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1 Introduction

The starting point for this article was an observation by Yamada. He had

computed the determinants of the (reduced) spin 2-decomposition matrices

for the double covers

b

S

n

of the symmetric groups, which are available up

to n = 15 in [Be], and had found them to be 2-powers. After computing

the elementary divisors of these matrices, the �rst author then formulated a

conjecture explicitly describing the elementary divisors even blockwise: they

are roughly the square roots of the elementary divisors of the Cartan matrix

of the corresponding 2-block of S

n

. We prove this below as one of our main

results in Theorem 4.4.

On the way to this result we have discovered some interesting 2-divisibility

properties of spin characters. Generalizing the known result that the minimal

2-power in the degrees of the spin characters of

b

S

n

is 2

[(n�s(n))=2]

(where s(n)

is the number of summands in the 2-adic sum decomposition of n), we have

found the minimal 2-power in the spin character values on all conjugacy

classes corresponding to a cycle type with odd parts only. This is given

below in Theorem 3.4.

2 Preliminaries

We let

b

S

n

denote a covering group of the symmetric group S

n

. Thus there is

(for n � 2) a non-split exact sequence of groups

1! hzi !

b

S

n

�

�! S

n

! 1

where z is central and of order 2.

For more details on the remarks below leading to the �rst proposition we

refer to [MiO], Section 1. If H is a subgroup of S

n

we let

H

+

= �

�1

(H) ; H

�

= �

�1

(H \ A

n

)
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where A

n

is the alternating group. The set, on which H operates is de�ned

as




H

= f1 � i � n j there exists an x 2 H s.t. x(i) 6= ig

the set of non �xed points of H. We say that subgroups H

1

; H

2

; � � � ; H

r

of

S

n

operate on disjoint sets if




H

i

\ 


H

j

= ? for all i 6= j :

In that case H

1

; H

2

; � � � ; H

r

in fact form a direct product as subgroups of S

n

and if H = H

1

�H

2

� � � � �H

r

then

H

+

= H

+

1

^

�H

+

2

^

� � � �

^

�H

+

r

where

^

� denotes a twisted central product as described in [H], [S].

When G is any �nite group we let Irr(G) denote the set of complex irre-

ducible characters of G.

For any subgroup H � S

n

, Irr(H

+

) is divided into 2 disjoint subsets

according to whether hzi is in the kernel of a character or not. The set

of characters in H

+

with z in their kernel is identi�ed with Irr(H). The

remaining characters in Irr(H

+

) are called spin characters (of H or H

+

).

This set of characters is denoted Irr

s

(H

+

). Thus

Irr(H

+

) = Irr(H) [ Irr

s

(H

+

) :

Characters in Irr(H

+

) are called associate, if they have the same restric-

tion to H

�

. An associate class of characters consists of one (self-associate)

character or of two associate characters (associate pair). We associate the

sign �(�) = 1 to a self-associate character and �(�) = �1 to a non self-

associate character. (We are here only considering subgroups H of S

n

with

H

+

6= H

�

, i.e. H 6� A

n

. For the general case we refer to [MiO], Section 1.)

We have the following result for spin characters of twisted central products

(see [H], [MiO]).

Proposition 2.1 Let H

1

; H

2

; � � � ; H

r

� S

n

operate on disjoint sets and put

H = H

1

�H

2

� � � � �H

r

. There is a surjective map

b


 : Irr

s

(H

+

1

)� � � � � Irr

s

(H

+

r

)! Irr

s

(H

+

)

(�

1

; �

2

; � � � ; �

r

)! �

1

b


�

2

b


 � � �

b


�

r

with the following properties:

Suppose �

i

; '

i

2 Irr

s

(H

+

i

), i = 1; � � � ; r. Then

2



(1) �(�

1

b


 � � �

b


�

r

) = �(�

1

) � � ��(�

r

);

(2) (�

1

b


 � � �

b


�

r

)(1) = 2

[t=2]

�

1

(1) � � ��

r

(1)

where t = jfi j �(�

i

) = �1gj;

(3) �

1

b


 � � �

b


�

r

and '

1

b


 � � �

b


'

r

are associate if and only if �

i

and '

i

are

associate for all i;

(4) �

1

b


 � � �

b


�

r

= '

1

b


 � � �

b


'

r

if and only if the following two conditions

hold:

(i) �

i

and '

i

are associate for all i;

(ii) Either �(�

1

) � � ��(�

r

) = 1 or

�(�

1

) � � ��(�

r

) = �1 and jfi j �

i

6= '

i

gj is even.

