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Abstrat

Illustrating the e�etiveness of the methods introdued in [1℄ we investi-

gate hooks in skew Young diagrams and bars in shifted diagrams; this is

partially motivated by reent work by Regev. In partiular, we provide

short ombinatorial proofs for re�ned identities on multisets of hooks in

the ase of shift-symmetri partitions.

1 Introdution

Motivated by a onjeture of Regev and Vershik on hook lengths in ertain skew Young diagrams,

in a reent artile [1℄ the sets of removable and addable hooks for a given Young diagram had

been investigated. Going beyond the hook lengths, a orrespondene between the multisets of

hooks of ertain Young diagrams was given, showing that for eah type of hook (i.e., given both

the length and the arm length of the hook) there is exatly one more addable than removable

hook for any partition �. The Regev-Vershik onjeture was then easily dedued from this result.

In reent artiles [5℄, [6℄, Regev has onsidered further hook and ontent number identities,

orresponding both to the ases of ordinary and projetive representations of the symmetri

groups S

n

. Some of these identities are re�ned versions of earlier identities whih had been

motivated by the study of Shur symmetri funtions. Combinatorially, the re�nement orre-

sponds to looking at the hooks themselves in the diagrams rather than just ounting hooks by

their lengths. As desribed by Regev, this allows one to give interesting appliations for Jak

symmetri funtions whih are generalizations of the Shur funtions.

Here, we want to illustrate the e�etiveness of the methods used in [1℄ by giving alternative

ombinatorial proofs of the results on hook numbers mentioned above and by showing how some

of the results an be derived from [1℄. In [5℄, [6℄, the results disussed below are proved by

multistep indution.

2 Partition sequenes and hooks

First we briey reall the basi tool used in [1℄, whih is the alternative desription of partitions

by the partition sequene; the reader is referred to [1℄ for more details.

Let � = (�

1

; : : : ; �

m

) be a partition of n, i.e., �

1

� �

2

� � � � � �

m

> 0 with

P

i

�

i

= n. Then its

Young diagram Y (�) is obtained by drawing �

i

boxes in the i th row (in a matrix array).

For example, the partition � = (5; 2; 2; 1) has the Young diagram

0

Some of the results of this artile were presented at the Euroonferene "Algebrai Combinatoris and Ap-

pliations", G�o�weinstein, 12.-19.9.1999.
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From the Young diagram we an easily read o� the partition sequene � of the partition �, whih

is a doubly in�nite sequene of zeroes and ones. For this, we walk along the borderline of the

Young diagram, oming from the south on the (in�nite) vertial line, going along the border

and leaving on the (in�nite) horizontal line eastwards. Eah vertial step is reorded by a 0,

eah horizontal step by a 1 in the sequene.

For example, for the partition � = (5; 2; 2; 1) we obtain the sequene

� : : : : 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 : : :

where the dots at the beginning and at the end of the sequene symbolize in�nite sequenes of

zeroes and ones, respetively. We also abbreviate these in�nite sequenes of zeroes to the left

and ones to the right by 0 resp. 1, so that the sequene above may also be written as

0 1 0 1 0 0 1 1 1 0 1

Any doubly in�nite sequene of zeroes and ones with zeroes only to the left of a ertain position

and ones only to the right of a ertain position desribes (the Young diagram of) a partition, so

in the following partitions will be identi�ed with their partition sequenes.

We also need to reall the interpretation of hooks and their lengths in this setting (see [3℄). All

the notions de�ned for a partition sequene � below orrespond to the usual notions for a parti-

tion � and its Young diagram. We hoose an indexing of the entries of the partition sequene �

with the integers, i.e., � = (`

i

)

i2ZZ

, e.g., by indexing the �rst entry 1 (from the left) with 1; for

all our purposes only the relative positions are important. A (removable) hook in � = (`

i

)

i2ZZ

is a (1,0)-pair of entries, i.e., `

r

= 1 (alled the foot of the hook), `

s

= 0 (alled the hand of the

hook), where r < s. The distane k = s � r is the length of the hook; the hook is then also

alled a k-hook. The number of zeroes (resp. ones) stritly between the foot and the hand of

the hook is the leg length (resp. arm length) of the hook. The hook is removed by exhanging

the (1; 0)-pair of the foot and hand to a (0; 1)-pair at the same positions. Dually, an addable

hook in � is a (0,1)-pair of entries, i.e., `

r

= 0 (alled the foot), `

s

= 1 (alled the hand) where

r < s; the length notions are de�ned as above. The hook is added by exhanging the (0; 1)-pair

of the foot and hand to a (1; 0)-pair at the same positions.

