�i , else

is zero on all classes except possibly those corresponding to partitions with r as a part.

Proof. Set 	 =

[

r

2

]

X

i=0

(�1)

i

\

hr � i; ii as before. De�ne the coe�cients a

�

�

for all � 2 D(n) by

(h�i �

c

h	i) "

~

S

n

=

X

�2D(n)

�6=�

0

a

�

�

c

h�i+ a

�

0

�

h�

0

i

where we set a

�

0

�

= 0 if r 2 � (note that the form of the product follows from [21]).

For any � 2 D(r), � 2 D(n� r) let

a

�

�;�

:= (h�i; (h�i �

c

h�i) "

~

S

n

) = (h�i #

~

S

(r;n�r)

; h�i �

c

h�i) :

Any element in

e

S

(r;n�r)

can be written in the form ��, � 2

e

S

n�r

, � 2

e

S

r

(see [21]). Let �

correspond to the partition (r), and � correspond to the partition � 2 O(n� r). Then by

Morris' formula (see [16] or [7]) we have

h�i(��) =

X

�2D(n�r)

�n�=b r-bar

(�1)

L(b)

2

m(b)

h�i(�)

=

X

�2D(n�r);�[frg6=�

�n�=b r-bar

(�1)

L(b)

c

h�i(�) + (�1)

L(b

0

)

h�

0

i(�)

where the extra summand only occurs in case � = �

0

[ frg, and in this case b

0

= � n �

0

.

On the other hand,

h�i(��) =

X

�2D(n�r);�2D(r)

�[�6=�2D

�

a

�

�;�

c

h�i(�)

c

h�i(�) +

X

�2D(n�r);�2D(r)

�[�=�2D

�

c

h�i(�)

c

h�i(�)

=

X

�2D(n�r)

�6=�[� for some � if �2D

�

c

h�i(�)(

[

r

2

]

X

i=1

2(�1)

i

a

�

�;(r�i;i)

+ a

�

�;(r)

)

+

X

�2D(n�r)

�=�[(r�j;j) for some j and �2D

�

h�i(�)(

[

r

2

]

X

i=0

(�1)

i

a

�

�;(r�i;i)

)

8



Hence, the generalized characters

X

�2D(n�r);�[frg6=�

�n�=b r-bar

(�1)

L(b)

c

h�i+ (�1)

L(b

0

)

h�

0

i

and

X

�2D(n�r)

�6=�[� for some � if �2D

�

0

@

[

r

2

]

X

i=1

2(�1)

i

a

�

�;(r�i;i)

+ a

�

�;(r)

1

A

c

h�i

+

X

�2D(n�r)

�=�[(r�j;j) for some j and �2D

�

0

@

[

r

2

]

X

i=0

(�1)

i

a

�

�;(r�i;i)

1

A

h�i

agree on all O(n� r) classes. These characters also agree on all D

�

(n� r)-classes, except

possibly on the class of type �

0

, if � = �

0

[frg 2 D

�

(n), when L(b

0

) is odd for b

0

= �n�

0

.

This we can remedy by taking the other associate h�

0

i

0

without loosing any other property.

Hence

a

�

�

= 2

[

r

2

]

X

i=1

(�1)

i

a

�

�;(r�i;i)

+ a

�

�;(r)

= 0

if � n � is not an r-bar in �.

So assume now than � n � is an r-bar in �.

Case (i): � = � [ frg = �

0

.

Then

a

�

0

�

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2

[

r

2

]

X

i=1

(�1)

i

a

�

�;(r�i;i)

+ a

�

�;(r)

, if � 2 D

+

[

r

2

]

X

i=1

(�1)

i

a

�

�;(r�i;i)

, if � 2 D

�

= (�1)

L(b

0

)

Case (ii): � = � [ (r � j; j).

Then

a

�

�

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

2

[

r

2

]

X

i=1

(�1)

i

a

�

�;(r�i;i)

+ a

�

�;(r)

, if � 2 D

+

; � n � = b r-bar

[

r

2

]

X

i=1

(�1)

i

a

�

�;(r�i;i)

, if � 2 D

�

; � n � = b r-bar

= (�1)

L(b)

Case (iii): � = (�

1

; : : : ; �

j�1

; �

j

+ r; �

j+1

; : : : ) for some j.

9



Then

a

�

�

= 2

[

r

2

]

X

i=1

(�1)

i

a

�

�;(r�i;i)

+ a

�

�;(r)

= (�1)

L(b)

where b is the r-bar � n �.

Thus

(h�i �

c

h	i) "

~

S

n

=

X

�2D(n);�6=�

0

�n�=b r-bar

(�1)

L(b)

c

h�i+ (�1)

L(b

0

)

h�

0

i

where the second summand only occurs if r 62 � and � 2 D

�

(n � r). This is zero on all

classes corresponding to partitions which do not have r as a part by Lemma 3.3. �

4 A lower bound for the diagonal entries of the Cartan ma-

trix

By using the character relations stated in Theorems 2.1 and 3.4, we give a lower bound of

the diagonal entries of the Cartan matrix. To begin with we review some results on blocks

of Hecke algebras.

