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Abstract

In this article, two families of (almost) homogeneous mixed Kronecker

products of non-faithful and of spin characters of the double covers of the

symmetric groups are described. This is then applied to classify the irreducible

mixed products, thus completing the classi�cation of all irreducible Kronecker

products of characters of the double covers of the symmetric groups.

1 Introduction

Kronecker products of complex characters of the symmetric group S

n

have been

studied in many papers. Information on special products and on the coe�cients

of special constituents have been obtained but there is no e�cient combinatorial

algorithm in sight for computing these products. In [1], products of S

n

-characters

with few homogeneous components and homogeneous products of characters of the

alternating group A

n

have been classi�ed. In particular, there are no non-trivial

homogeneous Kronecker products for S

n

, but there are such products for A

n

, when

n is a square number (these are even irreducible).

For the double covers

e

S

n

of the symmetric groups, information about products

of characters is even more sparse. Recently, in [2] some results have been obtained

on products of spin characters of

e

S

n

which led to a classi�cation of homogeneous

spin products. Here, homogeneous products do occur for all triangular numbers n,

but non-trivial irreducible products occur only for n = 6.

In this article, we consider mixed products of complex characters for the dou-

ble covers

e

S

n

, i.e. products of a non-faithful character of

e

S

n

(corresponding to a

character of S

n

) with a spin character. In this situation, there are some interesting

homogeneous or almost homogeneous mixed products; �nding such mixed products

was greatly helped by the special maple packages SF and QF for dealing with sym-

metric functions by John Stembridge. Two families of homogeneous resp. almost

homogeneous products are described; one for any composite number and the other

one for triangular numbers. The irreducible mixed products are then classi�ed; they

occur for even numbers and triangular numbers satisfying a congruence condition.
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2 Preliminaries

We denote by P (n) the set of partitions of n. For a partition � 2 P (n), l(�) denotes

its length, i.e. the number of (non-zero) parts of �. The set of partitions of n into

odd parts only is denoted by O(n), and the set of partitions of n into distinct parts

is denoted by D(n). We write D

+

(n) resp. D

�

(n) for the sets of partitions � in

D(n) with n� l(�) even resp. odd; the partition � is then also called even resp. odd.

We write S

n

for the symmetric group on n letters, and

e

S

n

for one of its double

covers; so

e

S

n

is a non-split extension of S

n

by a central subgroup hzi of order 2. It

is wellknown that the representation theory of these double covers is 'the same' for

all representation theoretical purposes. The spin characters of

e

S

n

are those that do

not have z in their kernel. For an introduction to the properties of spin characters

resp. for some results we will need in the sequel we refer to [5], [10], [11], [13]. Below

we collect some of the necessary notation and some results from [13] that are crucial

in later sections.

For � 2 P (n), we write [�] for the corresponding irreducible character of S

n

;

this is identi�ed with the corresponding character of

e

S

n

. The associate classes

of spin characters of

e

S

n

are labelled canonically by the partitions in D(n). For

each � 2 D

+

(n) there is a self-associate spin character h�i = sgn h�i, and to each

� 2 D

�

(n) there is a pair of associate spin characters h�i; h�i

0

= sgn h�i. We write

d

h�i =

(

h�i if � 2 D

+

(n)

h�i+ h�i

0

if � 2 D

�

(n)

"

�

=

(

1 if � 2 D

+

(n)

p

2 if � 2 D

�

(n)

:

In [13], Stembridge introduces a projective analogue of the outer tensor product,

called the reduced Cli�ord product, and proves a shifted analogue of the Littlewood-

Richardson rule which we will need in the sequel. To state this, we �rst have to

de�ne some further combinatorial notions.

Let A

0

be the ordered alphabet f1

0

< 1 < 2

0

< 2 < :::g. The letters 1

0

; 2

0

; : : : are

said to be marked, the others are unmarked. The notation jaj refers to the unmarked

version of a letter a in A

0

. To a partition � 2 D(n) we associate a shifted diagram

Y

0

(�) = f(i; j) 2 IN

2

j 1 � i � l(�); i � j � �

i

+ i� 1g

A shifted tableau T of shape � is a map T : Y

0

(�)! A

0

such that T (i; j) � T (i+1; j),

T (i; j) � T (i; j+1) for all i; j, and every k 2 f1; 2; : : :g appears at most once in each

column of T , and every k

0

2 f1

0

; 2

0

; : : :g appears at most once in each row of T . For

k 2 f1; 2; : : :g, let c

k

be the number of boxes (i; j) in Y

0

(�) such that jT (i; j)j = k.