Example. The partition � = (5; 2; 2; 1) has a hook of length 4, arm length 1 and leg length 2,

orresponding to the position x = (2; 1) in its Young diagram.

In the partition sequene this hook an also easily be found:

: : : 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 1 1 : : :

" "

foot hand

One heks easily that the partition sequene where the hook has been removed by interhanging

the 1 of the foot with the 0 of the hand orresponds to the partition (5; 1).

For realling the main result from [1℄ we need some further notation.

Let Q denote the in�nite north-west quadrant, shown in the left diagram below.
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.

.
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� � � � �

� �

�

Then for any k 2 IN and a 2 f0; : : : ; k�1g there is exatly one removable k-hook of arm length a

in Q, i.e., Q has exatly one removable hook of any given type.

Now let � be a partition and rotate its Young diagram Y (�) suh that its north-west orner is

moved to the south-east position. Denote by Q n � the diagram obtained by utting out this

rotated Young diagram from the quadrant Q; the right diagram above shows Qn� for the parti-

tion � = (5; 2; 1), with the rotated Young diagram of � indiated by bullets. Then a (removable)

hook in Q n � orresponds to an addable hook for �.

3 Hooks in skew Young diagrams

In this and the next setion we will prove some results on multisets of hooks in ertain skew

Young diagrams; for the onnetions of these results with the theory of Shur funtions or, more

generally, Jak symmetri funtions, we refer to [4℄, [5℄, [6℄, [2℄.

When we speak of hooks below, we onsider a hook as a pair of its length and its arm length (or

equivalently, as a pair of its arm length and leg length). For any skew diagram Y we denote by

H(Y ) its multiset of removable hooks; we also denote by h(Y ) the multiset of the hook lengths

of the removable hooks in Y . We an now state the main result from [1℄.

Theorem 3.1 ([1℄, Theorem 3.2) Let � be a partition, Q as before. Then we have the multiset

equality

H(�) [H(Q) = H(Q n �) :

Note that the assertion above is equivalent to saying that for any given hook shape the number

of addable hooks for � of this shape exeeds the number of removable hooks of this shape in �

by one.

As an immediate onsequene of this theorem we �rst dedue the main part (a) of Theorem 1

in [5℄. For this, we have to reall some of the notations used there.

Given a partition � = (�

1

; : : : ; �

m

> 0), let R

n;k

= (k

n

) be a retangle ontaining �, i.e., �

1

� k,

m � n. Rotate the Young diagram of � suh that its north-west orner beomes the south-east

orner, all this diagram D = D(�). Then draw D on top of R and to the left of R and remove

D from R; denote the resulting diagram by SQ(n; k; �).

Example. Let � = (4; 2; 1), k = 6, n = 4. Below the diagram SQ(n; k; �) is shown, with the

ut out diagram D of the partition � indiated by bullets; also the retangle R

4;6

is marked.
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� � � �

� �

�

In [1℄, already the Regev-Vershik onjeture was dedued diretly from Theorem 3.1; similarly,

also the following multiset equality is an immediate onsequene:

Corollary 3.2 ([5℄, Theorem 1(a)) Let � be a partition and let R

n;k

= (k

n

) be a retangle

ontaining �. Then we have the following equality between multisets of hooks:

H(�) [H(R

n;k

) = H(SQ(n; k; �)) :

Proof. Clearly, the (removable) hooks of SQ(n; k; �) are exatly the removable hooks H of

Q n � of arm length a(H) at most k � 1 and of leg length b(H) at most n � 1. But then the

laim follows immediately from Theorem 3.1 by restriting on both sides to the hooks of arm

length at most k � 1 and leg length at most n� 1 sine all hooks for � satisfy these restritions

and these hooks of Q are exatly the hooks of R

n;k

. �

Using partition sequenes also gives an alternative ombinatorial proof of the seond main result

in [6℄. More preisely, we want to use the method introdued in [1℄ to prove a slight generalization

of this result; �rst we reall the related notation.

