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Abstract

We classify all p-blocks of the symmetric and alternating groups where all
irreducible p-Brauer characters are of prime power degree as well as the p-blocks
of these groups where all p-Brauer characters are of p-power degree. This is
an extension and a block refinement of an earlier result where all irreducible
p-Brauer characters were assumed to be of p-power degree.
MSC classification: 20C30

1 Introduction

In recent years, several authors considered the situations where a finite quasi-simple
group has an ordinary irreducible character of prime power degree [1, 5, 18]; in particu-
lar, a complete list of all irreducible characters of prime power order for the symmetric
and alternating groups and their double covers was given in [1] and [5].
This was recently used by Navarro and Robinson in [20] where they prove that for any
prime p, p-blocks whose ordinary irreducible characters are all of p-power degree are
nilpotent.
Indeed, given the results mentioned above, for the symmetric and alternating groups
and their double covers the classification of p-blocks where the ordinary irreducible
characters are all of prime power degree can easily be achieved. Apart from a small list
of exceptions for such groups of small degree, the p-blocks are special defect 0 blocks.
Turning to the case of irreducible Brauer characters (or equivalently, simple modules
in positive characteristic), this problem is more difficult as usually the degrees of the
Brauer characters (or the dimensions of the simple modules) are not known. In [6],
the symmetric groups Sn and the alternating groups An where all irreducible p-Brauer
characters are of p-power degree are classified (this only occurs for very small n). This
is used in recent work by Tiep and Willems on finite groups where the degrees of all
irreducible p-Brauer characters are powers of a fixed prime. For odd primes p this can
only happen if the group is solvable; for p = 2, the corresponding statement is not true
as the irreducible 2-Brauer characters of A5 and A6 are all of 2-power degree, but in
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fact the simple groups satisfying this condition are classified (see [23] for the details).
The extension of the classification in the case of symmetric and alternating groups to
the situation where the p-Brauer characters are of any prime power degree is only a
small step (see Cor. 1.3 below for the explicit statement). But in fact, here we want to
deal even with the corresponding block problems, i.e.:

(1) Classify the p-blocks of Sn (and An) with all Brauer characters of p-power degree.
(2) Classify the p-blocks of Sn (and An) with all Brauer characters of prime power
degree.

As the situation of ordinary characters may be viewed as the case of a large prime,
where then all p-blocks are of defect 0, the previous results may be considered as the
solution of this classification problem in the case p > n. Given these results, the new
situations to consider in this paper are hence those where p ≤ n, and the p-blocks of
Sn (or An) under consideration are not of defect 0. In fact, also in this case we will
heavily draw on the classification of the ordinary irreducible characters of prime power
degree given in [1].

In the following, we will call a p-block with all irreducible p-Brauer characters of prime
power degree (or p-power degree) a prime power (or p-power, respectively) p-block.
After recalling the classification list from [1], we then consider the prime power p-
blocks of Sn and An for small n; we will see that – as is often the case for these families
of groups – some exceptional cases occur for small n.
As our main result we show that apart from these small exceptions and the ’trivial’
defect 0 p-blocks which one already finds from the classification list given in [1] no
other prime power p-blocks occur for the symmetric and alternating groups. Note that
we already see here that the analogue of the Navarro-Robinson result where one just
replaces the condition for ordinary characters by the one for Brauer characters does
not hold for p-power p-blocks of the symmetric and alternating groups: these do not
have to be nilpotent.

In the following, p always denotes a prime number. We use the notation on represen-
tations of the symmetric groups from [11] or [12]. In particular, for a partition λ of n
the corresponding ordinary irreducible character of the symmetric group Sn is denoted
by [λ] and the Specht module by Sλ. When λ is non-symmetric, the corresponding
irreducible character of An is denoted by {λ}, when λ is symmetric, the corresponding
pair of irreducible characters of An is denoted by {λ}±. For a p-regular partition λ,
the corresponding simple module in characteristic p is denoted by Dλ.
For a number m ∈ Z, we denote by νp(m) the exponent to which p divides m.

The main result is the following.

Theorem 1.1 (i) The prime power p-blocks of symmetric groups Sn are all on the
following list:
(a) some p-blocks for n ≤ 9, p ≤ 5 (see sections 2 and 3)
(b) the p-blocks of defect 0 to [q, 1] resp. [2, 1q−1], where q ≤ p is a prime power,
p 6= q + 1.
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(ii) The prime power p-blocks of alternating groups An are all on the following list:
(a) some p-blocks for n ≤ 9, p ≤ 5 (see sections 2 and 3)
(b) the p-blocks of defect 0 to {q, 1}(±), where q ≤ p is a prime power, p 6= q + 1.

This implies

Theorem 1.2 (i) The p-power p-blocks of symmetric groups Sn are all on the fol-
lowing list:
(a) some p-blocks for n ≤ 8, p ≤ 5 (see sections 2 and 3),
(b) the p-blocks of defect 0 to [p, 1] resp. [2, 1p−1].

(ii) The p-power p-blocks of alternating groups An are all on the following list:
(i) some p-blocks for n ≤ 8, p ≤ 5 (see sections 2 and 3),
(ii) the p-blocks of defect 0 to {p, 1}(±).

Remarks. (i) The principal 2-blocks of S4, S5 and S6 are the only p-power p-blocks
with non-abelian defect group; in fact, all other such blocks have cyclic defect group.
These blocks together with the principal 3-blocks of S3 and S4 are the only non-
nilpotent p-power p-blocks of symmetric groups. Also in the case of the alternating
groups, there are only a few corresponding non-nilpotent p-power p-blocks for small n.
(ii) The result in 1.2(ii) may also be obtained using [20, (2.1)], but in fact, this is again
based on [1].

