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Abstract. Recently Stembridge obtained the classification of multiplicity-free products of Schur
functions, and thus of multiplicity-free outer products of irreducible characters of the symmetric
groups. In this paper, the multiplicity-free products of Schur P -functions are classified, and then
this is applied to the case of projective outer products of spin characters of the double covers of the
symmetric groups.
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1 Introduction

Recently, Stembridge obtained the complete classification of multiplicity-free products of
Schur functions, or equivalently, outer products of characters of the symmetric groups [2]. In
this article, we deal with products of Schur P -functions and with projective outer products
of spin characters of the double covers of the symmetric groups.
First we have to introduce some notation; we follow the notation used in [1], otherwise.
For n ∈ IN, we denote by D(n) the set of partitions of n into distinct parts, and we set
D =

⋃
n D(n).

To a partition λ ∈ D(n) we associate a shifted diagram

Y ′(λ) = {(i, j) ∈ IN2 | 1 ≤ i ≤ l(λ), i ≤ j ≤ λi + i− 1} .

Note that coordinates will be interpreted in matrix notation.
Let A′ be the ordered alphabet {1′ < 1 < 2′ < 2 < ...}. The letters 1′, 2′, . . . are said to be
marked, the others are unmarked. The notation |a| refers to the unmarked version of a letter
a in A′.
A shifted tableau T of shape λ is a map T : Y ′(λ) → A′ such that T (i, j) ≤ T (i + 1, j),
T (i, j) ≤ T (i, j+1) for all i, j and the following additional property holds. Every k ∈ {1, 2, . . .}
appears at most once in each column of T , and every k′ ∈ {1′, 2′, . . .} appears at most once
in each row of T . For k ∈ {1, 2, . . .}, let ck be the number of boxes (i, j) in Y ′(λ) such that
|T (i, j)| = k. Then we say that the tableau T has content (c1, c2, . . .). Analogously, we define
skew shifted diagrams and skew shifted tableaux of skew shape λ/µ if µ is a partition with
Y ′(µ) ⊆ Y ′(λ).
For a partition λ ∈ D, let Qλ(x) denote Schur’s Q-function, i.e., in combinatorial terms

Qλ(x) =
∑

T

xT
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where the sum runs over all shifted tableaux T of shape λ, and where xT stands for xc1
1 xc2

2 · · ·
with ci the multiplicity of |i| in the tableau T (see [1] for more details). Then Schur’s P -
function is

Pλ(x) = 2−l(λ)Qλ(x) ,

the generating function for shifted tableaux with unmarked main diagonal.
Let st(λ;µ, ν) denote the coefficients in the expansion of the product of two P -functions:

PµPν =
∑

λ∈D

st(λ; µ, ν)Pλ .

The main result in this article provides the classification of multiplicity-free products PµPν

of Schur P -functions. We will then apply this to classify the multiplicity-free projective outer
products of spin characters.

2 Products of Schur P -functions

The coefficients in the products of Schur P -functions have been combinatorially determined
by Stembridge [1]. To state his result, some further combinatorial notions are required.

For a (possibly skew) shifted tableau S we define its associated word w(S) = w1w2 · · · by
reading the rows of S from left to right and from bottom to top. By erasing the marks of w,
we obtain the word |w|.
Given a word w = w1w2 . . ., we define

mi(j) = multiplicity of i among wn−j+1, . . . , wn , for 0 ≤ j ≤ n
mi(n + j) = mi(n) + multiplicity of i′ among w1, . . . , wj , for 0 < j ≤ n

This function mi corresponds to reading the rows of the tableau first from top to bottom and
from right to left, counting the letter i on the way, and then reading from bottom to top and
left to right, counting the letter i′ on this way.
We then say that the word w satisfies the lattice property if, whenever mi(j) = mi−1(j), then

wn−j 6= i, i′ , if 0 ≤ j < n
wj−n+1 6= i− 1, i′ , if n ≤ j < 2n

The shifted Littlewood-Richardson obtained by Stembridge [1, 8.3], is then given as follows.

Theorem 2.1 [1] Let µ ∈ D(k), ν ∈ D(n− k), λ ∈ D(n). Then the coefficient st(λ; µ, ν) is
the number of shifted tableaux S of shape λ/µ and content ν such that the tableau word w =
w(S) satisfies the lattice property and the leftmost i of |w| is unmarked in w for 1 ≤ i ≤ l(ν).

Hence to investigate when a product of Schur P -functions is multiplicity-free is equivalent to
determining when all shifted tableaux counts for fixed µ and ν are at most 1. The strategy
of the proof is similar to the one applied by Stembridge in the case of the products of Schur
functions (see [2]).
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Theorem 2.2 Let µ, ν be partitions into distinct parts. Then the product PµPν is multiplicity-
free, or equivalently, st(λ;µ, ν) ≤ 1 for all λ, if and only if we are in one of the following
situations:

(i) One of µ, ν is (1) and the other partition is arbitrary.

(ii) One of the partitions µ, ν is a hook staircase and the other one is (2, 1).

(iii) One of the partitions µ, ν is a staircase and the other one is of the form (k + 1, k),
k ≥ 2, or (k, k − 1, . . . , 3), k ≥ 5.

