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Abstract

The well-known fact that there is always one more addable than re-

movable box for a Young diagram is generalized to arbitrary hooks. As

an application, this implies immediately a simple proof of a conjecture

of Regev and Vershik [3] for which inductive proofs have recently been

given by Regev and Zeilberger [4] and Janson [1].

1 Introduction

This article originated from a conjecture by Regev and Vershik on hook num-

bers in certain skew Young diagrams, described in more detail in section 3

below. This conjecture can be rephrased in terms of counting removable hooks

for a Young diagram and special addable hooks for the same Young diagram; a

translation into partition sequences (recalled in section 2) then allows a direct

combinatorial proof of the Regev-Vershik conjecture. Viewing the problem this

way led to a re�ned investigation of addable and removable hooks for a given

Young diagram; using partition sequences, we will prove the following result:

Theorem 1.1 Let � be a partition of n and let Y (�) be its Young diagram.

For k 2 IN, a 2 IN

0

, let A

k;a

(�) be the number of k-hooks of arm length a that

can be added to Y (�) to give a Young diagram for a partition of n + k, and

let R

k;a

(�) be the number of k-hooks of arm length a that can be removed from

Y (�) to give a Young diagram for a partition of n� k. Then

A

k;a

(�) = 1 +R

k;a

(�) :

From this, we will deduce a number of consequences in section 3; as one appli-

cation we immediately obtain the Regev-Vershik conjecture.

2 Partition sequences

Let � = (�

1

; : : : ; �

m

) be a partition of n, i.e. �

1

� �

2

� � � � � �

m

> 0 with

P

i

�

i

= n. Then its Young diagram Y (�) is obtained by drawing �

i

boxes in

the i th row.

Example. The partition � = (5; 2; 2; 1) has the Young diagram
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From the Young diagram we can easily read o� an alternative description of

the partition � via a partition sequence � which is a doubly in�nite sequence of

zeroes and ones obtained as follows. We walk along the borderline of the Young

diagram, coming from the south on the vertical line, going along the border

and leaving on the horizontal line eastwards. Each vertical step is recorded by

a 0, each horizontal step by a 1 in the sequence.

Example. Taking again the partition � = (5; 2; 2; 1), we consider the border-

line of its Young diagram

. . .

.

.

.

This gives the sequence

� : : : : 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 : : :

where the dots at the beginning resp. end of the sequence symbolize in�nite

sequences of zeroes and ones, respectively. We also abbreviate these in�nite

sequences of zeroes to the left and ones to the right by 0 resp. 1, so that the

sequence above may also be written as

0 1 0 1 0 0 1 1 1 0 1

It is obvious that any doubly in�nite sequence of zeroes and ones with zeroes

only to the left of a certain position and ones only to the right of a certain

position describes (the Young diagram of) a partition, so we will identify par-

titions with their partition sequences in the following. Note that the sequence

0 1 describes the empty partition.

The notions of hooks and their lengths have a natural interpretation in this

setting (see [2] for more details). To be able to refer to the entries of the

partition sequence �, we choose an indexing with the integers, i.e. � = (`

i

)

i2ZZ

,

e.g. by indexing the �rst entry 1 (from the left) with 1; for all our purposes

only the relative positions are important so the particular choice of the indexing
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doesn't matter. A (removable) hook in � = (`

i

)

i2ZZ

is a (1,0)-pair of entries,

i.e. `

r

= 1 (called the foot of the hook), `

s

= 0 (called the hand of the hook)

where r < s. The distance k = s� r is the length of the hook; the hook is then

also called a k-hook. The number of zeroes (resp. ones) strictly between the

foot and the hand of the hook is the leg length (resp. arm length) of the hook.

The hook is removed by exchanging the (1; 0)-pair of the foot and hand to a

(0; 1)-pair at the same positions.

Dually, an addable hook in � is a (0,1)-pair of entries, i.e. `

r

= 0 (called the

foot), `

s

= 1 (called the hand) where r < s; the length notions are de�ned as

above. The hook is added by exchanging the (0; 1)-pair of the foot and hand

to a (1; 0)-pair at the same positions.

It is easily seen that a (removable or addable) hook in the partition sequence

� of a partition � corresponds to a (removable or addable) hook of the Young

diagram Y (�) in the usual sense, that the associated length notions coincide

and that the removal or the addition of a hook in the partition sequence �

corresponds to the usual removal or addition of the corresponding hook for

Y (�). So we may just speak of hooks of the partition �.

Example. We continue with our previous example. The partition � =

(5; 2; 2; 1) has a hook of length 4, arm length 1 and leg length 2, which is

indicated below:

� �

�

�

The hook indicated above corresponds to the box at position x = (2; 1) 2 Y (�);

the hook length of a hook with `corner box' x is also denoted by h(x).

In the partition sequence the hook above can also easily be found:

: : : 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 : : :

" "

foot hand

One immediately reads o� all associated lengths, and one checks that the par-

tition sequence where the hook has been removed by interchanging the 1 of

the foot with the 0 of the hand corresponds to the partition (5; 1) obtained by

removing the hook indicated in the Young diagram.