Using some of the dimension results in section 6 in a similar way as in [6], or else as a
consequence of the results above we may also state:

Corollary 1.3 Let n ∈ N, and let p be a prime.

(i) All irreducible p-Brauer characters of Sn are of prime power degree if and only if
p = 2 and n ≤ 6, or p = 3 and n ≤ 4, or p = 5 and n ≤ 5, or p > 5 and n ≤ 4.

(ii) All irreducible p-Brauer characters of An are of prime power degree if and only
if p = 2 and n ≤ 6, or p = 3 and n ≤ 6, or p = 5 and n ≤ 5, or p > 5 and n ≤ 5.

2 Prime power degree characters

For the defect 0 part of the main results, and also as an important ingredient in the
proof of the general situation of positive defect, we use the classification of all irreducible
characters of prime power degree of symmetric groups Sn and alternating groups An

from [1]:

Theorem 2.1 [1] All ordinary irreducible characters of Sn of prime power degree are
given in the following list (together with their degrees):

(i) For all n ∈ N, [n](1) = [1n](1) = 1.

(ii) For n = 1 + q, q a prime power, we have [n− 1, 1](1) = [2, 1n−2](1) = q.
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(iii) n = 4 : [22](1) = 2

n = 5 : [3, 2](1) = [22, 1](1) = 5

n = 6 : [4, 2](1) = [22, 12](1) = 32, [32](1) = [23](1) = 5, [3, 2, 1](1) = 24

n = 8 : [5, 2, 1](1) = [3, 2, 13](1) = 26

n = 9 : [7, 2](1) = [22, 15](1) = 33

Theorem 2.2 [1] All ordinary irreducible characters of An of prime power degree are
given in the following list:

(i) For all n ∈ N, {n}(1) = 1.

(ii) For n = 1 + q, q > 2 a prime power, we have {n− 1, 1}(1) = q.

(iii) n = 3 : {2, 1}±(1) = 1

n = 4 : {22}±(1) = 1

n = 5 : {3, 2}(1) = 5, {3, 12}±(1) = 3

n = 6 : {4, 2}(1) = 32, {32}(1) = 5, {3, 2, 1}±(1) = 23

n = 8 : {5, 2, 1}(1) = 26

n = 9 : {7, 2}(1) = 33

Thus, the classification of the prime power or p-power p-blocks of the symmetric or
alternating groups of defect 0 can be deduced immediately from the lists above. In
particular, when p > n, all the irreducible characters occurring above give prime power
p-blocks (of defect 0), but only the characters of degree 1 give p-power p-blocks of
defect 0. Thus, in the following we only state the classification for the interesting
situation where p ≤ n; note that then defect 0 prime power p-blocks have to be p-
power p-blocks:

Corollary 2.3 Let p ≤ n. The prime power (p-power) p-blocks of Sn of defect 0 are
exactly the ones on the following list:
(i) The p-blocks to [p, 1], and the ones to [2, 1p−2] for p > 2.
(ii) n = 5: The 5-blocks to [3, 2] and [22, 1].
(iii) n = 6: The 2-block to [3, 2, 1]; the 3-blocks to [4, 2] and [22, 12]; the 5-blocks to [32]
and [23].

Corollary 2.4 Let p ≤ n. The prime power (p-power) p-blocks of An of defect 0 are
exactly the ones on the following list:
(i) The 2-blocks of A2 and A3.
(ii) The p-blocks to {p, 1}, p > 2.
(iii) n = 5: The 2-block to {4, 1}; the 3-blocks to {3, 12}±; the 5-block to {3, 2}.
(iv) n = 6: The 2-blocks to {3, 2, 1}±; the 3-block to {4, 2}; the 5-block to {32}.
(v) n = 8: The 2-block to {5, 2, 1}.
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As stated in the introduction, Navarro and Robinson [20] have shown that the p-blocks
where all ordinary irreducible characters are of p-power degree are nilpotent; for this,
they also use the classification list in [1]. Indeed, for the symmetric and alternating
groups, we may deduce immediately from the lists above (the statement that p-blocks
of An where all irreducible characters are of p-power degree are of positive defect is
also in [20]):

Corollary 2.5 The only p-blocks of Sn of positive defect where all irreducible charac-
ters are of p-power degree are the principal 2-blocks of S2 and S3, and the non-principal
2-blocks of S5 and S8 (they are all of weight 1). Apart from these, only the principal
2-block of S4 is a p-block of Sn of positive defect where all irreducible characters are of
prime power degree.

There is no p-block of An of positive defect where all irreducible characters are of p-
power degree. The only p-block of An of positive defect where all irreducible characters
are of prime power degree is the principal 2-block of A4.

Remark 2.6 The case of p-blocks of Sn or An where all irreducible characters are of
p-power degree was already mentioned in [6], but inadvertently, the defect 0 p-blocks of
Sn to [p, 1] and its conjugate and the corresponding p-block of An to {p, 1}, respectively,
had been omitted in the statement.

