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Abstra
t

Illustrating the e�e
tiveness of the methods introdu
ed in [1℄ we investi-

gate hooks in skew Young diagrams and bars in shifted diagrams; this is

partially motivated by re
ent work by Regev. In parti
ular, we provide

short 
ombinatorial proofs for re�ned identities on multisets of hooks in

the 
ase of shift-symmetri
 partitions.

1 Introdu
tion

Motivated by a 
onje
ture of Regev and Vershik on hook lengths in 
ertain skew Young diagrams,

in a re
ent arti
le [1℄ the sets of removable and addable hooks for a given Young diagram had

been investigated. Going beyond the hook lengths, a 
orresponden
e between the multisets of

hooks of 
ertain Young diagrams was given, showing that for ea
h type of hook (i.e., given both

the length and the arm length of the hook) there is exa
tly one more addable than removable

hook for any partition �. The Regev-Vershik 
onje
ture was then easily dedu
ed from this result.

In re
ent arti
les [5℄, [6℄, Regev has 
onsidered further hook and 
ontent number identities,


orresponding both to the 
ases of ordinary and proje
tive representations of the symmetri


groups S

n

. Some of these identities are re�ned versions of earlier identities whi
h had been

motivated by the study of S
hur symmetri
 fun
tions. Combinatorially, the re�nement 
orre-

sponds to looking at the hooks themselves in the diagrams rather than just 
ounting hooks by

their lengths. As des
ribed by Regev, this allows one to give interesting appli
ations for Ja
k

symmetri
 fun
tions whi
h are generalizations of the S
hur fun
tions.

Here, we want to illustrate the e�e
tiveness of the methods used in [1℄ by giving alternative


ombinatorial proofs of the results on hook numbers mentioned above and by showing how some

of the results 
an be derived from [1℄. In [5℄, [6℄, the results dis
ussed below are proved by

multistep indu
tion.

2 Partition sequen
es and hooks

First we brie
y re
all the basi
 tool used in [1℄, whi
h is the alternative des
ription of partitions

by the partition sequen
e; the reader is referred to [1℄ for more details.

Let � = (�

1

; : : : ; �

m

) be a partition of n, i.e., �

1

� �

2

� � � � � �

m

> 0 with

P

i

�

i

= n. Then its

Young diagram Y (�) is obtained by drawing �

i

boxes in the i th row (in a matrix array).

For example, the partition � = (5; 2; 2; 1) has the Young diagram

0
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From the Young diagram we 
an easily read o� the partition sequen
e � of the partition �, whi
h

is a doubly in�nite sequen
e of zeroes and ones. For this, we walk along the borderline of the

Young diagram, 
oming from the south on the (in�nite) verti
al line, going along the border

and leaving on the (in�nite) horizontal line eastwards. Ea
h verti
al step is re
orded by a 0,

ea
h horizontal step by a 1 in the sequen
e.

For example, for the partition � = (5; 2; 2; 1) we obtain the sequen
e

� : : : : 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 : : :

where the dots at the beginning and at the end of the sequen
e symbolize in�nite sequen
es of

zeroes and ones, respe
tively. We also abbreviate these in�nite sequen
es of zeroes to the left

and ones to the right by 0 resp. 1, so that the sequen
e above may also be written as

0 1 0 1 0 0 1 1 1 0 1

Any doubly in�nite sequen
e of zeroes and ones with zeroes only to the left of a 
ertain position

and ones only to the right of a 
ertain position des
ribes (the Young diagram of) a partition, so

in the following partitions will be identi�ed with their partition sequen
es.