The associate classes of spin characters of

b

S

n

are labelled canonically by

the partitions � of n into distinct parts, i.e. � = (a

1

; a

2

; � � � ; a

m

), a

1

> a

2

>

� � � > a

m

> 0, a

1

+ � � � + a

m

= n. We write j�j = n and `(�) = m, the

cardinality and length of �. Also the sign of � is �(�) = (�1)

n�m

. According

to the signs the set D(n) of partitions of n into distinct parts is divided into

disjoint subsets D

+

(n) and D

�

(n). The partitions in the set D

+

(n) resp.

D

�

(n) are called even resp. odd partitions.

Then the self-associate spin characters in S

n

are labelled by the parti-

tions in D

+

(n) and the associate pairs of spin characters are labelled by the

partitions in D

�

(n). Thus if h�i is a spin character, then �(h�i) = �(�).

The conjugacy classes of elements of odd order in S

n

are labelled canon-

ically via their cycle type by the elements in the set O(n) of partitions of n

into odd parts. We will use an `exponential' notation for partitions � 2 O(n):

� = (1

m

1

; 3

m

3

; � � � )

Thus j�j =

P

i odd

im

i

; `(�) =

P

i odd

m

i

.

It is well known that jD(n)j = jO(n)j; we denote this cardinality by d(n).

In fact, already in 1883 J.W.L. Glaisher [G] de�ned a bijection between par-

titions with parts not divisible by a given number k on the one hand and

partitions where no part is repeated k times on the other hand; so in particu-

lar for k = 2 this gives a bijection between O(n) and D(n). (A generalization

of this map to all partitions may be found in [O].) In this situation, Glaisher's

map G is de�ned as follows. Suppose that � = (1

m

1

; 3

m

3

; � � � ) 2 O(n). Write

each multiplicity m

i

as a sum of distinct powers of 2

m

i

=

X

j

2

a

ij

:

3



This is the 2-adic decomposition of m

i

. Then G(�) 2 D(n) consists of the

parts (2

a

ij

i)

i;j

, of course in descending order.

For any integer m � 0, s(m) is the number of summands in the 2-adic

decomposition of m. With this notation we see that if � = (1

m

1

; 3

m

3

; � � � )

then for the length of G(�) we have `(G(�)) =

P

i odd

s(m

i

). We de�ne

k

�

=

X

i odd

(m

i

� s(m

i

)) ;

and we denote by O

+

(n) resp. O

�

(n) the sets of partitions in O(n) with k

�

even resp. odd. Then, since n =

P

i odd

im

i

�

P

i odd

m

i

(mod 2) we obtain

Lemma 2.2 For � = (1

m

1

; 3

m

3

; � � � ) 2 O(n) we have

�(G(�)) = (�1)

k

�

:

Hence the Glaisher map G induces bijections O

�

(n) ! D

�

(n), where � is a

sign.

The integer k

�

also occurs in another connection. For any integer m, we

denote by �(m) the exponent to which 2 divides m. Thus 2

�(m)

is the exact

2-power dividing m. We also write m

2

:= 2

�(m)

.

Lemma 2.3 Let � 2 O(n) and let x

0

�

be an element with cycle type � in S

n

.

Then

C

S

n

(x

0

�

)

�

=

Y

i odd

Z

i

wr S

m

i

;

a direct product of wreath products. The subgroups Z

i

wr S

m

i

of S

n

operate

on disjoint sets. Moreover, �(jC

S

n

(x

0

�

)j) =

Q

i odd

�(m

i

!) = k

�

.