We use the notation introduced in Section 2. Let B be a block of H

R=}

. Then there

are non-negative integers c and w such that n = ew+ c. This w is called the weight of B,

and it has the property that, if the character [�] belongs to B, then we can remove an

e-hook from �, and after repeating this process w times we �nally obtain a partition �

(e)

of c which contains no e-hook. The partition �

(e)

does not depend on the order of e-hooks

which are removed from the partitions each time and is called the e-core of �. Let �

1

and

�

2

be in P (n). Two irreducible characters [�

1

] and [�

2

] belong to the same block if and

only if (�

1

)

(e)

= (�

2

)

(e)

.

Remark 4.1 If q = 1, then H

R=}

�

=

(R=})S

n

and e = Char(R=}). Let B be a block of

H

R=}

with weight w. Then a defect group of B is isomorphic to a Sylow e-subgroup of

S

ew

. (See (11.3) of [19].)

Using the notion of e-quotients, this "removal of a hook" can be described as follows.

Let (�

[0]

; �

[1]

; � � � ; �

[e�1]

) be the e-quotient of �. Here �

[0]

, �

[1]

, � � � , �

[e�1]

are partitions

with j�

[0]

j+j�

[1]

j+� � �+j�

[e�1]

j = w, which are uniquely determined by � and e. Conversely,

the e-core and the e-quotient determine �. Suppose that � has an e-hook. Remove it from

� and denote the resulting partition by �. Then, there exists a unique r with 0 � r � e�1

such that the e-quotient (�

[0]

; �

[1]

; � � � ; �

[e�1]

) of � satis�es �

[i]

= �

[i]

for all i with i 6= r

and �

[r]

is obtained by removing one node from �

[r]

. For those facts, see for example (3.3)

of [19]. First we prove the following.

Lemma 4.2 Let �

1

and �

2

be distinct partitions of n � e. For i = 1; 2, let S

i

be the set

of partitions � of n such that a removal of one e-hook from � gives �

i

. Then S

1

\ S

2

is

either empty or consists only of one element.

10



Proof. Suppose that a partition � lies in S

1

\S

2

. Let (�

[0]

; �

[1]

; � � � ; �

[e�1]

), (�

1[0]

; �

1[1]

; � � � ;

�

1[e�1]

) and (�

2[0]

; �

2[1]

; � � � ; �

2[e�1]

) be the e-quotients of �, �

1

and �

2

, respectively. Then

there exist r and s such that �

[i]

= �

1[i]

for all i with i 6= r and �

[i]

= �

2[i]

for all i with

i 6= s. Thus, if i is neither r nor s, then �

[i]

is determined by �

1

(and �

2

). If r 6= s, then

�

[r]

and �

[s]

are determined by �

2[r]

and �

1[s]

, respectively. Hence � must be the unique

element in S

1

\ S

2

. Assume now that r = s. In this case, we have �

[i]

= �

1[i]

= �

2[i]

for

all i with i 6= r = s. Thus, since �

1

6= �

2

, it follows that �

1[r]

6= �

2[r]

and both of them are

obtained by removing one node from �

[r]

. This implies that �

[r]

can be recovered from

�

1[r]

and �

2[r]

uniquely. Therefore, � is uniquely determined by �

1

and �

2

. This completes

the proof. �

Next we see what happens for a partition which has only one e-hook. It is clear that

the following holds.

Remark 4.3 A partition � has a single e-hook if and only if �

[i]

is empty for all but one

i, say r, and moreover, �

[r]

is a rectangle, that is �

[r]

= (a; a; � � � ; a) for some positive

integer a.

Concerning the removal of the unique e-hook from a partition satisfying (4.3), the

following holds.

Lemma 4.4 Let � be a partition satisfying (4.3) and � the partition of n � e obtained

by removing the unique e-hook from �. Let S be the set of partitions � of n such that a

removal of one e-hook from � gives �. Let w be the weight of the block containing [�].

(i) If w = 1, we have S = f�; �

1

; �

2

; � � � ; �

e�1

g. Here the e-quotients of the partitions

�

i

, i = 1; : : : ; e� 1, satisfy the following.

�

i[i�1]

is the partition (1) of 1 for 1 � i � r,

�

i[i]

is the partition (1) of 1 for r + 1 � i � e� 1, and

all other partitions in the e-quotients are empty.

(ii) If w = 2, we have S = f�; �; �

0

; �

1

; � � � ; �

r�1

; �

r+1

; � � � ; �

e�1

g. Here, their e-

quotients satisfy the following.

f�

[r]

; �

[r]

g = f(1; 1); (2)g and �

i[i]

= �

i[r]

= (1) and

the others in e-quotients are empty.

(iii) If w � 3, then jSj � e and � is the unique partition in S which satis�es (4.3).

Proof. If w = 1, then we have clearly (i). Suppose that w � 2. Then note that j�

[r]

j � 2

by (4.3). If there exists a partition � 6= � in S which satis�es also (4.3), then it follows

that �

[i]

and �

[i]

are empty for all i with i 6= r and �

[r]

and �

[r]

are two di�erent rectangles.