We �x the length l of the hooks to be onsidered and then san the partition sequene � = (`

i

)

i2ZZ

of � from the left with a `braket' of width l, i.e., we suessively onsider all pairs `

i

; `

i+l

. In

sanning the sequene from the left to the right, we reord a signed ontribution a+ resp. a� for

an addable resp. removable l-hook of arm length a, i.e., if the orresponding pair `

i

; `

i+l

equals

0; 1 resp. 1; 0 and there are exatly a ones between the foot `

i

and the hand `

i+l

. This sequene

is alled the sequene of signed arm lengths for l-hooks. Note that the �rst l-hook is always

an addable l-hook of arm length 0 and that the last l-hook is always an addable l-hook of arm

length l � 1.

From [1℄, Lemma 3.1 we know that in the sequene of signed arm lengths for l-hooks two

onseutive hooks always give one of the ontributions a+(a+ 1)+, a�(a� 1)�, a+a� or a�a+,

so that these sequenes an be visualized by paths of the following form (here a ontribution a+

resp. a� is denoted as a sign + resp. � at height a):

k � 1 +� +

k � 2 + � +

� +� + �+� +

� + � +�+ �+

� + � +

� +� + �+� +

1 + �+ � +

0 + �+

Equivalently, we ould also have drawn a Dyk path visualising the sequene, with up and down

steps instead of the signs.

To state the theorem we have to introdue some further notation.

Let again � = (�

1

; �

2

; : : :) be a partition ontained in a retangle R

n;k

. Let

~

� = r

n;k

(�) be the



5

partition obtained by utting out � from R

n;k

and then rotating the resulting diagram so that

its south-east orner is moved to the north-west position. Now let d be any nonnegative integer,

and let SR

n;d

(�) be the skew diagram (�

1

+ d; : : : ; �

n

+ d) n �; orrespondingly we onstrut

SR

n;d

(

~

�) for

~

� = r

n;k

(�). Note that we an also obtain SR

n;d

(

~

�) by a rotation of SR

n;d

(�) by

180

o

.

Example. Let � = (4; 2; 1), k = 6, n = 4 as before, and let d = 3. Below the diagrams

SR

n;d

(�) and SR

n;d

(

~

�) are shown to the left resp. right, with the partitions � resp.

~

� = r

4;6

(�)

ut out from the retangle R

4;6

indiated by bullets.

� � � �

� �

�

� � � � � �

� � � � �

� � � �

� �

The following result is a slight generalization of [5℄, Theorem 2, where it was assumed that

d = k.

Theorem 3.3 Let � be a partition ontained in a retangle R

n;k

, let

~

� = r

n;k

(�) and let d be a

nonnegative integer. Then we have the following equality of hook multisets:

H(SR

n;d

(�)) = H(SR

n;d

(

~

�)) :

Proof. Clearly, the hooks in the shifted retangles SR

n;d

(�) and SR

n;d

(

~

�) orrespond to addable

hooks of

~

� and �, respetively, with arms of length at most d � 1 and with their foot in the

�rst n rows. Let us look at the partition sequenes orresponding to � and

~

�. The ondition

on the foot of the hooks to be onsidered an be translated into a restrition on the partition

sequene: we only have to look at the part of the partition sequene starting at the south-west

orner of the retangle R

n;k

. For the �rst n + k steps of the sequene (from the south-west to

the north-east orner of the retangle), we then have an easy relation between the orresponding

part �

n;k

of the partition sequene � for � and the part

~

�

n;k

of the partition sequene

~

� for

~

�:

the seond sequene is obtained by reading the �rst sequene bakwards.

In the example above, we have the following situation.

� : : : : 0 0 1 0 1 0 1 1 0 1 1 1

~

� : : : : 0 1 1 0 1 1 0 1 0 1 0 1

Here we have marked in bold the part �

n;k

resp.

~

�

n;k

of the sequenes, whih are just reetions

of eah other.

Now let l be a natural number and onsider the sequene of signed arm lengths for l-hooks

in both partition sequenes. Both sequenes start at the level a = 0 with a number of `+`

ontributions orresponding to the addable hooks with their foot in the in�nite region of 0 s

to the left, then we have the part of the sequene orresponding to the `interior` part �

n;k

of

the partition sequenes marked bold above, and �nally the sequenes end on a number of `+`

ontributions orresponding to the addable hooks with their hand in the unmarked 1s to the

right, where the �nal l-hook has arm length l� 1. Clearly, the middle parts of the paths for the

two partition sequenes are just reetions of eah other, i.e., the signs are swithed and then
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read bakwards. The omplete path is then determined by its middle part as we just have to

add an upwards path from level 0 to its beginning and an upwards path from its end to level

l � 1. The pitures thus look like below where the middle part orresponding to the l-hooks in

the region �

n;k

resp.