To give a �rst impression of the usefulness of partition sequences in dealing

with hooks we give a short proof of the following observation:

Proposition 2.1 Let � be a partition of n. For k 2 IN, let A

k

(�) be the

number of k-hooks that can be added to �, and let R

k

(�) be the number of
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k-hooks that can be removed from �. Then

A

k

(�) = k +R

k

(�) :

Proof. An addable resp. removable k-hook of � corresponds to a (0; 1)-

resp. (1; 0)-pair at distance k in the partition sequence � = (`

i

)

i2ZZ

of �,

or equivalently, to a (0; 1)- resp. (1; 0)-pair of neighbours in a subsequence

�

j

= (`

kt+j

)

t2ZZ

of �, j 2 f0; : : : ; k � 1g. Since each such subsequence starts

with 0 and ends on 1, it is evident that each �

j

has exactly one more neighbour

(0; 1)-pair than (1; 0)-pair. Hence � (and thus �) has exactly k more addable

k-hooks than removable k-hooks. �

For later purposes, in particular the context of the Regev-Vershik conjecture,

we want to rephrase this proposition.

Let Q denote the in�nite north-west quadrant, shown in the left diagram below.

� � �

.

.

.

.

.

.

� � �

.

.

.

.

.

.

� � � � �

� �

�

Then clearly for any k 2 IN, Q has exactly k removable k-hooks; more precisely,

for any a 2 f0; : : : ; k�1g Q has exactly one removable k-hook of arm length a.

Now let � be a partition and rotate its Young diagram Y (�) such that its north-

west corner is moved to the south-east position. Denote by Q n � the diagram

obtained by cutting out this rotated Young diagram from the quadrant Q; the

right diagram above shows this diagram Q n � for the partition � = (5; 2; 1),

with the rotated Young diagram of � indicated by bullets. Then clearly the

(removable) hooks in Q n � correspond exactly to the addable hooks for �.

Thus we can reformulate the proposition above as:

Corollary 2.2 Let � be a partition, and let L(�), L(Q) and L(Q n �) denote

the multisets of hooklengths in the corresponding diagrams. Then we have the

multiset equality

L(�) [ L(Q) = L(Q n �) :

3 Proof of the main result and applications

Now we consider all the addable and removable k-hooks in a partition sequence

in detail, also taking their arm lengths into account.
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We scan the partition sequence � = (`

i

)

i2ZZ

from the left with a `bracket' of

width k, i.e. we successively consider all pairs `

i

; `

i+k

. In scanning the sequence

from the left to the right, we record a signed contribution a+ resp. a� for an

addable resp. removable k-hook of arm length a, i.e. if the corresponding pair

`

i

; `

i+k

equals 0; 1 resp. 1; 0 and there are exactly a ones between the foot `

i

and the hand `

i+k

. We call this sequence the sequence of signed arm lengths

for k-hooks.

We observe that the �rst k-hook is always an addable k-hook of arm length 0

and that the last k-hook is always an addable k-hook of arm length k � 1:

0 0 0 0 0 0 0 1 � � � � � � � � � 0 1 1 1 1 1 1 1

k ka = 0 a = k � 1

Hence the sequence of signed arm lengths for k-hooks always has the form

0 + : : : : : : (k � 1)+. We now investigate the middle part of this sequence; the

following lemma is easy but crucial:

Lemma 3.1 In the situation above, two consecutive (removable or addable)

k-hooks give one of the following contributions to the sequence of signed arm

lengths:

a+ (a+ 1)+ ; a� (a� 1)� ; a+ a� ; a� a+

Proof. Consider two consecutive addable or removable k-hooks, say H

1

and

H

2

, and let a

1

and a

2

denote their respective arm lengths. That the hooks are

consecutive means that in scanning the partition sequence all the pairs `

i

; `

i+k

between these two hooks are either 0; 0 or 1; 1. Hence the section between the

feet of the hooks and the section between the hands of the hooks are equal.

Let us �rst consider the case where H

1

and H

2

are two consecutive k-hooks

that have an overlap, i.e. we have the following picture:

t u� � � � �

| {z } | {z }

A

1

A

1

� � �

| {z }

A

2

� � � � �v w

H

1

H

2

Hence we have (understanding unions as multiset unions)

a

1

� a

2

= #(1

0

s in A

1

[ fug [A

2

)�#(1

0

s in A

2

[ fvg [A

2

) = �

u;1

� �

v;1

which is exactly the assertion in this situation.

Now consider the case where H

1

and H

2

are two consecutive k-hooks that do

not overlap, i.e. the picture is:
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t u� � � � � � � �

| {z } | {z }

A

1

A

2

| {z }

B

� � : : : � � � v � � � � � � � � w

H

1

H

2

Since the sections between the feet of the hooks and the hands of the hooks,

respectively, are equal, we have the multiset equality

A

1

[ fug [B = B [ fvg [A

2

Hence we have

a

1

� a

2

= #(1

0

s in A

1

)�#(1

0

s in A

2

) = ��

u;1

+ �

v;1

which proves the assertion. �

Hence we can visualize the sequence of signed arm lengths for k-hooks of a given

partition sequence as follows, where a contribution a+ resp. a� is denoted as

a sign + resp. � at height a:

k � 1 +� +

k � 2 + � +

� +� + �+� +

� + � +�+ �+

� + � +

� +� + �+� +

1 + �+ � +

0 + �+

Proof of Theorem 1.1. By our considerations so far, the hook-counting for

the partition � is translated to the hook-counting for its partition sequence �.