Moreover, since � and � lie in S, the removals of the unique nodes from �

[r]

and from �

[r]

gives the same partition e�. However, such a thing may occur only when e� is the partition

(1) of 1, and in this case, we have w = 2. Therefore, if w � 3, then (iii) holds, and if

w = 2, then the statement (ii) holds clearly. �

Let us consider the Cartan matrix of H

R=}

. In the rest of this paper, we assume further

that

R is a su�ciently large complete discrete valuation domain.
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The Specht module S

�

corresponding to � is contained in a certain ideal x

�

H of H, on

which we can de�ne a bilinear form <;> in the usual way. (See p. 34 of [4].) Denote by

S

�

(r) the submodule of S

�

consisting of those elements x 2 S

�

with the property that for

all y 2 S

�

, < x; y > lies in }

r

. Denoting by S

�

(r) the image of S

�

(r) under the reduction

modulo }, we have a �ltration

S

�

(0) � S

�

(1) � S

�

(2) � � � �

with S

�

(r) = 0 for su�ciently large r. By the Dipper-James theory [4], S

�

(0) 6= S

�

(1)

if and only if � is e-regular, and fS

�

(0)=S

�

(1) j � e-regularg forms a complete set of

representatives of isomorphism classes of simple H

R=}

-modules (7.6 of [4]). For � 2 P (n)

and an e-regular partition � in P (n), we denote by d

��

the multiplicity of S

�

(0)=S

�

(1)

as a composition factor of S

�

modulo }. The Cartan invariant c

��

for e-regular � and �

satis�es c

��

=

P

�2P (n)

d

��

d

��

. It is known that d

��

= 1. (See 6.3.50 of [10] and 7.6 of

[4].) We set D

�

= S

�

(0)=S

�

(1), and denote its character by [�]

e

. (Note that [�] modulo

} is not necessarily equal to [�]

e

.)

Now we explain the Jantzen-Schaper formula. To do so, we introduce the notion of

�-numbers. See p.77 of [10]. Let � = (�

1

; �

2

; � � � ; �

`

) be in P (n). From this, we have a

sequence (�

1

� 1 + t; �

2

� 2 + t; � � � ; �

`

� ` + t;�` � 1 + t; � � � ; t � t) of integers, where

t � `. It is called a sequence of �-numbers for �. Let h

ij

denote the hook length of the

hook at the (i; j)-node in Y (�). Then, (h

11

; h

21

; � � � ; h

`1

) is a sequence of �-numbers for �.

From a sequence of �-numbers for �, it is easy to reconstruct �. Note that a sequence of

�-numbers is a sequence of strictly decreasing non-negative integers. Therefore, each �nite

set of non-negative integers, being a set of �-numbers, yields a sequence of �-numbers,

and in this way, yields a partition.

If (�

1

; �

2

; � � � ; �

t

) is a sequence of integers, we de�ne

�

S(�

1

; �

2

; � � � ; �

t

) to be zero if two

of the �

i

are equal or if any of the �

i

are negative. Otherwise,

�

S(�

1

; �

2

; � � � ; �

t

) is de�ned

as plus or minus S

�

in the Grothendieck group of H

R=}

, where � is the partition of n

corresponding to f�

1

; �

2

; � � � ; �

t

g. The sign is equal to the signature of the permutation �

of f1; 2; � � � ; tg for which �

�(1)

> �

�(2)

> � � � > �

�(t)

. Removals of hooks can be described

in terms of �-numbers in the following way. (See 2.7.13 of [10].) Let (�

1

; �

2

; � � � ; �

t

) be

a sequence of �-numbers for �. Then, removing an r-hook from � means that a suitable

�

i

is changed into �

i

� r, and the resulting set f�

1

; � � � ; �

i�1

; �

i

� r; �

i+1

; � � � ; �

t

g is a set

of �-numbers for the resulting partition of n � r. Conversely, if for suitable i, we have

�

i

� r � 0 and �

i

� r 6= �

j

for all j 6= i, then f�

1

; � � � ; �

i�1

; �

i

� r; �

i+1

; � � � ; �

t

g is a set

of �-numbers for a partition of n� r which is obtained by removing some r-hook from �.

The Jantzen-Schaper formula can be stated as follows.

Lemma 4.5 (p. 383 of [3], 4.7 of [9]) Let � be in P (n) and let h

ij

denote the hook length

of the hook at the (i; j)-node in Y (�). Then

P

r>0

S

�

(r) equals

P

(�

}

(1 + q + q

2

+ � � � + q

h

ac

�1

)� �

}

(1 + q + q

2

+ � � �+ q

h

bc

�1

))�

S(h

11

; h

21

; � � � ; h

a�1;1

; h

a1

+ h

bc

; h

a+1;1

; � � � ; h

b1

� h

bc

; � � � ; h

`1

)

as elements in the Grothendieck group of H

R=}

, where the sum is taken over all a, b, c

with 1 � a � b � `, 1 � c � �

b

and �

}

is the }-adic valuation on R.
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Now by using the above lemmas, we can prove the following assertions on the Cartan

invariants.

Proposition 4.6 Let � be an e-regular partition of n, n � 2.

(i) Suppose that � has m e-hooks. Then we have d

��

6= 0 for at least m+ 1 partitions

� of n. In particular, the Cartan invariant c

��

satis�es c

��

� m+ 1.

(ii) Suppose that � belongs to a block with weight w � 2 and that � has only one e-hook.