~

�

n;k

is the part between the vertial lines (these are not the paths for our

example above!):

� :

l� 1 j +� j +

l� 2 j + � j +

� j +� + �+� j +

� j + � +�+ �j+

� j + � + j

� j+� + �+� + j

1 +j �+ � + j

0 + j �+ j

~

� :

l� 1 j +� j +

l� 2 j + � j +

� j +�+ � +� j +

� j+ �+� + � j +

� +j � + � j +

� + j � +�+ � +�j+

1 + j � + �+ j

0 + j �+ j

Now to prove the laim of our theorem we only need to hek that the number of + ontributions

to the right of the left vertial line are on eah level the same for both sequenes as these exatly

orrespond to the l-hooks in the required regions of a given arm length.

We onsider the height h

b

of the last + in the path for � before the left vertial line and the

height h

e

of the �rst + after the right vertial line. W.l.o.g. we may assume that h

b

< h

e

;

otherwise we interhange � and

~

�. Theorem 3.1 implies that on eah level of height at most

h

b

or at least h

e

there are exatly as many + as � ontributions in the middle part; in both

sequenes no + ontribution is added at the end below height h

b

, and exatly one ontribution

+ is added on eah level of height greater than h

e

. So the overall number of + ontributions to

the right of the left vertial line is the same for both sequenes. On eah level of height between

h

b

and h

e

there is one more + than � in the middle part of the path for �, say the number of +

signs is m, and there is no further + to the right of the right vertial line. On the other hand,

the middle part of the path for

~

� has m � 1 ontributions +, but then there is a further + to

the right of the right vertial line, so again we obtain m ontributions + to the right of the left

vertial line. This proves the theorem. �

Remark. Note that from the proof above a bijetive orrespondene may be onstruted by

pairing o� the +;� pairs in the middle of the sequenes and pairing the extra + in the middle

of one sequene with the extra + in the end part of the other sequene.

4 Shift-symmetri partitions and bars in shifted diagrams

Next we turn to a re�nement of Theorem 3.1 for shift-symmetri partitions. This will allow us

to dedue the `projetive' ase of Corollary 3.2 as Regev has alled it beause of its onnetions

with the projetive representations of the symmetri groups. We will thus provide an alternative

ombinatorial proof of [6℄, Theorem II for whih a long proof by 4-step indution was given in [6℄.
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Again, we �rst have to introdue some notation.

Let � = (�

1

; : : : ; �

l

) be a partition with distint parts. Its shifted diagram SY (�) is obtained by

indenting its Young diagram along the diagonal.

For example, for � = (5; 3; 2) its shifted diagram looks like

The shift-symmetri diagram SS(�) of the partition � is then obtained by gluing the shifted

diagram to its reetion along the diagonal. Let � = S(�) be the orresponding shift-symmetri

partition.

For example, for � = (5; 3; 2) its shift-symmetri diagram is depited below, where the reeted

part is drawn with dashed lines. So here � = S(�) = (6; 5; 5; 3; 1).

q(�)

p(�)

We will also refer to the part of the diagram orresponding to � resp. SY (�) inside � resp.

SS(�) by q(�) and to the reeted part � n � resp. SS(�) n SY (�) as p(�). Note that the hook

lengths in q(�) are exatly the bar lengths in �, and the arm and leg lengths of these bars are

just de�ned as the arm and leg lengths of the orresponding hooks inside q(�) (see [3℄).

In analogy to looking at the quadrant Q in the situation before, we now onsider the in�nite

stairase T as shown to the left below.

T

.

.

.

.

.

.

Q

q(Q)

p(Q)

� � �

.

.

.

.

.

.

The shift-symmetri diagram orresponding to T is then Q, and we denote by p(Q) the region of

Q orresponding to T and by q(Q) the region below the diagonal, as shown on the right above.

So the hook lengths in p(Q) are the bar lengths in T .

In analogy to the `ordinary' ase where the in�nite quadrant has exatly one hook of eah type

(i.e., given length and arm length) we now have for any k 2 IN and a 2 f0; : : : ;

h

k�1

2

i

g exatly

one k-hook of arm length a in p(Q) whih is equivalent to saying that T ontains exatly one

k-bar of arm length a.

We now embed � resp. � into the in�nite south-east quadrant Q

�

and re�ne the onsiderations

in [1℄, taking into aount the shift-symmetry of �.
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7

7

7

7

7

q(�)

p(�)

In the diagram above, the part below the diagonal is p(�), the upper part is q(�).