(iv) One of the partitions µ, ν is a fat staircase and the other one is (3, 2, 1).

(v) Both partitions µ, ν are staircases.

(vi) One of the partitions µ, ν is a near-staircase and the other one is a staircase.

Here, by a staircase we mean a partition of the form (k, k−1, . . . , 2, 1), for some k ∈ N. A fat
staircase is a partition of the form (k+r, k−1+r, . . . , 2+r, 1+r) for some k, r. A hook staircase
is the union of a staircase and a fat staircase (one of these may be empty). A near-staircase
is a staircase with one row or column added, i.e., it is of the form (m, k, k − 1, . . . , 2, 1),
m > k + 1, or (r, r − 1, . . . , k + 2, k, k − 1, . . . , 2, 1) (here possibly k = 0, i.e., (m) and
(r, r − 1, . . . , 3, 2) are also near-staircases).

Proof. We note that similar as in the tableaux count for the ordinary case, we have inequal-
ities which allow to reduce to smaller partitions.
If r ≤ l(µ) + 1, then

st(λ; µ, ν) ≤ st(λ + 1r; µ + 1r, ν) ,

where µ + 1r is obtained from µ by adding 1 to the first r parts of µ (including the part 0 if
r = l(µ) + 1).
For the second reduction step, we note that

st(λ; µ, ν) ≤ st(λ̃;µ ∪ {µ1 + 1}, ν) ,

where µ ∪ {µ1 + 1} is the partition which has as its parts the parts of µ together with the
part µ1 + 1. The partition λ̃ depends on λ and is determined explicitly as follows.
We may assume here that µ ⊆ λ. If λ1 = µ1, then set λ̃ = λ ∪ {µ1 + 1}.
If λ1 > µ1, define j = max{i | λi > µ1 − i + 1}. Then set

λ̃ = (λ1 + 1, λ2 + 1, . . . , λj + 1, µ1 − j + 1, λj+1, λj+2, . . .) .

The new tableaux of shape λ̃ \ (µ ∪ {µ1 + 1}) arise from those of shape λ \ µ by shifting the
part to the right of column µ1 + 1 one row up. Locally, in the corresponding tableau word
only the “left part” of row k is swapped with the “right part” of row k +1. One easily checks
that the new tableau word again satisfies the “shifted LR-conditions” (given in Theorem 2.1)
if the original tableau word did.
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Now for the pairs (µ, ν) = ((2), (2)) and (µ, ν) = ((4, 2), (2, 1)) at least for one λ two shifted
tableaux of shape λ \ µ and content ν are counted. The relevant diagrams are

∗ ∗ 1∗

1
∗ ∗ ∗ ∗ 1

∗ ∗ 1
2

∗ ∗ ∗ ∗ 1
∗ ∗ 2

1

Here 1∗ signifies that one can put both the corresponding unmarked or marked letter at this
place.
Using this, and checking the assertion for the partitions (2) and (2, 1), we obtain the following
two properties:
(i) st(λ; µ, (2)) ≤ 1 for all λ if and only if µ is a staircase.
(ii) st(λ; µ, (2, 1)) ≤ 1 for all λ if and only if µ is a hook staircase.

In fact, using this one also checks that
(iii) For all k ≥ 2, st(λ; µ, (k + 1, k)) ≤ 1 for all λ if and only if µ is a staircase.

We also have:
(iv) For all k ≥ 4, st(λ;µ, (k, k − 1, . . . , 4, 3)) ≤ 1 for all λ if and only if µ is a staircase.
If µ is not a staircase, by the previous reduction steps the tableaux count will give a number
larger than 1 for some λ.
For dealing with the case when µ is a staircase, consider tableaux of shape λ \ ν (ν =
(k, k − 1, . . . , 4, 3)) and content µ. Note that when such a tableau satisfies the shifted LR-
condition all its letters have to be unmarked. Then, in this special situation for a given shape
and content only one tableau is possible.
If ν = (1) then clearly for any partition µ we have st(λ; µ, ν) ≤ 1 for all λ.
Since any partition ν 6= (1) into distinct parts can be reduced (in the sense above) to (2) or
(2, 1), we thus conclude that the critical cases to look at are the pairs of a staircase and a
hook staircase.
Let us first assume that ν is a hook staircase of the form ν = (m), m ≥ 2, or ν = (m− 1, 1),
m ≥ 4. It is easy to check that in both cases for all staircases µ we have st(λ; µ, ν) ≤ 1 for
all λ.
In view of (iii) and (iv) above, we may thus assume that the hook staircase is not of the form
(m) or (m− 1, 1) or (k + 1, k), k ≥ 2 or (k, k − 1, . . . , 3), k ≥ 4. In view of (ii), we may also
assume that the staircase partition in a pair under consideration contains (3, 2, 1).
In dealing with the remaining critical cases, use again that a word of staircase weight µ =
(k, k−1, . . . , 2, 1) satisfying the shifted LR-conditions has no marked letters. Then one easily
checks that for a given staircase or near-staircase ν and a given λ and µ there is at most one
tableau of shape λ\ν and content µ. The same holds for µ = (3, 2, 1) and any fat staircase ν.
Now for the pair ((3, 2, 1), (5, 4, 1)) the diagrams