Assume further that CharR 6= 2 and Char(R=}) 6= 2 in the case of w = 2. Then we have

d

��

6= 0 for at least 3 partitions � of n. In particular, the Cartan invariant c

��

satis�es

c

��

� 3.

Proof. (i) Let �

1

, �

2

, � � � , �

m

be distinct partitions of n � e which are obtained by

removing one e-hook from �. For each i with 1 � i � m, let S

i

be the set of partitions �

of n such that a removal of one e-hook from � gives �

i

. Then, since d

��

6= 0, Theorem 2.1

yields that there exists a partition �

i

in S

i

such that �

i

6= � and d

�

i

�

6= 0. Moreover,

Lemma 4.2 yields that �

i

6= �

j

if i 6= j. Hence we obtain the desired consequence.

(ii) First we assume that w � 3. Recall that � satis�es (4.3). Then, letting � and S be

as in Lemma 4.4, � is the unique partition in S which satis�es (4.3) by Lemma 4.4 (iii).

On the other hand, it follows by applying Theorem 2.1 to � that there is a partition �

1

in S n f�g with d

�

1

�

6= 0. Since �

1

does not satisfy (4.3), it has an e-hook such that the

removal of this e-hook from �

1

gives a partition �

1

di�erent from �. Let S

0

be the set of

partitions � of n such that a removal of one e-hook from � gives �

1

. Then S \ S

0

= f�

1

g

by Lemma 4.2. By applying Theorem 2.1 to the partitions in S

0

, we can �nd �

2

in S

0

such

that d

�

2

�

6= 0 and �

2

6= �

1

. Notice that �

2

6= �. Therefore, d

��

, d

�

1

�

and d

�

2

�

are all

nonzero.

Now assume that w = 2. (Thus CharR 6= 2 and Char(R=}) 6= 2 by the assumption.)

Let r, � and S = f�; �; �

0

; �

1

; � � � ; �

r�1

; �

r+1

; � � � ; �

e�1

g be as in (4.3) and Lemma 4.4(ii).

Now apply Theorem 2.1 to �. If d

�

j

�

6= 0 for some j with j 6= r, then �

j

does not

satisfy (4.3). Hence by the argument in the preceding paragraph, c

��

� 3. Therefore, we

may assume that d

��

6= 0. Now we apply the Jantzen-Schaper formula for �. It follows

from d

��

6= 0 that D

�

is an irreducible constituent of

P

r>0

S

�

(r). (Note that this holds

regardless of e-regularity of �.) Let h

ij

denote the hook length of the hook at the (i; j)-

node in Y (�). Then by Lemma 4.5, there exist a, b, c with 1 � a � b � `(�), 1 � c � �

b

such that D

�

is an irreducible constituent of theH

R=}

-module

�

S(h

11

; h

21

; � � � ; h

a�1;1

; h

a1

+

h

bc

; h

a+1;1

; � � � ; h

b1

� h

bc

; � � � ; h

`(�)1

) and

(�) �

}

(1 + q + q

2

+ � � �+ q

h

bc

�1

) 6= �

}

(1 + q + q

2

+ � � �+ q

h

ac

�1

):

The above irreducible module does not correspond to �. Therefore, it su�ces to show

that it does not correspond to �. Recall that � can be obtained from � in the following

way. First removing the unique e-hook from �, we obtain the partition � of n� e. Then

putting an e-hook back to � suitably, we get �. Hence one of the sets of �-numbers for � is

fh

11

; h

21

; � � � ; h

a

0

�1;1

; h

a

0

1

+ e; h

a

0

+1;1

; � � � ; h

b

0

1

� e; � � � ; h

`(�)1

g for some a

0

and b

0

. Suppose

that

fh

11

; h

21

; � � � ; h

a�1;1

; h

a1

+ h

bc

; h

a+1;1

; � � � ; h

b1

� h

bc

; � � � ; h

`(�)1

g

is also a set of �-numbers for �. Then we must have h

bc

= e, a = a

0

and b = b

0

. On

the other hand, recall that the e-quotient of � satis�es Lemma 4.4 (ii). Hence the unique
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e-hook in Y (�) is a hook at a node in the a-th row in Y (�) and the unique e-hook in Y (�)

is at the node (b; c). Moreover, the di�erence of hook lengths (h

a1

+ e) � (h

b1

� e) must

be divisible by e. Thus, h

a1

� h

b1

is divisible by e, and hence so is h

ac

� h

bc

. Therefore,

h

ac

is divisible by e. But, since the e-quotient of � also satis�es Lemma 4.4 (ii), we must

have h

ac

= 2e. Let p be as in 4.16 of [9]. Then by our assumption, p 6= 2. Hence we have

�

p

(h

bc

) = �

p

(h

ac

). This contradicts (*) by 4.17 of [9]. The proof is now completed. �

Remark 4.7 (i) If Char(R=}) = 2 = w and q is a positive odd integer, then q � 1

mod } and e = 2. By 8.2 of [11], the block algebra of H

R=}

is Morita equivalent to that

of (R=})S

4

or (R=})S

5

. Thus we have c

��

� 3 (see [10]).

(ii) In the case of the symmetric groups, it was also shown by Scopes [20] that the

Cartan invariants of p-blocks of defect 2 satisfy c

��

� 3.