Then we say that the tableau T has content (c

1

; c

2

; : : :). Analogously, we de�ne skew

shifted diagrams and skew shifted tableaux of skew shape � n � if � is a partition

with Y

0

(�) � Y

0

(�). For a (possibly skew) shifted tableau S we de�ne its associated
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word w(S) = w

1

w

2

� � � by reading the rows of S from left to right and from bottom

to top. By erasing the marks of w, we obtain the word jwj.

Given a word w = w

1

w

2

: : :, we de�ne

m

i

(j) = multiplicity of i among w

n�j+1

; : : : ; w

n

, for 0 � j � n

m

i

(n+ j) = m

i

(n) + multiplicity of i

0

among w

1

; : : : ; w

j

; , for 0 < j � n

This function m

i

corresponds to reading the rows of the tableau �rst from right to

left and from top to bottom, counting the letter i on the way, and then reading from

bottom to top and left to right, counting the letter i

0

on this way.

The word w satis�es the lattice property if, whenever m

i

(j) = m

i�1

(j), then

w

n�j

6= i; i

0

, if 0 � j < n

w

j�n+1

6= i� 1; i

0

, if n � j < 2n

For two partitions � and � we denote by � [ � the partition which has as its

parts all the parts of � and � together.

Theorem 2.1 ([13], 8.1 and 8.3) Let � 2 D(k), � 2 D(n�k), � 2 D(n), and form

the reduced Cli�ord product h�i �

c

h�i. Then we have

((h�i �

c

h�i) "

e

S

n

; h�i) =

1

"

�

"

�[�

2

(l(�)+l(�)�l(�))=2

f

�

��

;

unless � is odd and � = � [ �. In that latter case, the multiplicity of h�i is 0 or 1,

according to the choice of associates.

The coe�cient f

�

��

is the number of shifted tableaux S of shape �n� and content

� such that the tableau word w = w(S) satis�es the lattice property and the leftmost

i of jwj is unmarked in w for 1 � i � l(�).

We will also use the following result from [13] on inner tensor products with the

basic spin character hni:

Theorem 2.2 ([13], 9.3) Let � 2 D(n), � a partition of n. We have

(hni[�]; h�i) =

1

"

�

"

(n)

2

(l(�)�1)=2

g

��

;

unless � = (n), n is even, and � is a hook partition. In that case, the multiplicity

of h�i is 0 or 1 according to choice of associates.

The coe�cient g

��

is the number of \shifted tableaux" S of unshifted shape � and

content � such that the tableau word w = w(S) satis�es the lattice property and the

leftmost i of jwj is unmarked in w for 1 � i � l(�).

As an interesting consequence, this implies
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Corollary 2.3 Let n 2 IN. Then

hni �

d

hni = [n] +

n�1

X

i=1

[n� i; 1

i

] :

Finally, we collect some information about certain constituents in squares resp.

in `almost' squares.

Theorem 2.4 ([12], [14], [15]) Let n 2 IN. Let � 2 P (n) with � 6= (n); (1

n

). De�ne

a; b 2 IN

0

by

[�]

2

= [n] + a[n� 2; 2] + b[n� 3; 1

3

] + other constituents :

Denote by h

i

the number of hooks of � of length i, for i 2 f1; 2g. Let h

21

be the

number of hooks of � of length 3 and arm length 1. Then we have:

(i) a = h

2

+ h

1

(h

1

� 2).

In particular, a > 0 if n � 4.

(ii) b = h

1

(h

1

� 1)(h

1

� 3) + (h

1

� 1)(h

2

+ 1) + h

21

.

In particular, b > 0, unless � is (n� 1; 1) or (n� 1; 1)

0

.

Theorem 2.5 ([8], Theorem 4.3) Let n 2 IN, n � 4. Let � 2 D(n) with � 6= (n)

and � 6= (k; k � 1; : : : ; 2; 1). Let s; t 2 IN be de�ned by

h�i � h�i = [n] + s[n� 1; 1] + t[n� 2; 2] + other constituents :

Then

(i) t � 1.

(ii) If n � 5, � is even and � 6= (k + r; k � 1 + r; : : : ; 1 + r), then t � 2.