Considering addable hooks for � orresponds to onsidering removable hooks in the diagram

where we have ut out a rotation of � from Q.

� � � � �

� � �

� �

Æ

Æ Æ

Æ Æ Æ

Æ Æ Æ

Æ

q(Q n �) q(�)

p(�)

p(Q n �)

7

7

7

7

We now have the following re�ned theorem on multisets of hooks. Note that the �rst assertion

an also be read as a statement on the addable and removable bars of � (viewing a bar as a pair

of its length and arm length).

Theorem 4.1 Let � be a partition with distint parts, � and Q as above. Then we have the

multiset equalities

H(q(�)) [H(q(Q)) = H(q(Q n �))

H(p(�)) [H(p(Q)) = H(p(Q n �))

:

Proof. We onsider again the sequene of signed arm lengths for � as we have done it in the

ordinary ase. Beause of the shift-symmetry of � this sequene now has the speial form:

0 1 0 0 0 0 1 1 1 1 1 0 0 0 1 101 1 1 10 0 0 0 01 1 1

p(�) q(�)
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where the sequene for q(�) is obtained from the sequene for p(�) by reading it bakwards and

interhanging 0 and 1 everywhere. The bold 1 in the middle is the `foot' of � whih omes from

the shift-symmetry.

Note that in sanning the partition sequene from left to right for k-hooks we either have an

addable k-hook (0; 1) with its foot on the middle 1 or we have a removable k-hook (1; 0) with

its foot on the middle 1 (but not both).

So the path of signed arm length resp. the orresponding Dyk path has a very speial form.

For odd k it looks as follows where we have marked the position of the speial k-hook by a �

and the position of the missing `dual' hook by jj (we disuss the ase k even below):

k � 1 j j j jj +

k � 2 j j j + jj � +

� j j j + jj �+

� j j j+�+ jj

k�1

2

j j +�+ j jj

� j j + j jj

� +� j j+ j jj

1 + �j+ j j jj

0 + j j j jj

��S�> j � j ��T �> j<�T ��jj<�S��

Note that in sanning the partition sequene one easily reognizes the jump over the diagonal

(i.e., the rossing of the dividing line between p(Q) and q(Q)); if we have a hook belonging to

the node x = (i; j), i.e., a (0; 1)-pair or a (1; 0)-pair with hand 0 at position l

h

and foot 1 at

position l

f

in the partition sequene, then i is the number of 0's to the right of (and inluding)

l

h

and j is the number of 1's to the left of (and inluding) l

f

. So it is lear that there is just

one jump over the diagonal, and in our ontext of a shift-symmetri partition it has to our in

the middle of the path; this is the dividing line where the sequene T ends and is then started

again bakwards. Moreover, for k odd, the jump always is at height

k�1

2

, sine { apart from the

reeted sequenes in the path { we either have an addable hook ontributing an extra + sign

in the left half (as in the piture above) or we have a removable hook ontributing an extra �

sign in the right half of the path.

For even k, there is one speial k-hook whih is entered symmetrially around the middle 1. If

it is a pair (0; 1), then it is an addable hook whih is learly just above the diagonal dividing

line (by the desription given above), and if it is a pair (1; 0) then it is a removable hook just

below the diagonal.

The orresponding piture in the �rst ase looks like shown below, where we have now also

marked the position of the speial entral k-hook by a �.
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k � 1 j j j j jj +

k � 2 j j j j jj +

� j j +� j j + jj � +�+

� j j + �j+ j � + jj �+

k

2

� 1 +� j j+ j j �+ jj

� +�+ �j+ j j j jj

� + j j j j jj

0 + j j j j jj

���S���> j � j ��T �> j �j<�T ��jj<���S���

The seond ase is similar. In any ase, the left part of the path ends on a � ontribution at

height

k

2

.

By onstrution, the hooks sanned before the jump over the diagonal are exatly the (removable)

hooks in p(�) resp. orrespond to the (removable) hooks in p(Q n �), while the hooks above the

diagonal dividing line are the hooks in q(�) resp. orrespond to the hooks in q(Q n �).

As in the ordinary ase we now look at the situation at a �xed level a, i.e., we only onsider

k-hooks of a �xed arm length a.

At the diagonal we have reahed the height

h

k

2

i

, the left part of the path ending on a � ontri-

bution, as noted above. Sine on eah level the �rst ontribution is of type + and then the signs

alternate, by looking at a �xed level until the diagonal we obtain immediately the following (this

is very similar to the ` ordinary ase whih was onsidered in [1℄).