Now we move on to spin characters. In the rest of this section, assume that p is an

odd prime. Let � be a partition in D(n). After removing all p-bars recursively from

�, we obtain a partition called the p-core of �. Moreover, we can de�ne the p-quotient

(�

[0]

; �

[1]

; � � � ; �

[t]

) of �. Here t = (p � 1)=2, �

[0]

2 D(j�

[0]

j) and �

[1]

, �

[2]

, � � � , �

[t]

are

partitions with j�

[0]

j+ j�

[1]

j+ � � �+ j�

[t]

j = w. This w is also called the weight of the p-block

to which h�i belongs and plays an important role when investigating the block structure.

It is known that h�

1

i and h�

2

i belong to the same p-block if and only if �

1

and �

2

have the

same p-core; for � 2 D

�

, the two associated characters h�i and h�i

0

belong to the same

block except if � is a p-core. The p-quotient of � describes removals of p-bars from �. See

(4.3) of [19]. The result analogous to Lemma 4.2 holds clearly since the proofs use only

easy properties of quotients.

We consider the following spin analogue of the condition in (4.3).

Remark 4.3

�

A partition � 2 D(n) has a single e-bar if and only if �

[i]

is empty for all

but one i, say r, and moreover, if r = 0, then �

[r]

is a staircase partition (k + b; k + b �

1; : : : ; k + 2; k + 1) for some k 2 N

0

; b 2 N, or if r > 0, then �

[r]

is a rectangle, that is

�

[r]

= (a; a; � � � ; a) for some a 2 N.

The assertion in Lemma 4.4 then has to be modi�ed as follows.

Lemma 4.8 Let � be a partition in D(n) satisfying (4.3

�

) (with e � 1 being replaced by

t), and � the partition of n � p obtained by removing the unique p-bar from �. Let S be

the set of partitions � in D(n) such that a removal of one p-bar from � gives �. Let w be

the weight of the p-block containing h�i.

(i) If w = 1, we have S = f�; �

1

; �

2

; � � � ; �

t

g. Here �

i

is a partition in D(n) whose

p-quotients satisfy the following.

�

i[i�1]

is the partition (1) of 1 for 1 � i � r.

�

i[i]

is the partition (1) of 1 for r + 1 � i � t.

The others in p-quotients are empty.

(iia) If w = 2 and r 6= 0, we have S = f�; �; �

0

; �

1

; � � � ; �

r�1

; �

r+1

; � � � ; �

t

g, and their

p-quotients satisfy the following.

14



f�

[r]

; �

[r]

g = f(1

2

); (2)g and �

i[i]

= �

i[r]

= (1).

The others in p-quotients are empty.

(iib) If w = 2 and r = 0, we have S = f�; �

1

; �

2

; � � � ; �

t

g, and their p-quotients satisfy

the following.

�

[0]

= (2) and �

i[i]

= �

i[0]

= (1).

The others in p-quotients are empty.

(iiia) If w = 3 and r = 0, we have S = f�; �; �

1

; � � � ; �

t

g, and their p-quotients satisfy

the following.

f�

[0]

; �

[0]

g = f(2; 1); (3)g and �

i[0]

= (2), �

i[i]

= (1).

The other partitions in the p-quotients are empty.

(iiib) If w = 3 and r 6= 0, we have S = f�; �

0

; �

1

; � � � ; �

r�1

; �

r+1

; � � � ; �

t

g, and their

p-quotients satisfy the following.

�

[r]

= (3) and �

i[i]

= (1), �

i[r]

= (2), or �

[r]

= (1

3

) and �

i[i]

= (1), �

i[r]

= (1

2

).

The other partitions in the p-quotients are empty.

(iv) If w � 4, then jSj � t+1 and � is the unique partition in S which satis�es (4.3

�

).

Now consider the diagonal entries of the Cartan matrix. Unfortunately, a canonical

way of labelling the irreducible modular spin representations with a suitable subset of the

labels of the ordinary irreducible spin representations has not been found yet (however, a

parameterization of the irreducible modular spin representations by a certain set of parti-

tions which may contain repeated parts has been proposed recently by Leclerc and Thibon

[15]). Therefore, the assertion becomes as follows. In the following d

�'

denotes the decom-

position number corresponding to an irreducible ordinary character � and an irreducible

Brauer character ' and c

''

is the diagonal entry of the Cartan matrix corresponding to '.

A spin p-block B has the property that either all modular irreducibles in B are self-

associate, or they are all non-self-associate [19]; we then call the block B self-associate

or non-self-associate, respectively. This property only depends on the weight of the block

and the sign of its �p-core.

Proposition 4.9 Let ' be an irreducible Brauer character of

e

S

n

. Choose a partition �

in D(n) such that ' appears as an irreducible constituent of

c

h�i modulo p.

(i) Suppose that � has m p-bars. Then we have d

�'

6= 0 for at least m+ 1 irreducible

characters � of

e

S

n

, labelled by di�erent partitions. In particular, we have c

''

� m+ 1.

(ii) Suppose that h�i belongs to a p-block with weight w � 4 and that � has only one

p-bar. Then we have d

�'

6= 0 for at least 3 irreducible characters � of

e

S

n

, labelled by

di�erent partitions. In particular, we have c

''

� 3.