(iii) If � 6= (k + r; k � 1 + r; : : : ; 1 + r), then s � 1.

We have already considered the exceptional case � = (n) in Corollary 2.3. Note

that for even n it is not clear which hook characters appear in the product hni � hni

and which appear in the product hni � hni

0

, except that each product contains one

out of a pair of conjugate hook characters. Clearly, both products do not contain

[n � 2; 2] as a constituent, i.e. for the basic spin character we have t = 0 in the

notation of the Theorem above.

The exceptional case of a staircase partition � = (k; k � 1; : : : ; 1) will be treated in

the next section in Theorem 3.5.
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3 Almost homogeneous mixed products

We now want to study the case of mixed products, i.e. products of the form h�i � [�].

Of course, if we know all the constituents in the case of products of spin characters

then we also know all the coe�cients in the case of mixed products, since

(h�ih�i; [�]) = (h�i[�]; h�i)

and h�i = h�i or h�i

0

, depending on n � l(�) mod 4. But it is not clear how to

obtain a classi�cation of the homogeneous mixed products from the results we know

so far. In the following, we will describe some \combinatorially homogeneous" mixed

products, and we classify the irreducible mixed products. We call a character of

e

S

n

\homogeneous" if it is of the form ch�i resp. \almost homogeneous" if it is of the

form c

d

h�i for some � 2 D(n) and c 2 IN.

We will need the following combinatorial result (see [2], Lemma 4.1 and its proof).

Lemma 3.1 ([2]) Let k 2 IN. Let H(k) denote the product of the hook lengths in

� = (k; k � 1; : : : ; 2; 1), and let B(k) denote the product of the bar lengths in �. Set

n =

1

2

k(k + 1). Then

(i) B(k) = 2

n�k

H(k).

(ii) B(k + 1) = B(k)

k+1

Y

j=1

(k + j).

First we want to classify all homogeneous resp. almost homogeneous products

with the basic spin character hni.

Theorem 3.2 Let � 2 P (n), � 6= (n); (1

n

). Then the product hni � [�] is almost

homogeneous if and only if � is a rectangle.

Up to conjugation, we may assume in this case that � = (b

a

) with 1 < a � b, and

then the product is

hni�[b

a

] =

8

>

<

>

:

2

a�3

2

d

ha+ b� 1; a+ b� 3; � � � ; b� a+ 1i , if a is odd and b is even

2

[

a�1

2

]

ha+ b� 1; a+ b� 3; � � � ; b� a+ 1i , else

:

Proof. First assume that � is not a rectangle. Let h

ii

, i = 1; : : : ; d = d(�),

denote the principal hook lengths in �. By Theorem 2.2 the product hni[�] always

has a constituent hh

11

; h

22

; : : : ; h

dd

i as is illustrated by the following tableau for

� = (7

3

; 6

2

):

1

0

1 1 1 1 1 1

1

0

2

0

2 2 2 2 2

1

0

2

0

3

0

3 3 3 3

1

0

2

0

3

0

4

0

4 4

1 2 3 4 5 5
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If � is not a rectangle, then take j maximal with �

j

> �

j+1

> 0. We can then replace

the �nal two entries j

0

j in the j th column by the entries j j + 1 and still obtain a

tableau of the type counted by the coe�cients g

��

occurring in Theorem 2.2, giving

a constituent labelled by a partition di�erent from (h

11

; h

22

; : : : ; h

dd

). Thus if the

product hni � [�] is almost homogeneous then � has to be a rectangle.

So now we consider the case that � is a rectangle, and we may assume that

� = (b

a

) with a � b. In this situation, we have for the partition considered above:

� = (h

11

; h

22

; : : : ; h

dd

) = (a+ b� 1; a+ b� 3; : : : ; b� a+ 1) :

The multiplicity of the constituent ha+ b� 1; a+ b� 3; : : : ; b� a+ 1i in the pro-

duct can be calculated by Theorem 2.2; it is easily seen that g

��

= 1, and hence the

multiplicity is

1

"

�

"

(n)

2

a�1

2

=

8

<

:

2

a�3

2

, if a is odd and b is even

2

[

a�1

2

]

, else

;

as is easily checked. In the �rst case, the character ha+ b� 1; a+ b� 3; : : : ; b� a + 1i

is not self-associate, and the associate character appears with the same multiplicity

as � is not a hook.

We now prove the statement of the Theorem by comparing degrees on both sides.