3 Blocks for small n

For the following data see [11], [12] or [14]. We always denote the principal p-block of
a group G by B0(G).
(i) The next table gives the dimensions of the simple Sn-modules as well as the simple
An-modules at characteristic p = 2 for small n, sorted according to 2-blocks:

n B0(Sn) B1(Sn)
1 1
2 1
3 1 2
4 1, 2
5 1, 4 4
6 1, 4, 4 16
7 1, 14, 20 6, 8
8 1, 6, 8, 14, 40 64

n B0(An) B1(An) B2(An)
1 1
2 1
3 1 1 1
4 1, 1, 1
5 1, 2, 2 4
6 1, 4, 4 8 8
7 1, 14, 20 4, 4, 6
8 1, 4, 4, 6, 14, 20, 20 64

This gives ten 2-power 2-blocks of Sn for n ≤ 8; apart from the defect 0 blocks we have
- the 2-blocks of defect 1 of Sn for n = 2, 3, 5, 8 (containing the characters [2], [3], [4, 1], [5, 2, 1]
and the resp. conjugates)
- the principal 2-blocks of defect 3 of S4 and S5,
- the principal 2-block of defect 4 of S6.
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There are no further prime power 2-blocks of Sn for n ≤ 8.
For the alternating groups, we have twelve 2-power 2-blocks for n ≤ 8; apart from the
defect 0 blocks we have
- the principal 2-blocks of defect 2 of A4 and A5,
- the principal 2-block of defect 3 of A6.
There are no further prime power 2-blocks of An for n ≤ 8.

(ii) The table below gives the dimensions of the simple Sn-modules as well as the simple
An-modules at characteristic p = 3 for small n sorted according to 3-blocks:

n B0(Sn) B1(Sn) B2(Sn)
1 1
2 1 1
3 1, 1
4 1, 1 3 3
5 1, 4 1, 4 6
6 1, 1, 4, 4, 6 9 9

n B0(An) B1(An) B2(An)
1 1
2 1 1
3 1
4 1 3
5 1, 4 3 3
6 1, 3, 3, 4 9

This gives nine 3-power 3-blocks of Sn for n ≤ 6; apart from the defect 0 blocks we
only have the principal 3-blocks of defect 1 of S3 and S4.
There are two further prime power 3-blocks for n ≤ 6, namely the two 3-blocks of
defect 1 of S5.
For the alternating groups, there are eight 3-power 3-blocks for n ≤ 6; apart from the
defect 0 blocks we only have the principal 3-blocks of defect 1 of A3 and A4.
There are two further prime power 3-blocks of An for n ≤ 6, namely the principal
3-blocks of A5 and A6.
(iii) The table of dimensions of simple Sn-modules at characteristic p = 5 for small n
sorted according to 5-blocks:

n B0(Sn) B1(Sn) B2(Sn) B3(Sn) B4(Sn) B5(Sn)
1 1
2 1 1
3 1 1 2
4 1 1 2 3 3
5 1, 1, 3, 3 5 5
6 1, 1, 8, 8 5 5 5 5 10

This gives thirteen 5-power 5-blocks for n ≤ 6, all of defect 0. There are six further
prime power 5-blocks for n ≤ 6, namely four further 5-blocks of defect 0 for n = 3, 4,
and the principal 5-blocks for n = 5, 6 (of defect 1).

The corresponding table of dimensions of simple An-modules at characteristic p = 5
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for small n sorted according to 5-blocks:

n B0(An) B1(An) B2(An) B3(An)
1 1
2 1
3 1 1 1
4 1 1 1 3
5 1, 3 5
6 1, 8 5 5 10

This gives eleven 5-power 5-blocks for n ≤ 6, all of defect 0. There are three further
prime power 5-blocks for n ≤ 6, namely a further 5-block of defect 0 of A4, and the
principal 5-blocks of A5, A6 (of defect 1).

For n ≤ 9 and all primes p ≥ 7 the only further prime power or p-power p-blocks of Sn

or An are the defect 0 7-blocks of S8 and A8 with the simple module to (7, 1). (This can
also be deduced from the classification list of prime power degree characters together
with some results from later sections.)
The upshot of this is that for n ≤ 9 all prime power or p-power p-blocks of Sn and An

are the ones described explicitly above.

4 Alternating groups and the Mullineux map

The problem of classifying the p-blocks of An with all Brauer characters of prime power
degree needs a little more background and input. For p > 2 we need the Mullineux
map, already for giving a parametrization of the simple modules; for p = 2, we also
recall a result by Benson.
The distribution of simple modules into p-blocks of An is well known. If κ is a non-
symmetric p-core, then the two p-blocks of Sn with associated p-cores κ and κ′ cover
one and the same p-block of An. If κ is a symmetric p-core, then the p-block of the
symmetric group with p-core κ and weight 0 covers two p-blocks of the corresponding
alternating group, and the p-blocks of symmetric groups with p-core κ and positive
weight cover only one p-block of the corresponding alternating groups.

First we recall the classification of the simple An-modules at characteristic p; this is
based on knowing which simple Sn-modules split when restricted to An.

For p = 2, the answer was given by Benson [2]:

Theorem 4.1 Let λ = (λ1, . . . , λm) ` n be a 2-regular partition of n ∈ N, n ≥ 2.
Then the restriction Dλ|An is not simple if and only if the parts of λ satisfy the following
two conditions (where we set λm+1 = 0 if m is odd):

(i) λ2j−1 − λ2j ≤ 2 for all j;

(ii) λ2j−1 + λ2j 6≡ 2 (mod 4) for all j.
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If Dλ|An is not simple, then it splits into two non-isomorphic simple summands (con-
jugate under Sn), say Dλ|An

∼= Eλ
+ ⊕ Eλ

−.