We also need to re
all the interpretation of hooks and their lengths in this setting (see [3℄). All

the notions de�ned for a partition sequen
e � below 
orrespond to the usual notions for a parti-

tion � and its Young diagram. We 
hoose an indexing of the entries of the partition sequen
e �

with the integers, i.e., � = (`

i

)

i2ZZ

, e.g., by indexing the �rst entry 1 (from the left) with 1; for

all our purposes only the relative positions are important. A (removable) hook in � = (`

i

)

i2ZZ

is a (1,0)-pair of entries, i.e., `

r

= 1 (
alled the foot of the hook), `

s

= 0 (
alled the hand of the

hook), where r < s. The distan
e k = s � r is the length of the hook; the hook is then also


alled a k-hook. The number of zeroes (resp. ones) stri
tly between the foot and the hand of

the hook is the leg length (resp. arm length) of the hook. The hook is removed by ex
hanging

the (1; 0)-pair of the foot and hand to a (0; 1)-pair at the same positions. Dually, an addable

hook in � is a (0,1)-pair of entries, i.e., `

r

= 0 (
alled the foot), `

s

= 1 (
alled the hand) where

r < s; the length notions are de�ned as above. The hook is added by ex
hanging the (0; 1)-pair

of the foot and hand to a (1; 0)-pair at the same positions.

Example. The partition � = (5; 2; 2; 1) has a hook of length 4, arm length 1 and leg length 2,


orresponding to the position x = (2; 1) in its Young diagram.

In the partition sequen
e this hook 
an also easily be found:

: : : 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 : : :

" "

foot hand

One 
he
ks easily that the partition sequen
e where the hook has been removed by inter
hanging

the 1 of the foot with the 0 of the hand 
orresponds to the partition (5; 1).

For re
alling the main result from [1℄ we need some further notation.

Let Q denote the in�nite north-west quadrant, shown in the left diagram below.
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Then for any k 2 IN and a 2 f0; : : : ; k�1g there is exa
tly one removable k-hook of arm length a

in Q, i.e., Q has exa
tly one removable hook of any given type.

Now let � be a partition and rotate its Young diagram Y (�) su
h that its north-west 
orner is

moved to the south-east position. Denote by Q n � the diagram obtained by 
utting out this

rotated Young diagram from the quadrant Q; the right diagram above shows Qn� for the parti-

tion � = (5; 2; 1), with the rotated Young diagram of � indi
ated by bullets. Then a (removable)

hook in Q n � 
orresponds to an addable hook for �.

3 Hooks in skew Young diagrams

In this and the next se
tion we will prove some results on multisets of hooks in 
ertain skew

Young diagrams; for the 
onne
tions of these results with the theory of S
hur fun
tions or, more

generally, Ja
k symmetri
 fun
tions, we refer to [4℄, [5℄, [6℄, [2℄.

When we speak of hooks below, we 
onsider a hook as a pair of its length and its arm length (or

equivalently, as a pair of its arm length and leg length). For any skew diagram Y we denote by

H(Y ) its multiset of removable hooks; we also denote by h(Y ) the multiset of the hook lengths

of the removable hooks in Y . We 
an now state the main result from [1℄.

Theorem 3.1 ([1℄, Theorem 3.2) Let � be a partition, Q as before. Then we have the multiset

equality

H(�) [H(Q) = H(Q n �) :

Note that the assertion above is equivalent to saying that for any given hook shape the number

of addable hooks for � of this shape ex
eeds the number of removable hooks of this shape in �

by one.

As an immediate 
onsequen
e of this theorem we �rst dedu
e the main part (a) of Theorem 1

in [5℄. For this, we have to re
all some of the notations used there.

Given a partition � = (�

1

; : : : ; �

m

> 0), let R

n;k

= (k

n

) be a re
tangle 
ontaining �, i.e., �

1

� k,

m � n. Rotate the Young diagram of � su
h that its north-west 
orner be
omes the south-east


orner, 
all this diagram D = D(�). Then draw D on top of R and to the left of R and remove

D from R; denote the resulting diagram by SQ(n; k; �).

Example. Let � = (4; 2; 1), k = 6, n = 4. Below the diagram SQ(n; k; �) is shown, with the


ut out diagram D of the partition � indi
ated by bullets; also the re
tangle R

4;6

is marked.