Proof. See [JK], 4.1.19 and 1.2.15. Use that for any m � 0, �(m!) =

m� s(m). �

Let C

�

be the conjugacy class of S

n

labelled by � 2 O(n). By Lemma 2.3

k

�

is the 2-defect of C

�

. Then �

�1

(C(�)) consists of two conjugacy classes in

b

S

n

, say C

(1)

�

and C

(2)

�

. We choose notation such that the elements of C

(1)

�

have

4



odd order. Then C

(2)

�

= z C

(1)

�

, and the elements in this second conjugacy

class have even order. These conjugacy classes have 2-defect k

�

+ 1.

Obviously the values of any spin character of

b

S

n

on C

(1)

�

and C

(2)

�

di�er

only by a sign. Moreover associate spin characters have the same value on

C

(1)

�

. Also spin characters of

b

S

n

vanish on all conjugacy classes of elements

x 2

b

S

n

where �(x) has even order (possibly with one exception which is of

no importance here).

Thus the values of all spin characters of

b

S

n

on all conjugacy classes may

be easily recovered from the reduced spin character table Z

s

= Z

s

(n), a square

matrix with rows indexed by � 2 D(n) and columns indexed by � 2 O(n).

The entries are h�i(x

�

), where h�i is a spin character labelled by � and

x

�

2 C

(1)

�

. Examples of reduced spin character tables may be found in [M],

[HH] up to n = 14.

In the context of 2-modular representations, we consider the part of the

2-decomposition matrix for

b

S

n

corresponding to spin characters. Since the

rows corresponding to associate spin characters are equal, this part of the

decomposition matrix is determined by the submatrix D

s

= D

s

(n), where

for each � 2 D(n) we keep only one row for each associate class of spin

characters. We call D

s

the reduced spin 2-decomposition matrix; it is a

square matrix of the same size as Z

s

.

We prove a rather special result on determinants which is needed in the

next sections.

Lemma 2.4 Let D be a square `� `-matrix. Let

e

D be an (`+ s)� `-matrix

obtained from D by repeating s di�erent rows from D. Then

det(

e

D

t

e

D) = 2

s

(detD)

2

:

Proof. We may assume that the ` rows of D are pairwise di�erent, since

otherwise both sides of the equation are zero.

By the Cauchy-Binet theorem (see e.g. [MM], Thm. 2.6.1) we obtain

det(

e

D

t

e

D) =

X

A

detA

t

detA

where the sum runs over all `� ` submatrices of

e

D.

We only get a contribution from submatrices A with pairwise distinct

rows, i.e. out of the s pairs of repeated rows we choose only one of the pair.

Thus we have 2

s

such submatrices, and each of these is a certain row permu-

tation of the matrix D. Thus for each such submatrix we get a contribution

5



(detD)

2

to the sum, and hence the claim follows. �

We quote some general facts from modular representation theory due to

R. Brauer, which we need in section 4. The results are contained in [F], V.10

and [NT], 5.11 but are not stated there explicitly in the form we need them.

If G is a �nite group, p a prime, we let `(G) be the cardinality of the

set Cl

1

(G) of p-regular conjugacy classes in G. For each C 2 Cl

1

(G) we let

x

C

denote an element in C. A defect group of C is a p-Sylow subgroup of

C

G

(x) for some x 2 C. We let IBr(G) denote the set of modular irreducible

characters of G, and we set �

G

= ('(x

C

))

'2 IBr(G)

C2Cl

1

(G)

, the Brauer character

table of G. It is wellknown that the Brauer character table is non-singular

modulo p, i.e.

det �

G

6� 0 (mod p) :

Furthermore, we let C denote the Cartan matrix and D = (d

�;'

)

�2 Irr(G)

'2 IBr(G)

denote the p-decomposition matrix for G. Then, let Bl(G) denote the set

of p-blocks of G. For B 2 Bl(G), Irr(B) is the set of ordinary irreducible

characters in B, IBr(B) is the set of modular irreducible characters in B,

`(B) = jIBr(B)j, C(B) is the Cartan matrix for B and D(B) = (d

�;'

)

�2 Irr(B)

'2 IBr(B)

denotes the p-decomposition matrix for B.