We call the 2-regular partitions satisfying the conditions (i) and (ii) above S-partitions.
If λ is a 2-regular non-S-partition, we set Eλ = Dλ|An .

From Theorem 4.1 one deduces the classification of the simple FAn-modules at p = 2.
A complete list of non-isomorphic simple FAn-modules at characteristic 2 is given by:

Eλ
+, Eλ

− for λ ` n a 2-regular S-partition
Eλ for λ ` n a 2-regular non-S-partition

For later purposes we state explicitly:

Corollary 4.2 Let p = 2. Let n, k ∈ N with n > 2k. Then D(n−k,k) ↓An is a simple
module unless n = 2k + 1, or k is odd and n = 2k + 2.

For p 6= 2, the split restrictions are those of modules fixed by tensoring with the
sign representation. This case is combinatorially determined by the Mullineux map M
on p-regular partitions This is an involution which can be described explicitly using
a combinatorial algorithm suggested by Mullineux; the corresponding conjecture by
Mullineux was proved based on work by Kleshchev (see [19], [16], [9], [3]).

Theorem 4.3 Let λ be a p-regular partition. Then

Dλ ⊗ sgn ∼= DλM

.

Based on this, it is easy to give a combinatorial criterion for the splitting of the modular
irreducible Sn-representations over An also for odd primes p (see [8]):

Theorem 4.4 Let p be an odd prime, and let λ = (λ1, . . . , λm) ` n be a p-regular
partition of n.
Then the restriction Dλ|An is simple if and only if λ is not a fixed point under the
Mullineux map, i.e. λM 6= λ. For λM 6= λ, we denote this simple FAn-module by Eλ.
If λM = λ, and hence Dλ|An is not simple, then it splits into two non-isomorphic simple
summands Eλ

+, Eλ
− (conjugate under Sn), i.e., Dλ|An

∼= Eλ
+ ⊕ Eλ

−.

As before, this implies that a complete list of non-isomorphic simple FAn-modules is
given by:

Eλ
+, Eλ

− λ ` n p-regular, λ = λM

Eλ = EλM
λ ` n p-regular, λ 6= λM

If we already know dim Dλ for a p-regular partition λ, then because of the above, in
characteristic p > 2 we only need to check whether λ = λM to determine dim Eλ

(±).
Of course, when p > n, the Mullineux map is just ordinary conjugation, and hence its
fixed points are the symmetric partitions.
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Lemma 4.5 Let p > 2, p ≤ n.
(i) Let λ = (n− k, k) with k ≥ 2. Then λ 6= λM .
(ii) Let λ be a p-regular partition with l(λ) = 3.
If p > 3, then λ = λM if and only if p = 7 and λ is one of (32, 2) or (33).
If p = 3, then λ = λM if and only if λ is of the form (3l + 1, i, j) with i − j ≤ 1 and
i + j ∈ {3l, 3l − 1}, or of the form (3l, i, j) with i− j ≤ 1 and i + j = 3l − 1.
(iii) Let λ = (n − k, 1k) with k ∈ {0, 1, . . . , n − 1} be p-regular. Then λ = λM if and
only if n = 2k + 1 6= p, or n = 2p and k = p− 1.
(iv) Let λ = (n − p − j + 1, 2j, 1p−j−1) with j 6= 1 be p-regular. Then λ = λM if and
only if n = 2(p + j)− 1 and j 6= 1

2
(p + 1).

Proof. Case (i) for all p > 2 and case (ii) for p > 3 are in [17, Lemma 1.9].
Case (ii) for p = 3 and cases (iii) and (iv) are easily dealt with by considering the
Mullineux symbol for λ (see e.g. [3] or [4] for the definition of the Mullineux symbol). �

A special role in the strategy of the proof of our main results will be played by the
highest partition among the partitions labelling the characters in a p-block B of Sn

(in dominance order), as the corresponding character has irreducible reduction mod p.
This highest partition ρ is easily obtained from the p-core κ = (κ1, κ2, . . .) and the
weight w of the p-block B as ρ = (κ1 + pw, κ2, . . .). We call a partition of this form a
partition with a long arm when w > 0. In this case, the set of boxes of ρ not belonging
to the core κ ⊂ ρ is called the arm of the long arm partition ρ. The rightmost box
in the first row of the Young diagram of λ is called the hand box of the long arm
partition λ.
For a p-regular partition λ with p-core κ, the Mullineux conjugate λM has the conjugate
p-core κ′ [19]. In particular, a p-core κ is a fixed point of the Mullineux map if and
only if κ is symmetric. For the long arm partitions we have:

Proposition 4.6 Let p > 2. Then partitions with a long arm are not fixed by the
Mullineux map.

Proof. Let λ be a partition with a long arm. Then λ is easily seen to satisfy the
following condition: if a hook length hij in λ is divisible by p, then the corresponding
arm length aij and leg length lij satisfy (p − 1)lij ≤ aij (i.e., λ is a p-lies partition as
defined in [4]). For such partitions λ it was shown in [4] that the Mullineux conjugate
λM is obtained by transposition followed by p-regularization. Now, if λ = λM , then its
p-core κ is symmetric. But then it is easy to see that the regularization of λ′ cannot
contain the hand box of λ, as the slope of the p-ladders is p− 1. �

5 Some dimension formulae

While there are no general dimension formulae available for the simple modules of the
symmetric and alternating groups in positive characteristic, for some modules we do
have such explicit formulae.
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We collect some such families and investigate whether there are modules of prime power
dimension in these families.
The following dimension formulae may be deduced using [11, 17.17, 24.1, 24.15], [12,
6.1.21, 2.7.41] and [21]; see also [13] and [7, Lemma 1.21].
We remark that the dimensions needed in the proofs below may all be deduced using
the results and methods presented in [11], without using the deeper modular branching
rules from [15].