By the degree formulae for ordinary and spin characters we have for the left hand

side:

hni[b

a

](1) = 2

[

n�1

2

]

n!

H(a; b)

;

where we denote by H(a; b) the product of the hook lengths in (b

a

). For the right

hand side in the statement of the Theorem we obtain by the bar formula

2

[

a�1

2

]

� 2

[

n�a

2

]

n!

B(a; b)

= 2

[

n�1

2

]

n!

B(a; b)

;

where B(a; b) denotes the product of the bar lengths in (a+b�1; a+b�3; : : : ; b�a+1).

Hence we have to prove that for all a � b we have H(a; b) = B(a; b).

For this, we divide the Young diagram resp. the shifted diagram into three re-

gions:

b� a b� a
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The middle region in both diagrams is of width b�a. It is easy to check that the hook

lengths in the middle region of (b

a

) are exactly the same as the bar lengths in the

middle region of (a+b�1; a+b�3; : : : ; b�a+1); let H

m

(a; b) = B

m

(a; b) denote the

product of the hook lengths resp. bar lengths in these middle regions. Let H

l

(a; b)

and H

r

(a; b) denote the product of the hook lengths in the left resp. right region of

the diagram for (b

a

); similarly, let B

l

(a; b), B

r

(a; b) denote the product of the bar

lengths in the left resp. right region of the diagram for (a+b�1; a+b�3; : : : ; b�a+1).

The bar lengths occurring in the left region of (a+ b� 1; a+ b� 3; : : : ; b� a+1) are

exactly the same as the hook lengths in the left region of (b

a

) each multiplied by 2,

so

B

l

(a; b) = 2

(

a

2

)

H

l

(a; b) :

In the notation of Lemma 3.1 we have H

r

(a; b) = B(a) and B

r

(a; b) = H(a). Since

by Lemma 3.1 we know that B(a) = 2

(

a

2

)

H(a), we obtain

H(a; b) = H

l

(a; b)H

m

(a; b)H

r

(a; b) = H

l

(a; b)B

m

(a; b) � 2

(

a

2

)

B

r

(a; b)

= B

l

(a; b)B

m

(a; b)B

r

(a; b) = B(a; b)

and thus the result is proved. �

Next we deal with the natural character [n � 1; 1] and describe some almost

homogeneous products with this character.

Theorem 3.3 Let n be a triangular number, say n =

�

k+1

2

�

. Then

hk; k � 1; : : : ; 2; 1i � [n� 1; 1] =

d

hk + 1; k � 1; k � 2; : : : ; 3; 2i :

Proof. First we check that the character given on the right hand side in the

statement above does indeed appear as a constituent:

(hk; k � 1; : : : ; 2; 1i � [n� 1; 1]; hk + 1; k � 1; k � 2; : : : ; 3; 2i)

= (hk; k � 1; : : : ; 2; 1i � hk + 1; k � 1; k � 2; : : : ; 3; 2i; [n� 1; 1]))

= (hk; k � 1; : : : ; 2; 1i #

e

S

n�1

; hk + 1; k � 1; k � 2; : : : ; 3; 2i #

e

S

n�1

)

= 1

where the last equality follows from the spin branching theorem. Now to prove the

assertion it su�ces to check degrees on both sides.

Let again denote B(k) the product of the bar lengths in (k; k � 1; : : : ; 2; 1), and let

B

0

(k) denote the product of the bar lengths in (k + 1; k � 1; k � 2; : : : ; 2). Then by

the bar formula we have to check whether the following equation holds:

2

[

n�k

2

]

n!

B(k)

(n� 1) = 2

[

n�k+2

2

]

n!

B

0

(k)
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or equivalently,

(n� 1)B

0

(k) = 2B(k) :

We want to prove the claim by induction on k, starting with k = 3, where the claim

is easily checked. By Lemma 3.1

B(k + 1) = B(k)

2k+1

Y

j=k+1

j :

Let N = N(k � 2) be the product of the bar lengths in the partition (k � 2; k �

1; : : : ; 2; 1). Then by considering the shifted diagrams one sees that

B

0

(k) = N � k(k + 1)

2k

Y

j=k+3

j

B

0

(k + 1) = N � (k � 1)k

0

@

2k�1

Y

j=k+2

j

1

A

(k + 1)(k + 2)

2k+2

Y

i=k+4

i

Hence

B

0

(k + 1) = B

0

(k)

(k � 1)(k + 2)(2k + 1)(2k + 2)

k + 3

2k�1

Y

j=k+2

j

Since n =

�

k+1

2

�

, we know by induction that

(k

2

+ k � 2)B

0

(k) = 4B(k) ;

and we have to show that

(k

2

+ 3k)B

0

(k + 1) = 4B(k + 1) :

Using the relations given above this is a straightforward calculation.