Then

`(G) =

X

B2Bl(G)

`(B)

and C resp. D are the block direct sums of the matrices C(B) resp. D(B),

B 2 Bl(G).

The following is proved in [Br], section 5.

Theorem 2.5 There exists a disjoint decomposition of Cl

1

(G)

Cl

1

(G) =

[

B2Bl(G)

Cl

1

(B)

such that the following conditions are ful�lled

(1) jCl

1

(B)j = `(B) for all B.

(2) For �

B

= ('(x

C

))

'2 IBr(B)

C2Cl

1

(B)

, we have det �

B

6� 0 (mod p).

(3) The elementary divisors of the Cartan matrix C(B) of B are exactly

the orders of the defect groups of C 2 Cl

1

(B).

6



3 Powers of 2 in spin character values

We use the notation from section 2. In this section we determine the exact

power of 2 dividing the value of all spin characters on a given conjugacy class

labelled by � 2 O(n).

As a preparation we generalize a result of A. Wagner ([W], Lemma 4.2).

Proposition 3.1 Let H = S

n

1

�S

n

2

� � � ��S

n

r

be a Young subgroup of S

n

,

n = n

1

+ n

2

+ � � � + n

r

. Let P be a 2-Sylow subgroup of H (� S

n

). Then

any spin character of P

+

has degree 2

[k=2]

, where k =

r

P

i=1

(n

i

� s

i

), s

i

= s(n

i

).

Let t = jfi j 1 � i � r ; n

i

� s

i

is odd gj. The group P

+

has at most two

spin characters; more precisely, P

+

has exactly one spin character which is

self-associate if t is even, and P

+

has exactly two spin characters which are

associate to each other if t is odd.

Proof. For r = 1 our statement coincides with Wagner's result. To prove

the general case we apply Proposition 2.1. Let

P

+

= P

+

1

^

�P

+

2

^

� � � �

^

�P

+

r

where P

i

is a 2-Sylow subgroup of S

n

i

. Now jP

i

j = 2

n

i

�s

i

, since �(n

i

!) =

n

i

� s

i

.

If n

i

�s

i

is even then P

+

i

has exactly one spin character of degree 2

(n

i

�s

i

)=2

.

If n

i

� s

i

is odd then P

+

i

has exactly 2 spin characters (which are associate)

of degree 2

(n

i

�s

i

�1)=2

. Since each P

+

i

has only one associate class of spin

characters the same is true for P

+

by Proposition 2.1 (3). As we have seen the

degrees of the spin characters of P

i

are known, namely 2

[(n

i

�s

i

)=2]

. Therefore

the degree of a spin character � of P may be computed using Proposition

2.1 (2). We get

�(�(1)) =

�

t

2

�

+

r

X

i=1

�

n

i

� s

i

2

�

=

�

t

2

�

+

X

fijn

i

�s

i

eveng

n

i

� s

i

2

+

X

fijn

i

�s

i

oddg

n

i

� s

i

� 1

2

=

2

4

X

fijn

i

�s

i

eveng

n

i

� s

i

2

+

X

fijn

i

�s

i

oddg

n

i

� s

i

� 1

2

+

t

2

3

5

=

"

r

X

i=1

n

i

� s

i

2

#

:

7



The statement about the number of spin characters of P follows from

Proposition 2.1 (4). �

Theorem 3.2 Let Z

s

= Z

s

(n) be the reduced spin character table as de-

scribed in section 2. Let d

�

(n) = jD

�

(n)j. Then

2

d

�

(n)

(detZ

s

)

2

=

Y

�2O(n)

jC

S

n

(x

0

�

)j :

Proof. By doubling the rows in Z

s

which correspond to � 2 D

�

(n) we

obtain a complete spin character matrix

e

Z on the 2-regular classes. Since

jC

b

S

n

(x

�

)j = 2jC

S

n

(x

0

�

)j for all � 2 O(n), the column orthogonality relations

on the character tables for S

n

and

b

S

n

imply that

e

Z

t

e

Z is a diagonal matrix

with jC

S

n

(x

0

�

)j, � 2 O(n), as its diagonal entries. Using Lemma 2.4 we now

obtain

2

d

�

(n)