Proposition 5.1 (i) If p - n, then all hook Specht modules S(n−k,1k) have a simple
reduction modulo p; in particular, these simple modules are of dimension

(
n−1

k

)
.

(ii) Assume (n− k, 1k) is p-regular. Then

dim D(n−k,1k) =

{ (
n−1

k

)
if p - n(

n−2
k

)
if p | n

Note that the p-regular partition label of the simple reduction occurring in part (i)
above is easily computed by the process of p-regularization applied to (n− k, 1k) [12].

Proposition 5.2 (i) Assume p > 2 and n ≥ 4. Then

dim D(n−2,2) =


1
2
n(n− 1)− n = 1

2
n(n− 3) if n 6≡ 1, 2 mod p

1
2
n(n− 3)− 1 = 1

2
(n2 − 3n− 2) if n ≡ 1 mod p

1
2
(n2 − 5n + 2) if n ≡ 2 mod p

(ii) Assume p = 2 and n > 4. Then

dim D(n−2,2) =



1
2
(n− 1)(n− 4) = 1

2
(n2 − 5n + 4) if n ≡ 0 mod 4

1
2
n(n− 3)− 1 = 1

2
(n2 − 3n− 2) if n ≡ 1 mod 4

1
2
(n− 1)(n− 4)− 1 = 1

2
(n2 − 5n + 2) if n ≡ 2 mod 4

1
2
n(n− 3) if n ≡ 3 mod 4

(iii) Assume p = 2, n > 6. Then

dim D(n−3,3) =



1
6
n(n− 2)(n− 7) if n ≡ 0 mod 4

1
6
n(n− 1)(n− 5) if n ≡ 1 mod 4

1
6
(n− 1)(n− 2)(n− 6) if n ≡ 2 mod 4

1
6
(n + 1)(n− 1)(n− 6) if n ≡ 3 mod 4
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(iv) Assume p > 3 and n ≡ 3 mod p. Then

dim D(n−3,3) =
1

6
(n + 1)(n− 1)(n− 6)

(v) Assume p > 5. Then

dim D(p−2,2,1) =
1

6
(p− 2)(2p2 − 5p− 9)

(vi) Assume p > 5. Then

dim D(p−2,3,1) =
1

24
(p− 2)(3p3 − 4p2 − 35p− 36)

6 Prime power dimensions

For some of the families in the previous section it was already shown in [6] that we
rarely have prime power dimensions. First, we consider hook partitions, i.e., partitions
of the form (n − k, 1k), k ∈ {0, . . . , n − 1}. Here we know that the dimensions are
binomial coefficients. In this situation we have (see e.g. [10] or [22] for (i), and [1]
for (ii)):

Proposition 6.1 Let n ∈ N.
(i) A binomial coefficient

(
n
k

)
, k ∈ {0, . . . , n} is a prime power only in the trivial cases

when k = 0 or k = n, or when n is a prime power and k = 1 or k = n− 1.
(ii) A binomial coefficient

(
2n
n

)
, n > 2, is never twice a prime power.

Remark In fact, we will only need the case of an odd number n > 2 in (ii), and then
it may easily be shown directly that

(
2n
n

)
is not a 2-power. Let s(n) denote the number

of summands in the 2-adic expansion of n; it is well-known that ν2(n!) = n− s(n). As
s(n) = s(2n), we have ν2(

(
2n
n

)
) = s(n). For odd n, we thus have ν2(

(
2n
n

)
) ≥ 2, and

hence
(
2n
n

)
cannot be twice an odd prime power.

Proposition 6.2 Let n ∈ N, and assume that λ is a p-regular hook partition. Then
the simple module Dλ is of prime power dimension exactly in the following cases:
(i) λ = (n) and dim D(n) = 1.
(ii) λ = (2, 1p−2), n = p > 2, and dim Dλ = 1.
(iii) λ = (n− 1, 1), p | n and n− 2 = q is a prime power, or p - n and n− 1 = q is a
prime power, dim Dλ = q.
(iv) λ = (3, 1p−3), n = p > 3 and n− 2 is a prime power, and dim Dλ = n− 2.
(v) λ = (1n), n < p, and dim D(1n) = 1.
(vi) λ = (2, 1n−2), n < p with n− 1 a prime power, or n = p + 1, and dim Dλ = n− 1.

For later use we note
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Proposition 6.3 Let n ∈ N, n > 3, and let p > 2. Then the simple module E
(n−2,12)
(±)

is of prime power dimension if and only if n = 4 or 5, or n = 6 and p = 3.

For the following result we need some extra notation; let

L = {x ∈ N | x2 − 17 = 8q for some prime power q} .

For x ∈ L set q(x) = 1
8
(x2 − 17).

Proposition 6.4 Let n ∈ N. Assume (n − 2, 2) is p-regular. The simple module
D(n−2,2) is of prime power dimension q if and only if one of the following holds:
(1) p = 2, n ∈ {5, 6}, q = 22 or n ∈ {13, 14}, q = 26;
(2) p > 3, n ∈ {4, 5}, q = 2 or 5, resp.;
(3) 2 < p 6= 5, n = 6, q = 9;
(4) 2 < p 6= 7, n = 9, q = 27;
(5) p = 3, n ∈ {4, 5}, q = 1.
(6) p > 2, q = q(x) > 1 for some x ∈ L, and p | c := 1

2
(x + 1), n = c + 1 or n = c + 2.