(iii) Suppose that h�i belongs to a self-associate p-block with weight w = 3 and that �

has only one p-bar. Then we have d

�'

6= 0 for at least 3 irreducible characters � of

e

S

n

.

In particular, we have c

''

� 3.

Proof. Using Lemma 4.8 and Theorem 3.4 instead of Lemma 4.4 (i), (ii) and Theorem 2.1,

an argument similar to that in the proof of Proposition 4.6 works for (i) and (ii). Note

that, if � = �

0

in the notation of Theorem 3.4 and d

h�

0

i

0

'

6= 0 and d

h�

0

i'

= 0, then we use

the relation obtained by multiplying the sign character to that in Theorem 3.4.

In case (iii), we have to be careful in the situation of Lemma 4.8 (iiia) since then,

similar as in the w = 2 case in the proof of Proposition 4.6, we may have non-zero decom-

position numbers in the chosen column only in the rows corresponding to the critical pair
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of partitions �; �. But since l((2; 1)) = 2 and l((3)) = 1, the partitions are of di�erent

type, and hence we get three spin characters with non-zero decomposition number in the

column under consideration. �

Remark 4.10 In the case of spin characters, the equality c

''

= 2 does indeed occur for

some ' in a block of weight w = 2 [17].

5 Position of simple modules in the Auslander-Reiten graph

We apply the results in the previous section to the Auslander-Reiten theory. For details

of this theory, we refer the reader to [2]. For a �nite dimensional symmetric algebra

B over an algebraically closed �eld k of characteristic p, where p is a prime, the stable

Auslander-Reiten graph of B is a directed graph whose vertices are indexed by the iso-

morphism classes of non-projective indecomposable B-modules and whose arrows indicate

the dimensions of the vector spaces of irreducible B-homomorphisms among them. Each

connected component � of the stable Auslander-Reiten graph of B (AR component) has

a tree class. It is determined up to graph isomorphisms and � is obtained from it and

the AR translates. A block algebra B of a �nite group G is wild if its defect group is

neither cyclic, dihedral, generalized quaternion nor semidihedral. Hence a p-block of S

n

is wild if and only if its weight w satis�es w � 3, or w = 2 and p 6= 2. (See Remark

4.1.) A block of

e

S

n

for an odd prime p is wild if and only if w � 2. It is known that,

if B is a wild p-block of a �nite group, then any AR component has tree class A

1

.([5])

That is, any AR component � is isomorphic to either ZZA

1

or ZZA

1

=h�

m

i, where � is

the AR translate. The latter is called an in�nite tube of rank m. Since group algebras are

symmetric, the Auslander-Reiten translate � is equal to the composite 


2

of two Heller

translates. In the case where an AR component � is isomorphic to ZZA

1

or ZZA

1

=h�

m

i,

we say that a module X in � lies at the end if there is only one arrow in � which goes

into (or comes from) X. Moreover, a module X in � is said to lie in the i-th row from the

end, if there is a subgraph X = X

i

! X

i�1

! � � � ! X

1

of � such that X

1

lies at the end

and that X

j+2

� 


2

(X

j

) for all j with 1 � j � i� 2. For AR components of wild blocks,

we consider the following problem on simple modules.

Question. Does every simple module lie at the end of its AR component ?

The question has an a�rmative answer if G is p-solvable, G is a �nite group of Lie

type de�ned over a �eld k of characteristic p, or B is the principal 2-block of a �nite group

with abelian Sylow 2-subgroups. See [13] and [14]. However, the principal 5-block B of

F

4

(2) has a simple module S with dimension 875823 such that S lies in the second row

from the end of its AR component.

First we recall a general result due to Kawata [12], which is very useful.

Theorem 5.1 Let B be a symmetric k-algebra. Suppose that there exists a simple B-

module S lying in an AR component � whose tree class is A

1

. If S lies not at the end of

�, then the Cartan matrix of B has the following form. If in the �rst row of the matrix

below, the number of 1's is s, then there is a simple at distance s from the end in �.
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2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

2 1 � � � � � � 1 0 � � � 0

1 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2 1 0 � � � 0

1 � � � � � � 1 � � � � � � � �

0 � � � � � � 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 � � � � � � 0 � � � � � � � �

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

By using the above, Kawata gives a proof of the following result (Theorem 2.1 of [12]).

Proposition 5.2 Suppose that a �nite group G has a nontrivial normal p-subgroup and

that a simple kG-module S belongs to a wild p-block. Then S lies at the end of its AR

component.

The following is an interesting application of Propositions 4.6 and 4.9.

Theorem 5.3 Let S be a simple kG-module belonging to a wild p-block B. Then in the

cases

(1) G = S

n

,

(2) G =

e

S

n

and p = 2,

(3) G =

e

S

n

, p 6= 2 and the �p-weight �w of B satis�es �w � 3, or �w = 2 and B is

non-self-associate,

S lies at the end of its AR component.

In the case

(4) G =

e

S

n

, p 6= 2, the �p-weight �w of B is �w = 2 and B is self-associate,

S is at most one row away from the end of its AR component.

Proof. Let us �rst consider the case of G = S

n

. Since B is wild, the weight of B is at

least 3 if p = 2, and is at least 2 if p 6= 2. Thus it follows from Proposition 4.6 that the

Cartan matrix of B does not satisfy the property in Lemma 5.1. Therefore any simple

B-module lies at the end of its AR component.