(detZ

s

)

2

= det(

e

Z

t

e

Z) =

Y

�2O(n)

jC

S

n

(x

0

�

)j :

�

Corollary 3.3 Let Z

s

be the reduced spin character table for

b

S

n

. Then

(detZ

s

)

2

=

Y

�2O(n)

2

[k

�

=2]

:

Proof. By Lemma 2.2, d

�

(n) = jO

�

(n)j. For any integer k � 0

k � 2[k=2] =

(

0 if k is even

1 if k is odd

Hence by the Theorem above and by Lemma 2.3

2

X

�2O(n)

[k

�

=2] + d

�

(n) =

X

�2O(n)

k

�

= 2�(detZ

s

) + d

�

(n) ;

so that

�(detZ

s

) =

X

�2O(n)

[k

�

=2]

as claimed. �

We are now able to prove the �rst main result of this paper.
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Theorem 3.4 Let � = (1

m

1

; 3

m

3

; � � � ) 2 O(n). Let k

�

=

P

i odd

(m

i

� s(m

i

)).

Then 2

[k

�

=2]

is the maximal power of 2 which divides all spin character values

h�i(x

�

), � 2 D(n).

Proof. We �rst prove that 2

[k

�

=2]

j h�i(x

�

) for all � 2 D(n). Consider the

restriction of h�i to K

+

�

:= C

^

S

n

(x

�

). If � = (1

m

1

; 3

m

3

; � � � ) and x

0

�

= �(x

�

) 2

S

n

has cycle type �, then by Lemma 2.3

K

�

= C

S

n

(x

0

�

) =

Y

i odd

K

(i)

�

where K

(i)

�

' Z

i

wr S

m

i

, a wreath product. The subgroups K

(i)

�

operate on

disjoint sets whence

K

+

�

= K

(1)+

�

^

�K

(3)+

�

^

� � � � :

We claim that a spin character of K

+

�

has a degree divisible by 2

[k

�

=2]

. A 2-

Sylow subgroup ofK

�

is isomorphic to a 2-Sylow subgroup of S

m

1

�S

m

3

�� � � ,

which is a Young subgroup of S

m

, m = m

1

+m

3

+ � � � .

If we restrict a spin character of K

+

�

to a 2-Sylow subgroup, then each

irreducible constituent has degree exactly 2

[k

�

=2]

, by Proposition 3.1. The

claim about spin character degrees of K

+

�

follows. Let

h�i

jK

+

�

=

X

�2Irr

s

(K

+

�

)

a

�

�

where a

�

� 0. For each � 2 Irr

s

(K

+

�

), �(x

�

) = �

�

�(1), where �

�

is a root

of unity, since x

�

2 Z(K

+

�

). Each � has a degree divisible by 2

[k

�

=2]

as seen

above. Therefore each �

�

�(1)=2

[k

�

=2]

is an algebraic integer for each �. Thus

h�i(x

�

)=2

[k

�

=2]

=

X

�

a

�

�

�

�(1)=2

[k

�

=2]

is an algebraic integer. Since h�i(x

�

) is an integer we get 2

[k

�

=2]

j h�i(x

�

), as

desired.

Since 2

[k

�

=2]

divides all entries in the column of Z

s

labelled by �, for any

� 2 O(n), Corollary 3.3 forces this to be the maximal power of 2 dividing

all the entries in the column, for any � 2 O(n). �
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4 The elementary divisors of the reduced spin

2-decomposition matrix of a 2-block

In this section we �rst deal with the `global' situation for the reduced spin

2-decomposition matrix and afterwards re�ne this to the block version.

As before, for � = (1

m

1

; 3

m

3

; � � � ) 2 O(n) we set k

�

=

P

i odd

(m

i

� s(m

i

)).

Theorem 4.1 Let D

s

be the reduced spin 2-decomposition matrix for

b

S

n

.

The elementary divisors of this matrix are

2

[k

�

=2]

; � 2 O(n) :

Proof. First we show that the determinant of D

s

is correct.