The simple module D(n−2,2) is of p-power dimension only in situations occurring in
(1)-(5) above.

Proof. The proof follows closely the argument given for [6, Theorem 2.4].
Assume first that p = 2. The cases where D(n−2,2) is of 2-power dimension have been
classified in [6]; these are exactly the cases listed in (1) above. Now assume that
dim D(n−2,2) is a proper r-power, for some prime r > 2; in particular, this dimension
is odd. Considering the formulae given in Proposition 5.2(iii), one easily sees that
dim D(n−2,2) is even in all cases, giving a contradiction (in fact, all simple modules in
characteristic 2 are of even dimension).
Thus we may now assume that p > 2. Let dim D(n−2,2) = q = ra, for some prime r.
Assume n 6≡ 1, 2 mod p. Then n(n − 3) = 2ra (note that q > 1 as n ≥ 4). If
r | gcd(n, n− 3), then r = 3, and we can only have n = 6, q = 9 or n = 9, q = 27. The
first case occurs for all odd p 6= 5, the second case for all odd p 6= 7, giving the cases
(3) and (4).
If r - gcd(n, n − 3), then gcd(n, n − 3) = 1 and this implies n = 4, q = 2 or n = 5,
q = 5. Both cases occur for all p > 3; this is the situation in (2).
Now assume n ≡ 1 mod p. Then n2 − 3n − 2 = 2q = 2ra (∗). If q = 1, then n = 4
and p = 3 (part of case (5)). So we may now assume that q 6= 1.
Set x = 2n− 3. Then (∗) is equivalent to x2 − 17 = 8ra. Thus x ∈ L and q = q(x). As
c = 1

2
(x + 1) = n− 1, the condition n ≡ 1 mod p translates into p | c (part of (6)).

If n ≡ 2 mod p, we have n2 − 5n + 2 = 2q = 2ra (∗). If q = 1, then n = 5 and p = 3
(part of case (5)). So assume now that q 6= 1.
Set x = 2n − 5. Then again, (∗) is equivalent to x2 − 17 = 8ra. Thus x ∈ L and
q = q(x). As c = 1

2
(x + 1) = n − 2, the condition n ≡ 2 mod p translates again into

p | c (part of (6)).
As in the proof of [6, Theorem 2.4] one can easily check that in (6), the prime power
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q cannot be a p-power when p > 2 (the case p = 2 is already covered in (1)). Indeed,
in both cases n ≡ 1, 2 mod p we have x ≡ −1 mod p, and then we deduce −2 ≡ q
mod p. Thus q cannot be a p-power. �

Remark 6.5 It is not clear whether (6) gives rise to infinitely many cases of n and p
where the module has prime power dimension; checking in the range x = 7, ..., 99
already gives quite a large solution subset of L.

With Lemma 4.5, the following result in the case of alternating groups is now an
immediate consequence of the corresponding results for the symmetric groups:

Proposition 6.6 Let n ∈ N, p a prime. Assume (n − 2, 2) is p-regular. The simple

module E
(n−2,2)
(±) is of prime power dimension q if and only if one of the following holds:

(1) p = 2, n = 5, q = 2 or n = 6, q = 22 or n ∈ {13, 14}, q = 26;
(2) p > 3, n = 4 and q = 1, or n = 5 and q = 5;
(3) 2 < p 6= 5, n = 6, q = 9;
(4) 2 < p 6= 7, n = 9, q = 27;
(5) p = 3, n ∈ {4, 5}, q = 1.
(6) p > 2, q = q(x) > 1 for some x ∈ L, satisfies p | c := 1

2
(x + 1), n = c + 1 or

n = c + 2.
The simple module E

(n−2,2)
(±) is of p-power dimension only in situations occurring in

(1)-(5) above.

Proposition 6.7 (i) Let p = 2, n > 6. The simple modules D(n−3,3) and E(n−3,3)

are of prime power dimension if and only if n ∈ {7, 8}. In these cases, we have

dim D(4,3) = 23, dim D(5,3) = 23, dim E
(4,3)
± = 22, dim E

(5,3)
± = 22.

(ii) Let p ≥ 5, n ≥ 6. Then the simple modules D(n−3,3) and E(n−3,3) are not of prime
power dimension if n ≡ 3 mod p.

Proof. (i) Assume that dim D(n−3,3) = qr for some prime q, r ∈ N0. We use the
dimension formulae given in 5.2.
If n ≡ 0 mod 4, then n(n− 2)(n− 7) = 6qr. For n = 8, we obtain qr = 8. For n ≥ 12,
each factor must be divisible by q, giving a contradiction.
If n ≡ 1 mod 4, then n(n − 1)(n − 5) = 6qr. Again, for any n ≥ 9, each factor must
be divisible by q, giving a contradiction.
If n ≡ 2 mod 4, then (n− 1)(n− 2)(n− 6) = 6qr. Again, for any n ≥ 10, each factor
must be divisible by q, giving a contradiction.
If n ≡ 3 mod 4, then (n + 1)(n − 1)(n − 6) = 6qr. For n = 7, we obtain qr = 8. For
any n ≥ 11, each factor must be divisible by q, giving a contradiction.
Since both (4, 3) and (5, 3) are S-partitions, the corresponding modules split on restric-
tion to the alternating groups.
(ii) Let λ = (n − 3, 3), n ≡ 3 mod p, n ≥ 6, p ≥ 5. We assume that dim Dλ = qr for
some prime q, r ∈ N0, hence by 5.2 we have

(n + 1)(n− 1)(n− 6) = 6qr .
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The conditions on n, p imply that indeed n ≥ 8, hence the factors n + 1, n − 1 must
both be divisible by q, and thus q = 2. But it is impossible that two of the three factors
are 2-powers > 1, hence we have a contradiction. �
To deal efficiently with the other families, we first state a useful number-theoretic
Lemma tailored for our later purposes.