4

� � � �

� �

�

In [1℄, already the Regev-Vershik 
onje
ture was dedu
ed dire
tly from Theorem 3.1; similarly,

also the following multiset equality is an immediate 
onsequen
e:

Corollary 3.2 ([5℄, Theorem 1(a)) Let � be a partition and let R

n;k

= (k

n

) be a re
tangle


ontaining �. Then we have the following equality between multisets of hooks:

H(�) [H(R

n;k

) = H(SQ(n; k; �)) :

Proof. Clearly, the (removable) hooks of SQ(n; k; �) are exa
tly the removable hooks H of

Q n � of arm length a(H) at most k � 1 and of leg length b(H) at most n � 1. But then the


laim follows immediately from Theorem 3.1 by restri
ting on both sides to the hooks of arm

length at most k � 1 and leg length at most n� 1 sin
e all hooks for � satisfy these restri
tions

and these hooks of Q are exa
tly the hooks of R

n;k

. �

Using partition sequen
es also gives an alternative 
ombinatorial proof of the se
ond main result

in [6℄. More pre
isely, we want to use the method introdu
ed in [1℄ to prove a slight generalization

of this result; �rst we re
all the related notation.

We �x the length l of the hooks to be 
onsidered and then s
an the partition sequen
e � = (`

i

)

i2ZZ

of � from the left with a `bra
ket' of width l, i.e., we su

essively 
onsider all pairs `

i

; `

i+l

. In

s
anning the sequen
e from the left to the right, we re
ord a signed 
ontribution a+ resp. a� for

an addable resp. removable l-hook of arm length a, i.e., if the 
orresponding pair `

i

; `

i+l

equals

0; 1 resp. 1; 0 and there are exa
tly a ones between the foot `

i

and the hand `

i+l

. This sequen
e

is 
alled the sequen
e of signed arm lengths for l-hooks. Note that the �rst l-hook is always

an addable l-hook of arm length 0 and that the last l-hook is always an addable l-hook of arm

length l � 1.

From [1℄, Lemma 3.1 we know that in the sequen
e of signed arm lengths for l-hooks two


onse
utive hooks always give one of the 
ontributions a+(a+ 1)+, a�(a� 1)�, a+a� or a�a+,

so that these sequen
es 
an be visualized by paths of the following form (here a 
ontribution a+

resp. a� is denoted as a sign + resp. � at height a):

k � 1 +� +

k � 2 + � +

� +� + �+� +

� + � +�+ �+

� + � +

� +� + �+� +

1 + �+ � +

0 + �+

Equivalently, we 
ould also have drawn a Dy
k path visualising the sequen
e, with up and down

steps instead of the signs.

To state the theorem we have to introdu
e some further notation.

Let again � = (�

1

; �

2

; : : :) be a partition 
ontained in a re
tangle R

n;k

. Let

~

� = r

n;k

(�) be the
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partition obtained by 
utting out � from R

n;k

and then rotating the resulting diagram so that

its south-east 
orner is moved to the north-west position. Now let d be any nonnegative integer,

and let SR

n;d

(�) be the skew diagram (�

1

+ d; : : : ; �

n

+ d) n �; 
orrespondingly we 
onstru
t

SR

n;d

(

~

�) for

~

� = r

n;k

(�). Note that we 
an also obtain SR

n;d

(

~

�) by a rotation of SR

n;d

(�) by

180

o

.

Example. Let � = (4; 2; 1), k = 6, n = 4 as before, and let d = 3. Below the diagrams

SR

n;d

(�) and SR

n;d

(

~

�) are shown to the left resp. right, with the partitions � resp.

~

� = r

4;6

(�)


ut out from the re
tangle R

4;6

indi
ated by bullets.

� � � �

� �

�

� � � � � �

� � � � �

� � � �

� �

The following result is a slight generalization of [5℄, Theorem 2, where it was assumed that

d = k.