By doubling the rows in the matrix D

s

which correspond to � 2 D

�

(n) we

obtain a complete spin 2-decomposition matrix

e

D. Now using [NT], 5.8.11,

we have

e

D

t

e

D = C, the 2-Cartan matrix for S

n

. Hence by Lemma 2.4 we

have

detC = 2

d

�

(n)

(detD

s

)

2

:

On the other hand, by [NT], 3.6.32 (or use Theorem 2.5(3)) and Lemma 2.3

we have

detC =

Y

�2O(n)

jC

S

n

(x

0

�

)j

2

=

Y

�2O(n)

2

k

�

:

As before we see

�(detC) =

X

�2O(n)

k

�

= 2

X

�2O(n)

[k

�

=2] + d

�

(n) ;

so that

j detD

s

j =

Y

�2O(n)

2

[k

�

=2]

:

For the result on the elementary divisors we now study Smith normal

forms. For any integral square matrixX we let S(X) denote its Smith normal

form, i.e. the diagonal matrix with the invariant factors of X as diagonal

elements. We need the following property of the Smith normal form: If X

10



and Y are square n � n matrices with relatively prime determinants, then

S(XY ) = S(X)S(Y ). (See e.g. [N], Theorem II.15).

Let � be the table of Brauer characters of

b

S

n

, so that

Z

s

= D

s

� :

As j detD

s

j is a power of 2, and det � is odd, we have

S(Z

s

) = S(D

s

)S(�) (1)

Let � be a diagonal matrix with diagonal elements 2

[k

�

=2]

, � 2 O(n) (in

the usual order). By Theorem 3.4 there exists an integral matrix W such

that

Z

s

= W� :

Since det� = j detD

s

j we get j detW j = j det�j, so that the determinants

of W and � are relatively prime. Thus

S(Z

s

) = S(W )S(�) : (2)

Since the S-matrices are diagonal we conclude that

S(�) = S(D

s

) :

Since � itself is a diagonal matrix, the result follows. �

Corollary 4.2 The elementary divisors of D

s

are exactly 2

[c

1

=2]

; � � � ; 2

[c

`

=2]

,

where c

1

; � � � ; c

`

are the 2-defects of the conjugacy classes of elements of odd

order in S

n

.

Next we prove a block re�nement of the result on the elementary divisors

of the reduced spin 2-decomposition matrix. First, we describe brie
y the

2-block structure in

b

S

n

(see [BO] for further details).

If B 2 Bl(S

n

) then all irreducible characters (ordinary and modular) of

B may be considered as characters in a unique block

b

B 2 Bl(

b

S

n

). We write

B �

b

B. With this identi�cation IBr(B) = IBr(

b

B), but note that

b

B contains

also some spin characters in addition to the ordinary characters of B. The

description of the distribution of spin characters into the 2-blocks of

b

S

n

was

a main result in [BO].

To the blocks B 2 Bl(S

n

) and

b

B 2 Bl(

b

S

n

) (where B �

b

B as before) is

associated a non-negative integer w = w(B) = w(

b

B) called the weight of the

11



block. Most block theoretic invariants of B and

b

B depend only on w. Thus

for example for the number of modular characters we have

`(B) = `(

b

B) = p(w)

where p is the partition function [JK] and w = w(B). Moreover, by [BO],

Theorem (2.1) the number of associate classes of spin characters in

b

B is also

p(w).

We may consider therefore a reduced spin 2-decomposition matrix D

s

(

b

B)

of a 2-block

b

B 2 Bl(

b

S

n

). This is a p(w) � p(w) square matrix with rows

labelled by the associate classes of spin characters in

b

B and the columns

by the modular irreducible characters in

b

B (i.e. in B). In this section we

determine the elementary divisors of D

s

(

b

B). Since the matrix D

s

is a direct

sum of the D

s

(

b

B),

b

B 2 Bl(

b

S

n

) and D

s

has determinant a power of 2, the

same is true for each D

s

(

b

B).