(i) For 0 � a <

h

k

2

i

there is exatly one more k-hook in p(Q n �) of arm length a than there

are k-hooks in p(�) of arm length a.

For

h

k

2

i

� a � k�1, the number of k-hooks of arm length a in these two diagrams oinide.

Dually, sine on eah level the �nal ontributon is of type +, by looking at a �xed level but this

time only at the part of the path after the diagonal, we obtain:

(ii) For 0 � a <

h

k

2

i

the number of k-hooks of arm length a in the diagrams q(�) and q(Q n�)

oinide.

For

h

k

2

i

� a � k � 1, there is exatly one more k-hook in q(Q n �) of arm length a than

there are k-hooks in q(�) of arm length a.

The exess by one hook desribed in (i) and (ii) is exatly taken are of by p(Q) resp. q(Q).

This proves the assertion of the Theorem. �

Before we turn to the speial skew diagrams investigated by Regev, we add some further easy

observations on the hook lengths appearing in ertain regions of the diagram.
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Remarks. (1) Let ` denote the length of � and let C be the (`+1)st olumn in �; let D be the

(`+ 1)st olumn in Q

�

n �. Then we have the following identity for hook length multisets

h(C) [ h(D) = IN :

(2) Let

~

C denote the set of diagonal boxes in � and let

~

D denote the set of shifted diagonal

boxes (i; i+ 1) in Q

�

n �. Then we have the following identity for hook length multisets

h(

~

C) = 2h(C) ; h(

~

D) = 2h(D) :

(3) Let U denote the rightmost olumn in Q, and let

~

U denote the set of boxes shifted from the

diagonal one step to the left in Q. Then

h(U) = IN ; h(

~

U ) = 2 IN :

(4) From (2) we dedue easily (by observing the symmetries in � indiated in the pitures above)

the following identity between the produts of hook lengths in p(�) resp. q(�):

Y

x2p(�)

h

�

(x) = 2

`(�)

Y

x2q(�)

h

�

(x) :

We now turn to the skew diagrams studied by Regev.

For � = (�

1

; : : : ; �

`

) a partition with distint parts, � = S(�) as before and d � �

1

we now

onstrut SQ(d; �) := SQ(d; d + 1; �). This diagram orresponds to a �nite region of the

diagram Q n �, where the shape of the hooks are restrited. We then divide this diagram into

several regions, aording to the diagonal splits made before. We illustrate this for the example

� = (5; 3; 2), d = 8; here � = (6; 5; 5; 3; 1). Below the diagram SQ(d; �) is shown, with the

ut out diagram of the rotated diagram for � indiated by irles (orresponding to the rotated

p(�)) resp. bullets (orresponding to the rotated q(�)).
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� � � � �

� � �

� �

Æ

Æ Æ

Æ Æ Æ

Æ Æ Æ

Æ

A

1

A

A

2

q(A) q(�)

p(�)

p(A)

The diagram SQ(d; �) is then divided into its lower left region A

1

, the middle region A inside

the retangle, and the upper right region A

2

, as indiated above. The retangle R

d

= ((d+1)

d

)

is split into two parts as the shift-symmetri partition orresponding to (d; d � 1; : : : ; 2; 1). In

aordane with the notation above, we denote the two parts of the diagram R

d

by q(R

d

) and

p(R

d

). Analogously, the region A is split into the piees q(A) below and p(A) above the diagonal,

as indiated in the piture above.

Clearly, onsidering (removable) hooks in SQ(d; �) (and in the regions of this diagram spei�ed

above) is equivalent to onsidering addable hooks for � of arm length at most d + 1 and of leg

length at most d.

We an now state the following equality for multisets of hooks in these diagrams whih re�nes

Corollary 3.2 for shift-symmetri partitions.

Theorem 4.2 Let � = (�

1

; : : : ; �

`

) be a partition into distint parts, d a natural number with

d � �

1

, and let all skew diagrams q(�), p(�), A, A

1

, A

2

, R

d

, q(R

d

), p(R

d

) be de�ned as above.

Then we have

H(p(A)) [H(A

2

) = H(p(�)) [H(p(R

d

))

H(q(A)) [H(A

1

) = H(q(�)) [H(q(R

d

))

Proof. Similar to the `ordinary' ase, these statements are dedued diretly from Theorem 4.1

by restriting the shapes of the hooks. �
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