For a �xed hook length k, all addable and removable k-hooks and their arm

lengths are recorded in the sequence of signed arm lengths investigated above.

For a �xed arm length a, the previous Lemma together with the remarks pre-

ceding it (see also the visualization above!) immediately imply that the sign

sequence for the k-hooks of arm length a in � (resp. �) is an alternating sign

sequence of + and �, starting and ending with a sign +. Thus there is ex-

actly one more addable k-hook of arm length a than removable k-hooks of arm

length a, for any �xed hook length k and arm length a, as was to be proved. �

We may also reformulate the Theorem as follows, by using the north-west

quadrant Q as in section 2:

Theorem 3.2 Let � be a partition, and let H(�), H(Q) and H(Q n �) denote

the multisets of removable hooks in the corresponding diagrams (here a hook is
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considered as a pair of its length and arm length). Then we have the multiset

equality

H(�) [H(Q) = H(Q n �) :

Remarks. (i) Note that we may easily construct a bijection from the proof of

our main theorem by mapping the �rst addable k-hook of arm length a for � to

the corresponding removable hook of Q and pairing o� the following removable

and addable k-hooks of arm length a for � (recall that the addable hooks for

� correspond exactly to the removable hooks of Q n �).

(ii) The results above also imply immediately Proposition 2.1 resp. Corol-

lary 2.2, since there are exactly k di�erent k-hooks.

Finally we want to deduce the conjecture by Regev and Vershik [3] from our

result; inductive proofs of this conjecture have been given recently by Janson [1]

and by Regev and Zeilberger [4].

First we have to recall the setup from [3].

Given a partition �, let R = R(�) be the smallest rectangle containing �. Ro-

tate the Young diagram of � again such that its north-west corner becomes

the south-east corner, call this diagram D = D(�). Then draw D on top of R

and to the left of R and remove D from R; denote the resulting diagram by

SQ(�).

Example. Let � = (4; 2; 1). Below the diagram SQ(�) is shown, with the

diagram D of the partition � indicated by bullets.

� � � �

� �

�

De�ning the multisets of hook lengths for the corresponding diagrams as be-

fore, we can now state the Regev-Vershik conjecture, which may be viewed as

a \�nite version" of Corollary 2.2.

Conjecture [3] In the situation above, we have the multiset equality

L(�) [ L(R) = L(SQ(�)) :

Let us reformulate this statement in terms of addable and removable hooks

for � = (�

1

; : : : ; �

m

). Clearly, the (removable) hooks of SQ(�) are exactly the

addable hooks H for � of arm length a(H) at most �

1

� 1 and of leg length

b(H) at most m� 1. Hence the conjecture above is equivalent to the following
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Corollary 3.3 Let � = (�

1

; : : : ; �

m

) be a partition of n. For k 2 IN, let A

0

k

(�)

be the number of k-hooks H with k �m � a(H) � �

1

� 1 that can be added to

�, and let � = (�

m

1

) be the smallest rectangle containing �. Then

A

0

k

(�) = R

k

(�) +R

k

(�) :

Proof. W.l.o.g. we may assume that �

1

� m. By Theorem 1.1 we have

A

0

k

(�) = R

k

(�) +

8

>

>

>

<

>

>

>

:

k if k � �

1

�

1

if �

1

< k � m

�

1

+m� k if m < k � �

1

+m

0 if k > �

1

+m

= R

k

(�) +R

k

(�) �

Remark. For the slightly more general version of the conjecture proved by

Janson [1] one just has to replace for a given t � �

1

the number A

0

k

(�) by the

number A

00

k

(�) of k-hooks H with k �m � a(H) � t� 1 that can be added to

�, and one has to take for the partition � the rectangle (t

m

); then the claim

follows with exactly the same argument as above from our Theorem.

Acknowledgements. Thanks go to Richard Stanley for a discussion on Corol-

lary 2.2, to Anatoly Vershik for information on the status of the conjecture in

[3] and to Amitai Regev also for comments on this article.

References

[1] S. Janson, Hook lengths in a skew Young diagram. Electronic J. Combin.

4(1997), #R24, 5pp.

[2] J. B. Olsson, Combinatorics and representations of �nite groups. Vorlesun-

gen aus dem Fachbereich Mathematik der Universit�at GH Essen, Heft 20,

1993

[3] A. Regev and A. Vershik, Asymptotics of Young diagrams and hook num-

bers. Electronic J. Combin. 4(1997), #R22, 12pp.

[4] A. Regev and D. Zeilberger, Proof of a conjecture on multisets of hook

numbers. Ann. Combin., to appear

email address: bessen@mathematik.uni-magdeburg.de

8