Theorem 3.3 Let � be a partition 
ontained in a re
tangle R

n;k

, let

~

� = r

n;k

(�) and let d be a

nonnegative integer. Then we have the following equality of hook multisets:

H(SR

n;d

(�)) = H(SR

n;d

(

~

�)) :

Proof. Clearly, the hooks in the shifted re
tangles SR

n;d

(�) and SR

n;d

(

~

�) 
orrespond to addable

hooks of

~

� and �, respe
tively, with arms of length at most d � 1 and with their foot in the

�rst n rows. Let us look at the partition sequen
es 
orresponding to � and

~

�. The 
ondition

on the foot of the hooks to be 
onsidered 
an be translated into a restri
tion on the partition

sequen
e: we only have to look at the part of the partition sequen
e starting at the south-west


orner of the re
tangle R

n;k

. For the �rst n + k steps of the sequen
e (from the south-west to

the north-east 
orner of the re
tangle), we then have an easy relation between the 
orresponding

part �

n;k

of the partition sequen
e � for � and the part

~

�

n;k

of the partition sequen
e

~

� for

~

�:

the se
ond sequen
e is obtained by reading the �rst sequen
e ba
kwards.

In the example above, we have the following situation.

� : : : : 0 0 1 0 1 0 1 1 0 1 1 1

~

� : : : : 0 1 1 0 1 1 0 1 0 1 0 1

Here we have marked in bold the part �

n;k

resp.

~

�

n;k

of the sequen
es, whi
h are just re
e
tions

of ea
h other.

Now let l be a natural number and 
onsider the sequen
e of signed arm lengths for l-hooks

in both partition sequen
es. Both sequen
es start at the level a = 0 with a number of `+`


ontributions 
orresponding to the addable hooks with their foot in the in�nite region of 0 s

to the left, then we have the part of the sequen
e 
orresponding to the `interior` part �

n;k

of

the partition sequen
es marked bold above, and �nally the sequen
es end on a number of `+`


ontributions 
orresponding to the addable hooks with their hand in the unmarked 1s to the

right, where the �nal l-hook has arm length l� 1. Clearly, the middle parts of the paths for the

two partition sequen
es are just re
e
tions of ea
h other, i.e., the signs are swit
hed and then



6

read ba
kwards. The 
omplete path is then determined by its middle part as we just have to

add an upwards path from level 0 to its beginning and an upwards path from its end to level

l � 1. The pi
tures thus look like below where the middle part 
orresponding to the l-hooks in

the region �

n;k

resp.

~

�

n;k

is the part between the verti
al lines (these are not the paths for our

example above!):

� :

l� 1 j +� j +

l� 2 j + � j +

� j +� + �+� j +

� j + � +�+ �j+

� j + � + j

� j+� + �+� + j

1 +j �+ � + j

0 + j �+ j

~

� :

l� 1 j +� j +

l� 2 j + � j +

� j +�+ � +� j +

� j+ �+� + � j +

� +j � + � j +

� + j � +�+ � +�j+

1 + j � + �+ j

0 + j �+ j

Now to prove the 
laim of our theorem we only need to 
he
k that the number of + 
ontributions

to the right of the left verti
al line are on ea
h level the same for both sequen
es as these exa
tly


orrespond to the l-hooks in the required regions of a given arm length.

We 
onsider the height h

b

of the last + in the path for � before the left verti
al line and the

height h

e

of the �rst + after the right verti
al line. W.l.o.g. we may assume that h

b

< h

e

;

otherwise we inter
hange � and

~

�. Theorem 3.1 implies that on ea
h level of height at most

h

b

or at least h

e

there are exa
tly as many + as � 
ontributions in the middle part; in both

sequen
es no + 
ontribution is added at the end below height h

b

, and exa
tly one 
ontribution

+ is added on ea
h level of height greater than h

e

. So the overall number of + 
ontributions to

the right of the left verti
al line is the same for both sequen
es. On ea
h level of height between

h

b

and h

e

there is one more + than � in the middle part of the path for �, say the number of +

signs is m, and there is no further + to the right of the right verti
al line. On the other hand,

the middle part of the path for

~

� has m � 1 
ontributions +, but then there is a further + to

the right of the right verti
al line, so again we obtain m 
ontributions + to the right of the left

verti
al line. This proves the theorem. �

Remark. Note that from the proof above a bije
tive 
orresponden
e may be 
onstru
ted by

pairing o� the +;� pairs in the middle of the sequen
es and pairing the extra + in the middle

of one sequen
e with the extra + in the end part of the other sequen
e.