Now let us consider the case ofG =

e

S

n

. If p = 2, the result follows from Proposition 5.2;

alternatively, it follows from the arguments in the S

n

case as the entries of the Cartan

matrix of a 2-block of

e

S

n

are bounded from below by the entries of the Cartan matrix of

the (unique) 2-block of S

n

contained in it. So we now assume p 6= 2. Assume �rst that

the weight �w of B satis�es �w � 4 or that �w = 3 and B is self-associate. Then by using

Proposition 4.9 and Lemma 5.1 we obtain the desired conclusion similarly as in the S

n

case. So assume now �w = 3 and B is non-self-associate, and we also assume that S is not

at the end. Label the simples in B such that the Cartan matrix C(B) has the form given in

Kawata's Theorem, say the �rst one is T , and say the upper left part has width m. There

is only one critical pair of partitions �; � in Lemma 4.8 from which we could only get two

non-zero decomposition numbers in the column for T , namely the ones with p-quotients

satisfying f�

[0]

; �

[0]

g = f(2; 1); (3)g and all other partitions in the quotients being empty.
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Note that the corresponding characters are of di�erent type; let �

1

6= �

0

1

and �

2

= �

0

2

be

those characters. Then part of the decomposition matrix is

T T

0

�

1

1 0

�

0

1

0 1

�

2

= �

0

2

1 1

other 0 0

Since l(B) > 2 (see [19]), there must be a simple module U in B di�erent from T; T

0

such that (w.l.o.g) c

TU

6= 0, so in fact c

TU

= 1. Then by the form of C(B), also c

T

0

U

= 1.

Hence also c

TU

0

= 1 = c

T

0

U

0

. So T

0

; U; U

0

all belong to the �rst m simples in the list, and

so c

UU

= c

U

0

U

0

= 2 and c

UU

0

= 1. Then part of the decomposition matrix is

T T

0

U U

0

�

1

1 0 0 0

�

0

1

0 1 0 0

�

2

= �

0

2

1 1 1 1

�

3

0 0 1 0

�

0

3

0 0 0 1

other 0 0 0 0

But the partition labelling �

3

does not belong to the only critical pair, so by applying

our previous arguments we obtain a further non-zero entry in the column for U , and thus

a contradiction.

Now we turn the case �w = 2. If B is non-self-associate, and we assume that S is not

at the end, then again we label the simples in B such that the Cartan matrix C(B) has

the form given in Kawata's Theorem, say the �rst one is T , and say the upper left part

has width m. Since 2 = c

TT

= c

T

0

T

0

, a part of the decomposition matrix is

T T

0

�

1

= �

0

1

1 1

�

2

= �

0

2

1 1

other 0 0

where �

1

; �

2

are labelled by a critical pair of partitions as described in Lemma 4.8(iia).

But then c

TT

0

= 2, a contradiction.

Next we want to deal with case (4), so we assume now p 6= 2, �w = 2 and B is self-

associate. Again we assume that S is not at the end; so by Kawata's Theorem we have

simple modules T , U in B with c

TT

= 2 and c

TU

= 1. Since c

TT

= 2, we only have non-

zero entries in the corresponding column of the decomposition matrix from a critical pair

of �p-quotients as in Lemma 4.8 (iia), corresponding to two self-associate spin characters

in B. So the second simple U picks up exactly one of the characters with its �p-quotient

one of a critical pair, and hence we get at least three non-zero entries in the corresponding

column; so c

UU

� 3. Hence S can be at most one row away from the end. This completes
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the proof. �

Next consider Hecke algebras. Since H

R=}

is a symmetric algebra over R=}, an asser-

tion similar to Theorem 5.3 holds for H

R=}

. Note however that we do not know whether

all AR components of their wild blocks have tree class A

1

.

Theorem 5.4 Let S be a simple H

R=}

-module belonging to a block B with weight w � 2.

Assume further that w � 3 in the case of CharR = 2 or Char(R=}) = 2. Suppose that S

lies in an AR component � whose tree class is A

1

. Then S lies at the end of �.

For the alternating groups and their covering groups, the following holds.

Theorem 5.5 Let S be a simple kG-module belonging to a wild p-block B. Then in the

cases (1) G = A

n

,

(2) G =

e

A

n

and p = 2,

(3) G =

e

A

n

, p 6= 2 and the �p-weight �w of B satis�es �w � 3 or �w = 2 and B is

self-associate,

S lies at the end of its AR component.

In the case

(4) G =

e

A

n

, p 6= 2, the �p-weight �w of B is �w = 2 and B is non-self-associate,

S is at most one row away from the end of its AR component.