Hence the assertion of the Theorem is proved. �

Theorem 3.4 Let n 2 IN, n � 3, and let � 2 D(n). Then the product h�i � [n�1; 1]

is irreducible if and only if n is a triangular number, say n =

�

k+1

2

�

, with k � 2 or

3 mod 4, and � = (k; k � 1; : : : ; 2; 1). In this case,

hk; k � 1; : : : ; 2; 1i � [n� 1; 1] = hk + 1; k � 1; k � 2; : : : ; 3; 2i :

Proof. If � and k are as stated, then � is odd and (k + 1; k � 1; k � 2; : : : ; 3; 2) is

even, and so by the previous Theorem the stated product is indeed irreducible.

Now assume that the product h�i � [n� 1; 1] is irreducible. By the classi�cation

result for products with the basic spin character, we know that � 6= (n).

So assume now � 6= (k; k � 1; : : : ; 1). Then by Theorem 2.5 resp. by Theorem 2.4

8



both [n � 2; 2] and [n] are constituents of the product h�i � h�i as well as of the

square [n� 1; 1]

2

. Hence

([n� 1; 1] � h�i; [n� 1; 1] � h�i) = (h�i � h�i; [n� 1; 1] � [n� 1; 1]) � 2 ;

so the product is not irreducible. �

For the classi�cation of the irreducible mixed products, we will need some further

information in the special case of staircase partitions.

Theorem 3.5 Let k 2 IN, n =

�

k+1

2

�

. De�ne the coe�cients a

1

; a

2

; a

3

; b

2

; b

3

; c

3

by

hk; : : : ; 1i � hk; : : : ; 1i = [n] + a

1

[n� 1; 1] + a

2

[n� 2; 2] + a

3

[n� 3; 3] + b

2

[n� 2; 1

2

]

+b

3

[n� 3; 1

3

] + c

3

[n� 3; 2; 1] + other constituents

Then

(i) a

1

= a

2

= c

3

= 0.

(ii) b

2

=

(

1 if k � 0 or 1 mod 4

0 if k � 2 or 3 mod 4

(iii) a

3

= b

3

= 1.

Proof. Set �

k

= (k; : : : ; 1) and '

k

= hk; : : : ; 1i. Note that �

k

2 D

+

if and only if

k � 0 or 1 mod 4. Also, let �

�

= 1

S

�

"

S

n

= 1

e

S

�

"

e

S

n

. So

('

k

� '

k

; �

�

) = ('

k

#

e

S

�

; '

k

#

e

S

�

) ;

and for computing the restriction we use the spin branching theorem resp. the shifted

Littlewood-Richardson Rule provided by Theorem 2.1.

Since '

k

#

e

S

(n�1;1)

= hk; : : : ; 2i, ('

k

�'

k

; �

(n�1;1)

) = 1. As [n� 1; 1] = �

(n�1;1)

� [n],

this yields

a

1

= ('

k

� '

k

; [n� 1; 1]) = 0 :

Next, '

k

#

e

S

(n�2;2)

is the irreducible character hk; : : : ; 3; 1i�

c

h2i (up to the choice

of associates in the case k � 0 or 1 mod 4), hence ('

k

�'

k

; �

(n�2;2)

) = 1. As [n�2; 2] =

�

(n�2;2)

� �

(n�1;1)

, this implies

a

2

= ('

k

� '

k

; [n� 2; 2]) = 0 :

The restriction '

k

#

e

S

(n�3;3)

has the two irreducible constituents hk; : : : ; 4; 2; 1i�

c

h3i

and hk; : : : ; 3i�

c

h2; 1i (up to the choice of associates in the case k � 2 or 3 mod 4).