Lemma 6.8 Let a, b ∈ N. Let f ∈ Z[X] be a polynomial. Let z ∈ N such that
f(z) > bz and

(z − a)f(z) = bqr ,

for some prime q ∈ N and r ∈ N0. Let b = b′bq with b′, bq ∈ N, q - b′, bq a q-power.
Then z = a + qsc, for some c | b′, and qs | f(a).
Furthermore, bqq

s+1 | f(z), and in particular, 2s + 1 ≤ r.

Proof. Let s = νq(z−a), so z = a+qsc for some c | b, where q - c. Then z ≥ z−a ≥ qs,
and we obtain f(z) > bz ≥ bqs. As f(z) | bqr, we must have bqq

s+1 | f(z). Since
a ≡ z mod qs, f(a) ≡ f(z) mod qs, and hence qs | f(a). �

Proposition 6.9 The simple modules Dλ and Eλ are not of prime power dimension
when we are in one of the following cases:

(i) λ = (p− 2, 2, 1) or λ = (4, 2, 1p−5), p ≥ 7.

(ii) λ = (p− 2, 3, 1) or λ = (4, 22, 1p−6), p ≥ 7.

Proof. First we note that the two partitions in (i) and (ii), respectively, are Mullineux
conjugate, so we only have to deal with the first partition in these cases, and it suffices
to consider the modules for the symmetric groups.
(i) Let λ = (p− 2, 2, 1), p ≥ 7. We assume that dim Dλ = qr for some prime q, r ∈ N0,
hence by 5.2 we have

(p− 2)(2p2 − 5p− 9) = 6qr .

We now want to apply Lemma 6.8 with a = 2, b = 6, f = 2X2 − 5X − 9; one easily
checks that for all x ≥ 7 f(x) > 6x. Note that we cannot have r = 0. Now f(2) = −11,
and p ≥ 7 is odd, hence by Lemma 6.8 q = 11 and we only have the possibilities

p = 2 + 11 = 13 or p = 2 + 3 · 11 = 35 .

But in the first case f(p) = f(13) ≡ 0 mod 4, and in the second case p is not a prime,
hence we have a contradiction in both cases.
(ii) Let λ = (p−2, 3, 1), p ≥ 7. We assume that dim Dλ = qr for some prime q, r ∈ N0,
hence by 5.2 we have

(p− 2)(3p3 − 4p2 − 35p− 36) = 24qr .

Again, we want to apply Lemma 6.8, here with a = 2, b = 24, f = 3X3−4X2−35X−36;
one easily checks that for all x ≥ 7 f(x) > 24x. Note that since p − 2 ≥ 5 is odd, we
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must have r > 0 and q 6= 2, and q divides p− 2. Now f(2) = −98 = (−1) · 2 · 72, hence
we can only have q = 7. By Lemma 6.8 we can only have the possibilities

p = 2 + 7 = 9 , p = 2 + 3 · 7 = 23, p = 2 + 49 = 51 or p = 2 + 3 · 49 = 149 .

Now 9 and 51 are not primes, f(23) = 8 · 7 · 599 and 599 is a prime, and 24 | f(149),
giving a contradiction in all cases. �

7 Proofs of the main results

Given a p-block B of Sn where all simple modules are of prime power dimension (or of
p-power dimension), we will use the following strategy.
By a result of James on the decomposition numbers (see [12, sec. 6.3]) we know that B
contains an ordinary irreducible character χ with irreducible reduction χ̄ = ϕ ∈ IBr(B).
Hence, there is χ ∈ Irr(B) of prime power (or p-power) degree. As mentioned before,
these have been classified in [1]. From [1] we know that then n ≤ 9 or χ = [n] or [q, 1]
for some prime power (or [pa, 1], in the p-power case), up to tensoring with the sign
character.
In fact, we know more precisely that the irreducible character labelled by the high-
est partition among the partitions labelling the characters in B (in dominance order)
has the property of irreducible reduction mod p. This highest partition ρ is the long
arm partition obtained from the p-core κ = (κ1, κ2, . . .) and the weight w of B as
ρ = (κ1 + pw, κ2, . . .). In some situations it is helpful to know that in fact (q, 1), where
q is a prime power (or (pa, 1), in the p-power case) is not the long arm partition for the
block, but that our p-block has to be the principal block.

We now want to prove

Theorem 7.1 Let p ≤ n. Let B be a prime power p-block of Sn or An of positive
defect. Then n ≤ 8 and B is one of the exceptional blocks listed in section 3.