4 Shift-symmetri
 partitions and bars in shifted diagrams

Next we turn to a re�nement of Theorem 3.1 for shift-symmetri
 partitions. This will allow us

to dedu
e the `proje
tive' 
ase of Corollary 3.2 as Regev has 
alled it be
ause of its 
onne
tions

with the proje
tive representations of the symmetri
 groups. We will thus provide an alternative


ombinatorial proof of [6℄, Theorem II for whi
h a long proof by 4-step indu
tion was given in [6℄.
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Again, we �rst have to introdu
e some notation.

Let � = (�

1

; : : : ; �

l

) be a partition with distin
t parts. Its shifted diagram SY (�) is obtained by

indenting its Young diagram along the diagonal.

For example, for � = (5; 3; 2) its shifted diagram looks like

The shift-symmetri
 diagram SS(�) of the partition � is then obtained by gluing the shifted

diagram to its re
e
tion along the diagonal. Let � = S(�) be the 
orresponding shift-symmetri


partition.

For example, for � = (5; 3; 2) its shift-symmetri
 diagram is depi
ted below, where the re
e
ted

part is drawn with dashed lines. So here � = S(�) = (6; 5; 5; 3; 1).

q(�)

p(�)

We will also refer to the part of the diagram 
orresponding to � resp. SY (�) inside � resp.

SS(�) by q(�) and to the re
e
ted part � n � resp. SS(�) n SY (�) as p(�). Note that the hook

lengths in q(�) are exa
tly the bar lengths in �, and the arm and leg lengths of these bars are

just de�ned as the arm and leg lengths of the 
orresponding hooks inside q(�) (see [3℄).

In analogy to looking at the quadrant Q in the situation before, we now 
onsider the in�nite

stair
ase T as shown to the left below.

T

.

.

.

.

.

.

Q

q(Q)

p(Q)

� � �

.

.

.

.

.

.

The shift-symmetri
 diagram 
orresponding to T is then Q, and we denote by p(Q) the region of

Q 
orresponding to T and by q(Q) the region below the diagonal, as shown on the right above.

So the hook lengths in p(Q) are the bar lengths in T .

In analogy to the `ordinary' 
ase where the in�nite quadrant has exa
tly one hook of ea
h type

(i.e., given length and arm length) we now have for any k 2 IN and a 2 f0; : : : ;

h

k�1

2

i

g exa
tly

one k-hook of arm length a in p(Q) whi
h is equivalent to saying that T 
ontains exa
tly one

k-bar of arm length a.

We now embed � resp. � into the in�nite south-east quadrant Q

�

and re�ne the 
onsiderations

in [1℄, taking into a

ount the shift-symmetry of �.



8

7

7

7

7

7

q(�)

p(�)

In the diagram above, the part below the diagonal is p(�), the upper part is q(�).

Considering addable hooks for � 
orresponds to 
onsidering removable hooks in the diagram

where we have 
ut out a rotation of � from Q.

� � � � �

� � �

� �

Æ

Æ Æ

Æ Æ Æ

Æ Æ Æ

Æ

q(Q n �) q(�)

p(�)

p(Q n �)

7

7

7

7

We now have the following re�ned theorem on multisets of hooks. Note that the �rst assertion


an also be read as a statement on the addable and removable bars of � (viewing a bar as a pair

of its length and arm length).

Theorem 4.1 Let � be a partition with distin
t parts, � and Q as above. Then we have the

multiset equalities

H(q(�)) [H(q(Q)) = H(q(Q n �))

H(p(�)) [H(p(Q)) = H(p(Q n �))

:

Proof. We 
onsider again the sequen
e of signed arm lengths for � as we have done it in the

ordinary 
ase. Be
ause of the shift-symmetry of � this sequen
e now has the spe
ial form:

0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 101 1 1 10 0 0 0 01 1 1

p(�) q(�)
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where the sequen
e for q(�) is obtained from the sequen
e for p(�) by reading it ba
kwards and

inter
hanging 0 and 1 everywhere. The bold 1 in the middle is the `foot' of � whi
h 
omes from

the shift-symmetry.