Hence ('

k

�'

k

; �

(n�3;3)

) = 2, and from the equation [n� 3; 3] = �

(n�3;3)

��

(n�2;2)

we

now deduce

a

3

= ('

k

� '

k

; [n� 3; 3]) = 1 :

9



Now '

k

#

e

S

(n�2;1

2

)

=

d

hk; : : : ; 3; 1i. Thus,

('

k

� '

k

; �

(n�2;1

2

)

) =

(

1 if k � 2 or 3 mod 4

2 if k � 0 or 1 mod 4

As [n� 2; 1

2

] = �

(n�2;1

2

)

� �

(n�2;2)

� [n� 1; 1], we obtain

b

2

= ('

k

� '

k

; [n� 2; 1

2

]) =

(

0 if k � 2 or 3 mod 4

1 if k � 0 or 1 mod 4

For the restriction '

k

#

e

S

(n�3;2;1)

we obtain

d

hk; : : : ; 4; 2; 1i �

c

h2i+ hk; : : : ; 4; 3i �

c

h2i

if k � 0 or 1 mod 4, and

hk; : : : ; 4; 2; 1i �

c

h2i+ hk; : : : ; 4; 3i �

c

h2i

up to a choice of associates for the second summand, if k � 2 or 3 mod 4. Hence

('

k

� '

k

; �

(n�3;2;1)

) =

(

3 if k � 0 or 1 mod 4

2 if k � 2 or 3 mod 4

As

[n� 3; 2; 1] =

1

2

(�

(n�3;2;1)

� �

(n�3;3)

� [n� 2; 2]� [n� 1; 1]� [n� 2; 1

2

]) ;

we obtain

c

3

= ('

k

� '

k

; [n� 3; 2; 1]) = 0 :

Finally, we have

'

k

#

e

S

(n�3;1

3

)

=

(

d

hk; : : : ; 3i+ 2hk; : : : ; 4; 2; 1i if k � 0 or 1 mod 4

hk; : : : ; 3i+

d

hk; : : : ; 4; 2; 1i if k � 2 or 3 mod 4

Thus

('

k

� '

k

; �

(n�3;1

3

)

) =

(

6 if k � 0 or 1 mod 4

3 if k � 2 or 3 mod 4

As

[n� 3; 1

3

] = �

(n�3;1

3

)

� �

(n�3;2;1)

� [n� 1; 1]� [n� 2; 2]� 2[n� 2; 1

2

] ;

we obtain

b

3

= ('

k

� '

k

; [n� 3; 1

3

]) = 1 :

�

10



Theorem 3.6 Let � 2 P (n), � 6= (n); (1

n

). Let � 2 D(n). Then [�] � h�i is

irreducible if and only if one of the following occurs:

(i) n = 2k, � = (k; k) or (2

k

) and � = (n).

Here the products are

[k; k] � hni = [2

k

] � hni = hk + 1; k � 1i :

(ii) n =

�

k+1

2

�

for some k 2 IN with k � 2 or 3 mod 4, � = (n � 1; 1) or (2; 1

n�2

)

and � = (k; k � 1; : : : ; 2; 1).

Here the products are

[n� 1; 1] � hk; : : : ; 1i = [2; 1

n�2

] � hk; : : : ; 1i = hk + 1; k � 1; k � 2; : : : ; 2i :

Proof. In the cases (i) and (ii) described above, the product is irreducible by

Theorem 3.2 resp. Theorem 3.4. In the following we may assume that n � 4.

Now assume that [�] � h�i is irreducible. Then

1 = ([�] � h�i; [�] � h�i) = ([�]

2

; h�i � h�i) :

As both [�]

2

and h�i � h�i have [n] as a constituent, it su�ces to �nd a further

common constituent in all situations not covered by (i) and (ii).

By Theorem 2.4, [�]

2

always contains a constituent [n�2; 2], and by Theorem 2.5,

also h�i � h�i contains a constituent [n�2; 2], unless � = (n) or � = (k; k�1; : : : ; 1).

So we only have to consider mixed products [�] � h�i with � of these two exceptional

types.

For � = (n), this was done in Theorem 3.2, giving the products described in case

(i) as the only irreducible mixed products with the basic spin character.

So it remains to deal with the case of a staircase partition � = (k; k � 1; : : : ; 1).

By Theorem 2.4 and Theorem 3.5 we then �nd a common constituent [n� 3; 1

3

] in

[�]

2

and h�i � h�i, unless � is (n� 1; 1) or (n� 1; 1)

0

. But in this latter situation, we

can apply Theorem 3.3 which leads exactly to the irreducible mixed products given

in (ii). �
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