By Theorem 2.5 and Lemma 2.3 we have

Lemma 4.3 There exists a disjoint decomposition

O(n) =

[

B2Bl(S

n

)

O(n;B)

such that the following holds

(1) jO(n;B)j = `(B) = p(w).

(2) Set �

B

= ('(x

0

�

))

'2IBr(B)

�2O(n;B)

. Then det �

B

6� 0 (mod 2).

(3) The elementary divisors of the Cartan matrix C(B) of B are exactly

the numbers 2

k

�

, � 2 O(n;B).

We may now prove the main result:

Theorem 4.4 Let

b

B 2 Bl(

b

S

n

), B 2 Bl(S

n

), B �

b

B. Suppose that 2

c

1

; 2

c

2

;

� � � ; 2

c

`

are the elementary divisors of C(B). Then the elementary divisors

of D

s

(

b

B) are 2

[c

1

=2]

; 2

[c

2

=2]

; � � � ; 2

[c

`

=2]

.

Proof. We have to show that 2

[k

�

=2]

, � 2 O(n;B) are the elementary di-

visors of D

s

(

b

B). Let Z

s

(

b

B) be the reduced spin character table for

b

B on

the 2-regular classes. It has the same row indices as the reduced spin 2-

decomposition matrix D

s

(

b

B) and the column indices are the � 2 O(n;B).

12



Also we let �

B

be the table of modular character values for modular

characters ' 2 IBr(B) on the conjugacy classes C

�

, � 2 O(n;B). Then we

have

Z

s

(

b

B) = D

s

(

b

B)�

B

:

As a divisor of detD

s

, j detD

s

(

b

B)j is a 2-power, whereas by Lemma 4.3(2),

det �

B

is odd. As before we let S(X) denote the Smith normal form of an

integral square matrix X. Then

S(Z

s

(

b

B)) = S(D

s

(

b

B))S(�

B

) :

Let �

B

be a diagonal matrix with diagonal elements 2

[k

�

=2]

, � 2 O(n;B).

By Theorem 3.4 there exists an integral matrix W , such that

Z

s

(

b

B) = W ��

B

:

Hence det�

B

divides detD

s

(

b

B). By Theorem 2.5 and Theorem 4.1 we have

Y

�2O(n)

2

[k

�

=2]

=

Y

B

det�

B

�

�

�

Y

B

j detD

s

(

b

B)j = j detD

s

j =

Y

�2O(n)

2

[k

�

=2]

Hence we have

Y

�2O(n;B)

2

[k

�

=2]

= det�

B

= j detD

s

(

b

B)j

for all blocks B resp.

b

B. Thus j detW j = j det�

B

j is odd, and so

S(Z

s

(

b

B)) = S(W ) � S(�

B

)

and we conclude that S(�

B

) = S(D

s

(

b

B)). Since � is itself a diagonal ma-

trix, the result follows. �

The elementary divisors of C(B), B a 2-block of S

n

, have been determined

explicitly in [O]. Unfortunately, the formula was misstated there; we take

the opportunity to give the correct formula here. First we have to introduce

some notation.

Let p be a prime, � a partition. For any pair of non-negative integers

(m; a) such that m � 1, (m; p) = 1 and a � 0, let t

�

(m; a) be the multiplicity

of mp

a

as a part of �. Then the partition � is characterized by the non-

negative integers t

�

(m; a), where (m; a) runs through all pairs as above.
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We de�ne an integer e(�) as follows:

e(�) =

X

m;a

t

�

(m; a)(1 + p+ � � �+ p

a

) :

For all i � 0 let

p

i

0

(n) = jf� ` n j � p-regular and e(�) = igj :

Finally, let P (x) =

P

n�0

p(n)x

n

be the partition generating function, and

de�ne the integers m(n) by

P (x)

p�2

P (x

p

) =

X

n�0

m(n)x

n

:

Then the following holds (see [O]):

Theorem 4.5 Let B be a p-block of S

n

of weight w, and let i � 0. Then the

multiplicity of p

i

as an elementary divisor of the Cartan matrix C(B) is

w

X

t=0

m(w � t)p

i

0

(t) :
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