Proof. Let G

0

be S

n

if G = A

n

and

e

S

n

if G =

e

A

n

. For an indecomposable non-projective

kG-module X, let M(X) be the middle term of the AR sequences A(X) of X. Let S

0

be

an indecomposable direct summand of S "

G

0

. Suppose that S lies in an AR component

� with tree class A

1

. Then S lies at the end if and only if M(S) is indecomposable

(modulo projectives), and S is one row away from the end if and only if S

�

=

M(T

0

)

(modulo projectives) for some indecomposable kG-module T

0

. Note that if S

0

�

=

M(T

0

)

for some T

0

, then since A(S) is a direct summand of A(S

0

) #

G

(see (7.9) of [6]), S is a

direct summand ofM(T ) for some indecomposable direct summand T of T

0

#

G

. Moreover,

since � has tree class A

1

, S is G

0

-invariant if and only if T is so. Now, if S is not G

0

-

invariant, then it follows from (7.5) of [6] that A(S) "

G

0

= A(S

0

). Hence, if M(S

0

) is

indecomposable, then so is M(S). If S

0

�

=

M(T

0

) for some T

0

, then T

0

is G-projective

and T is not G

0

-invariant, and since A(T ) "

G

0

= A(T

0

), we have S

�

=

M(T ). Now assume

that S is G

0

-invariant and p is odd. Then each module in � is G

0

-invariant, and any

kG

0

-module is G-projective. Thus it follows from Theorem of [18] and Corollary 3.4 of

[22] that M(S) in indecomposable if and only if M(S

0

) is so. If S

0

�

=

M(T

0

) for some T

0

,

then T is G

0

-invariant, and S

�

=

M(T ), sinceM(T

0

) is indecomposable. Since S

0

is simple

in these cases, the desired result follows from Theorem 5.3.

Finally, we treat the case where p = 2 and the simple kG-module S is G

0

-invariant.

By Proposition 5.2, it su�ces to treat the case of G = A

n

. Since S is extendible to S

n

, we

have T #

A

n

�

=

S. Let � be the 2-regular partition of n corresponding to T . Suppose that

partitions �

1

and �

2

of n satisfy d

�

1

�

6= 0 and d

�

2

�

6= 0. If �

1

6= �

2

6= �

0

1

, then irreducible

constituents of [�

1

] #

A

n

and [�

2

] #

A

n

are not equivalent whose reductions modulo 2 have

the irreducible Brauer character [�]

2

#

A

n

as their irreducible constituents. Hence, if we

prove that
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(**) there exist three distinct partitions

e

�, �

1

and �

2

such that �

1

6=

e

�

0

6= �

2

, �

0

1

6= �

2

,

d

~

��

6= 0, d

�

1

�

6= 0 and d

�

2

�

6= 0,

then we can conclude that [�]

2

#

A

n

appears as an irreducible constituent of the reductions

modulo 2 of three di�erent irreducible characters of A

n

. Thus the diagonal entry of

the Cartan matrix corresponding to S is at least 3, and hence the result will follow by

Lemma 5.1. The rest of the proof is devoted to showing that (**) holds.

Since we need to consider conjugate partitions, we recall that, if (�

[0]

; �

[1]

) is the 2-

quotient of �, then that of the conjugate partition �

0

is (�

0

[1]

; �

0

[0]

). (See (3.5) of [19].)

Moreover, since f[�] mod 2j� 2 P (n); �

[0]

is emptyg forms a basis of the vector space of

class functions de�ned over the 2-regular conjugacy classes of S

n

(Theorem 5.1 of [1]),

there exists

e

� 2 P (n) such that

e

�

[0]

is empty and that the reduction modulo 2 of [

e

�] has

the irreducible character [�]

2

as its irreducible constituent, that is, d

~

��

6= 0.

We apply the argument in the previous section to

e

� instead of �. Since S belongs to a

wild 2-block, the weight w of the block to which T belongs is at least four. (See Remark

4.1.) Hence, lettingm be the number of 2-hooks in Y (

e

�), it follows from arguments similar

to those in the proof of Proposition 4.6 that there exist distinct partitions �

1

and �

2

such

that d

�

i

�

6= 0 for i = 1; 2. Recall that, if m � 2, then �

1

and �

2

are obtained by removing

a 2-hook from Y (

e

�) and adding another 2-hook to the resulting partition of n � 2. If

m = 1, then �

1

is obtained in the same way as in the case of m � 2 and �

2

is obtained by

removing a 2-hook from �

1

and adding another 2-hook to the resulting partition of n� 2.

Since

e

�

[0]

is empty, it follows that, for i = 1; 2,

j�

i[0]

j � 1; if m � 2; and j�

i[0]

j � i; if m = 1:

Note that j

e

�

[1]

j = w. If

e

�

0

= �

i

for some i, then j�

i[0]

j = j

e

�

0

[1]

j and thus w � 2. If �

0

1

= �

2

,

then j�

1[0]

j = j�

2[1]

j and thus w � 3, since j�

2[1]

j = w � j�

2[0]

j. Since w � 4, we can

conclude that (**) holds. This completes the proof. �

Let B be a symmetric k-algebra and S a simple B-module and P (S) its projective

cover. Then

0! J(P (S))! P (S)� J(P (S))=S ! P (S)=S ! 0

is the AR sequence terminating at P (S)=S. (See p.148 of [2].) Here J(P (S)) is the radical

of P (S). The factor module J(P (S))=S is usually called the heart of P (S). Since the AR

sequence terminating at S is obtained by taking 
 of the above sequence, we have the

following consequence of Theorems 5.3, 5.4 and 5.5.

Corollary 5.6 Let B and S be a block and a simple B-module, respectively, satisfying the

conditions either in Theorem 5.3 (1)-(3), 5.4 or 5.5 (1)-(3). Then the heart of P (S) is

indecomposable.
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