Proof. Given a p-block B of Sn or An of positive defect, i.e., weight w > 0, with
p-core κ, let λ be the long arm partition to κ and w (note that λ is not an S-partition,
and for p > 2, it is not a Mullineux fixed point). Then Dλ ∼= Sλ and Dλ ↓An

∼= Eλ are
simple modules in our block of Sn or An, respectively, and hence [λ](1) = dim Dλ is a
prime power.
We note at this point that if B is a prime power p-block, then so is the conjugate
p-block B′ = sgn ⊗ B (to the conjugate p-core and the same weight). Hence also the

highest character in B′, to the long arm partition λ̃, say, with p-core κ′ has to be of
prime power degree.
As λ is a partition with a long arm, we deduce from Theorem 2.1 or Theorem 2.2,
respectively, that we are in one of the following cases:
(1) λ = (n), n ≥ p.

15



(2) λ = (ra, 1), a ∈ N, r a prime, p ≤ ra + 1, and p - ra + 1 (since otherwise λ is not a
long arm partition).
(3) λ = (5, 2, 1), p = 2, B a block of Sn.
(4) λ = (7, 2), p = 3 or p = 5.
For (3), we have already seen in section 3 that the 2-block of S8 of weight 1 contains
only the simple module D(5,2,1), and it is a 2-power 2-block. In case (4), we have

λ̃ = (5, 2, 12) when p = 3, which is not of prime power degree, so the corresponding
3-blocks of S9 and A9 are not prime power 3-blocks. For p = 5, the block of A9 to
(7, 2) also contains a simple module of dimension 21 (the simple restriction of {33}±),
hence the corresponding 5-blocks of S9 and A9 are not prime power blocks.
Hence it only remains to deal with the situations (1) and (2).
First we assume we are in situation (1), i.e., the principal p-block is a prime power
p-block, where p ≤ n.
Assume p = 2. For n ≤ 6, we have already seen in section 3 that all simple modules of
Sn and An are of 2-power dimension, and thus we may assume now that n > 6. Now
also the simple modules to (n − 2, 2) belong to the principal 2-blocks of Sn and An,
but they are only of prime power dimension for n ∈ {13, 14}. For n = 13, the simple
modules to (9, 4) are of dimension 364, and they belong to the principal 2-blocks, so
these are not prime power 2-blocks. For n = 14, the simple modules to (13, 1) are
of dimension 12, and they belong to the principal 2-blocks, hence again these are not
prime power 2-blocks.
Thus we may now assume that p > 2.
First we consider the case where p | n. For n = p = 3, the corresponding blocks are
prime power p-blocks. So we may assume that n > 3. Then the simple modules to the
hook (n − 2, 12) belong to B = B0. Since they have to be of prime power dimension,
we can only have n = p = 5, or, in the case of An, n = 6 and p = 3. Also in these
cases, the corresponding blocks are prime power p-blocks.
Now consider the case n = p + 1. For p = 3 and p = 5, we have already seen that the
principal p-blocks are indeed prime power p-blocks. For p ≥ 7, we consider the simple
modules to (p− 2, 2, 1) which are not of prime power dimension by Theorem 6.9.
Now suppose n = p+2. For p = 3 the principal blocks are indeed prime power 3-blocks.
For p = 5, the simple module to (2, 15) shows that the principal 5-blocks are not prime
power blocks. For p ≥ 7, we consider the simple modules to (p− 2, 3, 1) which are not
of prime power dimension by Theorem 6.9.
We may now assume that p - n and n > p+2. Now the simple module S(n−p,1p), belongs
to the principal p-block B of Sn and is not of prime power dimension, by Prop. 5.1
and Prop. 6.1. In fact, regularizing the hook we obtain S(n−p,1p) ∼= D(n−p,2,1p−2), and
the partition (n − p, 2, 1p−2) is a Mullineux fixed point only for n = 2p + 1. Thus,
for n 6= 2p + 1, the simple module E(n−p,2,1p−2) in the principal p-block of An is not
of prime power dimension. For n = 2p + 1, dim S(n−p,1p) =

(
2p
p

)
, and this is neither a

prime power nor twice a prime power by Proposition 6.1.

We now turn to (2), i.e., the situation where we have a simple module to the long arm
partition λ = (ra, 1) in the p-block B of Sn or An, p ≤ n = ra + 1 but p - n = ra + 1.
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Again, we start with the case p = 2. Since 2 = p - ra +1, we must have r = 2; since λ is
not a p-core, then a > 1. For a = 2, n = 5 and we know that all simple modules of S5

and A5 are of 2-power dimension. For a > 2, consider the simple module to (n− 3, 3)
in the same 2-block; this is not of prime power dimension by Prop. 6.7.

Now we can assume that p > 2. As (p, 1) is a p-core, we have n > p + 1.
If n ≡ 3 mod p then p > 3; thus n > 6. Now the simple module to (n − 3, 3) is in
the same p-block as the simple module to λ, and it is not of prime power dimension by
Proposition 6.7.
If n 6≡ 3 mod p, then κ is a non-symmetric partition (t, 1), t ∈ {1, 3, 4, . . . , p − 2, p}.
Then the conjugate p-block B′ of Sn contains the character to the long arm partition
λ̃ = (n − t + 1, 1t−1) which has simple reduction mod p. If t = 1, B′ is the principal
p-block, a case we have already dealt with: this (and its conjugate) is a prime power
p-block only for p = 3, n = 5. Hence we may assume that t > 2, and then this
module is not of prime power dimension; it is also simple for An and belongs to the
corresponding p-block of An. �
The previous result immediately implies

Theorem 7.2 Let p ≤ n. Let B be a p-power p-block of Sn or An of positive defect.
Then n ≤ 8 and B is one of the exceptional blocks listed in section 3.

Thus, together with the results in sections 2 and 3, the classification lists in Theo-
rems 1.1 and 1.2 are fully established.
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