Note that in s
anning the partition sequen
e from left to right for k-hooks we either have an

addable k-hook (0; 1) with its foot on the middle 1 or we have a removable k-hook (1; 0) with

its foot on the middle 1 (but not both).

So the path of signed arm length resp. the 
orresponding Dy
k path has a very spe
ial form.

For odd k it looks as follows where we have marked the position of the spe
ial k-hook by a �

and the position of the missing `dual' hook by jj (we dis
uss the 
ase k even below):

k � 1 j j j jj +

k � 2 j j j + jj � +

� j j j + jj �+

� j j j+�+ jj

k�1

2

j j +�+ j jj

� j j + j jj

� +� j j+ j jj

1 + �j+ j j jj

0 + j j j jj

��S�> j � j ��T �> j<�T ��jj<�S��

Note that in s
anning the partition sequen
e one easily re
ognizes the jump over the diagonal

(i.e., the 
rossing of the dividing line between p(Q) and q(Q)); if we have a hook belonging to

the node x = (i; j), i.e., a (0; 1)-pair or a (1; 0)-pair with hand 0 at position l

h

and foot 1 at

position l

f

in the partition sequen
e, then i is the number of 0's to the right of (and in
luding)

l

h

and j is the number of 1's to the left of (and in
luding) l

f

. So it is 
lear that there is just

one jump over the diagonal, and in our 
ontext of a shift-symmetri
 partition it has to o

ur in

the middle of the path; this is the dividing line where the sequen
e T ends and is then started

again ba
kwards. Moreover, for k odd, the jump always is at height

k�1

2

, sin
e { apart from the

re
e
ted sequen
es in the path { we either have an addable hook 
ontributing an extra + sign

in the left half (as in the pi
ture above) or we have a removable hook 
ontributing an extra �

sign in the right half of the path.

For even k, there is one spe
ial k-hook whi
h is 
entered symmetri
ally around the middle 1. If

it is a pair (0; 1), then it is an addable hook whi
h is 
learly just above the diagonal dividing

line (by the des
ription given above), and if it is a pair (1; 0) then it is a removable hook just

below the diagonal.

The 
orresponding pi
ture in the �rst 
ase looks like shown below, where we have now also

marked the position of the spe
ial 
entral k-hook by a �.
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k � 1 j j j j jj +

k � 2 j j j j jj +

� j j +� j j + jj � +�+

� j j + �j+ j � + jj �+

k

2

� 1 +� j j+ j j �+ jj

� +�+ �j+ j j j jj

� + j j j j jj

0 + j j j j jj

���S���> j � j ��T �> j �j<�T ��jj<���S���

The se
ond 
ase is similar. In any 
ase, the left part of the path ends on a � 
ontribution at

height

k

2

.

By 
onstru
tion, the hooks s
anned before the jump over the diagonal are exa
tly the (removable)

hooks in p(�) resp. 
orrespond to the (removable) hooks in p(Q n �), while the hooks above the

diagonal dividing line are the hooks in q(�) resp. 
orrespond to the hooks in q(Q n �).

As in the ordinary 
ase we now look at the situation at a �xed level a, i.e., we only 
onsider

k-hooks of a �xed arm length a.

At the diagonal we have rea
hed the height

h

k

2

i

, the left part of the path ending on a � 
ontri-

bution, as noted above. Sin
e on ea
h level the �rst 
ontribution is of type + and then the signs

alternate, by looking at a �xed level until the diagonal we obtain immediately the following (this

is very similar to the ` ordinary 
ase whi
h was 
onsidered in [1℄).

(i) For 0 � a <

h

k

2

i

there is exa
tly one more k-hook in p(Q n �) of arm length a than there

are k-hooks in p(�) of arm length a.

For

h

k

2

i

� a � k�1, the number of k-hooks of arm length a in these two diagrams 
oin
ide.

Dually, sin
e on ea
h level the �nal 
ontributon is of type +, by looking at a �xed level but this

time only at the part of the path after the diagonal, we obtain:

(ii) For 0 � a <

h

k

2

i

the number of k-hooks of arm length a in the diagrams q(�) and q(Q n�)


oin
ide.