∗ ∗ ∗ ∗ ∗ 1 1
∗ ∗ ∗ ∗ 2

∗ 1 2
3

∗ ∗ ∗ ∗ ∗ 1 1
∗ ∗ ∗ ∗ 2

∗ 1 3
2
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show that there are no further hook staircases ν besides the staircases, near-staircases and
fat staircases that satisfy our desired condition with µ = (3, 2, 1) (or any larger staircase).
Furthermore, for the pair ((4, 3, 2, 1), (6, 5, 4)) the diagrams

∗ ∗ ∗ ∗ ∗ ∗ 1 1 1
∗ ∗ ∗ ∗ ∗ 2 2

∗ ∗ ∗ ∗ 3
1 2 3

4

∗ ∗ ∗ ∗ ∗ ∗ 1 1 1
∗ ∗ ∗ ∗ ∗ 2 2

∗ ∗ ∗ ∗ 3
1 2 4

3

show that for a staircase containing (4, 3, 2, 1) the only fat staircases satisfying the condition
and not being near-staircases are of the form (k +1, k), k ≥ 3, or of the form (k, k−1, . . . , 3),
k ≥ 5.
This proves the claim. ¦

3 Projective outer products of spin characters

For spin characters of the double covers S̃n of Sn, Stembridge introduced a projective analogue
of the outer tensor product, and proved a shifted analogue of the Littlewood-Richardson rule
also for the spin characters (see [1]).
For stating this, we have to recall a few more definitions and notation.
For two partitions µ and ν we denote by µ ∪ ν the partition which has as its parts all the
parts of µ and ν together. We also define

ελ =
{

1 if λ ∈ D+(n),√
2 if λ ∈ D−(n).

If µ, ν are partitions into distinct parts, then first form the reduced Clifford product 〈µ〉×c 〈ν〉
(see [1]); the projective outer product is then

〈µ〉 ⊗̂ 〈ν〉 = (〈µ〉 ×c 〈ν〉) ↑eSn .

Now the shifted Littlewood-Richardson rule for obtaining the multiplicities ŝ(λ;µ, ν) =
(〈µ〉 ⊗̂ 〈ν〉, 〈λ〉) in this outer product reads as follows:

Theorem 3.1 ([1, 8.1]) Let µ ∈ D(k), ν ∈ D(n− k), λ ∈ D(n). Then we have

(〈µ〉 ⊗̂ 〈ν〉, 〈λ〉) =
1

ελεµ∪ν
2(l(µ)+l(ν)−l(λ))/2st(λ; µ, ν) ,

unless λ is odd and λ = µ ∪ ν. In that latter case, the multiplicity of 〈λ〉 is 0 or 1, according
to the choice of associates.

We can now provide the classification of multiplicity-free projective outer products of spin
characters using Theorem 3.1 as a main ingredient.
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Theorem 3.2 Let µ, ν be partitions into distinct parts. Then the projective outer product
〈µ〉 ⊗̂ 〈ν〉 is multiplicity-free if and only if we are in one of the following situations:

(i) 〈anything〉 ⊗̂ 〈1〉.
(ii) 〈hook staircase〉 ⊗̂ 〈2, 1〉, and the hook staircase is in D+.

(iii) 〈fat staircase〉 ⊗̂ 〈m〉, for some m ∈ N, m > 1, where a proper fat staircase and the
partition (m) are of different type.

(iv) 〈staircase〉⊗̂〈m−1, 1〉, for some m ∈ N, m > 3, such that the staircase and the partition
(m− 1, 1) are of different type.

(v) 〈staircase〉 ⊗̂ 〈k + 1, k〉, for some k ∈ N, and the staircase is in D+.

Proof. Using Theorem 2.2 and Theorem 3.1 one easily checks that in all cases described
above the product is indeed multiplicity-free; in fact, the possible extra 2-power occurring in
the formula is 1 in almost all cases except in the case of a proper fat staircase in (iii) where
a factor 1

2 cancels the tableaux multiplicity 2.
Conversely, because of the 2-powers in the shifted Littlewood-Richardson rule the situation
is reduced to the cases where either one of the partitions is (m), or where one is of the form
(m− l, l), and the partitions are not of the same type. Then the result follows by an analysis
of the products with the two special partitions (m) and (m − 1, 1), using similar arguments
as for Theorem 2.2, i.e., providing suitable constituents that appear with multiplicity > 1 or
– in the case of a pre-factor 1

2 – with multiplicity > 2 (for these special partitions this is easy
but slightly tedious). ¦

Acknowledgement. I would like to thank the Isaac Newton Institute for Mathematical Sciences of
the University of Cambridge for their hospitality during my stay there in the frame of the programme
Symmetric functions and Macdonald polynomials, when the work for this note was done.

Note added in correction. In the version of this paper published in Annals of Combinatorics (2002),
in case (iii) the products with proper fat staircases were missing; thanks to D. Nett for pointing this
omission out.
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