For

h

k

2

i

� a � k � 1, there is exa
tly one more k-hook in q(Q n �) of arm length a than

there are k-hooks in q(�) of arm length a.

The ex
ess by one hook des
ribed in (i) and (ii) is exa
tly taken 
are of by p(Q) resp. q(Q).

This proves the assertion of the Theorem. �

Before we turn to the spe
ial skew diagrams investigated by Regev, we add some further easy

observations on the hook lengths appearing in 
ertain regions of the diagram.
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Remarks. (1) Let ` denote the length of � and let C be the (`+1)st 
olumn in �; let D be the

(`+ 1)st 
olumn in Q

�

n �. Then we have the following identity for hook length multisets

h(C) [ h(D) = IN :

(2) Let

~

C denote the set of diagonal boxes in � and let

~

D denote the set of shifted diagonal

boxes (i; i+ 1) in Q

�

n �. Then we have the following identity for hook length multisets

h(

~

C) = 2h(C) ; h(

~

D) = 2h(D) :

(3) Let U denote the rightmost 
olumn in Q, and let

~

U denote the set of boxes shifted from the

diagonal one step to the left in Q. Then

h(U) = IN ; h(

~

U ) = 2 IN :

(4) From (2) we dedu
e easily (by observing the symmetries in � indi
ated in the pi
tures above)

the following identity between the produ
ts of hook lengths in p(�) resp. q(�):

Y

x2p(�)

h

�

(x) = 2

`(�)

Y

x2q(�)

h

�

(x) :

We now turn to the skew diagrams studied by Regev.

For � = (�

1

; : : : ; �

`

) a partition with distin
t parts, � = S(�) as before and d � �

1

we now


onstru
t SQ(d; �) := SQ(d; d + 1; �). This diagram 
orresponds to a �nite region of the

diagram Q n �, where the shape of the hooks are restri
ted. We then divide this diagram into

several regions, a

ording to the diagonal splits made before. We illustrate this for the example

� = (5; 3; 2), d = 8; here � = (6; 5; 5; 3; 1). Below the diagram SQ(d; �) is shown, with the


ut out diagram of the rotated diagram for � indi
ated by 
ir
les (
orresponding to the rotated

p(�)) resp. bullets (
orresponding to the rotated q(�)).
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� � � � �

� � �

� �

Æ

Æ Æ

Æ Æ Æ

Æ Æ Æ

Æ

A

1

A

A

2

q(A) q(�)

p(�)

p(A)

The diagram SQ(d; �) is then divided into its lower left region A

1

, the middle region A inside

the re
tangle, and the upper right region A

2

, as indi
ated above. The re
tangle R

d

= ((d+1)

d

)

is split into two parts as the shift-symmetri
 partition 
orresponding to (d; d � 1; : : : ; 2; 1). In

a

ordan
e with the notation above, we denote the two parts of the diagram R

d

by q(R

d

) and

p(R

d

). Analogously, the region A is split into the pie
es q(A) below and p(A) above the diagonal,

as indi
ated in the pi
ture above.

Clearly, 
onsidering (removable) hooks in SQ(d; �) (and in the regions of this diagram spe
i�ed

above) is equivalent to 
onsidering addable hooks for � of arm length at most d + 1 and of leg

length at most d.

We 
an now state the following equality for multisets of hooks in these diagrams whi
h re�nes

Corollary 3.2 for shift-symmetri
 partitions.

Theorem 4.2 Let � = (�

1

; : : : ; �

`

) be a partition into distin
t parts, d a natural number with

d � �

1

, and let all skew diagrams q(�), p(�), A, A

1

, A

2

, R

d

, q(R

d

), p(R

d

) be de�ned as above.

Then we have

H(p(A)) [H(A

2

) = H(p(�)) [H(p(R

d

))

H(q(A)) [H(A

1

) = H(q(�)) [H(q(R

d

))

Proof. Similar to the `ordinary' 
ase, these statements are dedu
ed dire
tly from Theorem 4.1

by restri
ting the shapes of the hooks. �
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