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The theory of the covering groups

e

S

n

of the symmetric groups S

n

has its

origins in early papers by Schur [S1,S2,S3] who investigated the projective

representations of the groups S

n

. While the representation theory of the sym-

metric groups made continuous progress, with the appropriate combinatorial

concepts of partitions and tableaux developed early on by Young, the repre-

sentation theory of the covering groups saw a long period of stagnation. Only

50 years after Schur's fundamental paper on the group

e

S

n

, new light into the

subject was brought by Morris [Mo1, Mo2]. He introduced the combinatorial

notions which turned out to be the right analogues of the notions in the S

n

case: shifted tableaux instead of Young tableaux and bars instead of hooks.

Using these notions he obtained new results on the Q-functions introduced by

Schur, and he found a recursive formula for the irreducible spin characters (i.e.

the characters belonging to the proper projective representations) in analogy

to the Murnaghan-Nakayama formula, thus opening up a deeper investigation

of the characters of

e

S

n

.

In the meantime, p-modular representation theory of �nite groups had

been developed, mainly by Richard Brauer, who had de�ned the fundamental

concept of p-blocks of �nite groups. While the p-blocks of the groups S

n

had been determined already in the 1940's by a combinatorial algorithm {

still known as the Nakayama conjecture { it was only in 1965 that Morris

conjectured how to determine the p-blocks of

e

S

n

for odd primes p, again by

a combinatorial procedure. It took more than 20 years before this conjecture

was settled by Humphreys [H] and then, using di�erent methods, by Cabanes

[C]. In the meantime, there was very little progress on the modular represen-

tation theory of the groups

e

S

n

. But in the past decade the area has seen many

signi�cant contributions, not only from representation theory, but now also

�
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from combinatorialists interested in tableaux (see [St1, St2]). At about the

same time in the late 1980's several survey articles were published that took

a new look at Schur's papers and proceeded with new results. Joze�ak [Jo]

chose the superalgebra approach to Schur's work, while Stembridge ([St1, St2])

put more emphasis on the combinatorial side, in particular shifted tableaux,

and viewed Q-functions as generating functions for special tableaux. A little

later, Ho�man and Humphreys [HH] gave a full account of the projective re-

presentations of S

n

in their book on this subject. Certainly, all these have had

an impact on the increasing interest in this area where algebra interacts with

combinatorics and the theory of symmetric functions.

In the following sections, �rst a brief introduction into the representation

theory of the groups

e

S

n

will be given, along with its combinatorics, that cor-

responds to the time up to 1986. This will be incomplete in many respects,

e.g. there will be little included about symmetric functions (for this we refer

the reader to the monograph by Macdonald [M] and to the survey article by

Morris [Mo3]) or Cli�ord algebras (see [Jo]). It will focus on those results

that are needed for the later sections in which we report on the more recent

results in p-modular representation theory of

e

S

n

. Based on the determination

of the p-blocks of

e

S

n

mentioned above, Olsson [O1, O2, O3, O4], Morris and

Yaseen [MY1] and Morris and Olsson [MO] studied the p-block invariants and

developed the appropriate combinatorial tools further. Motivated by the com-

putations of decomposition matrices for small n by Morris and Yaseen [MY2,

Y], general results on the decomposition matrices in characteristic 3 [BMO]

and 5 have been obtained and a surprising connection with a deep conjecture

by Andrews [A1, A2] from 1974 was revealed in this context { motivating

a new attack on the problem which could then be settled [ABO]. Computa-

tions of the decomposition matrix at characteristic 2 by Benson [B1] led to a

conjecture of Kn�orr and Olsson on the 2-block structure of

e

S

n

in 1987 [O1].

This could recently be proved [BO1], and in fact very good information on

the 2-decomposition matrix could be obtained. On the basis of these results,

now also the heights of spin characters in 2-blocks have been studied, and a

number of central representation theoretical conjectures have been veri�ed for

the groups

e

S

n

[BO2].

1 Spin characters: from Schur to Morris

Let G be a �nite group, K = Cl the �eld of complex numbers. The assertion on

the �eld can be weakened for some of the results below; we refer the reader to

[HH] and [Jo] for more details. A projective representation of G on a K-vector

space V is a map T : G! GL(V ), satisfying T (1

G

) = id

V

and for any x; y 2 G

there is a suitable scalar �(x; y) 2 K

�

with T (x)T (y) = �(x; y)T (xy). The
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map � : G�G! K

�

is then a factor set, i.e. it satis�es the 2-cocycle condition

�(x; y)�(xy; z) = �(x; yz)�(y; z) for all x; y; z 2 G :

For a trivial cocycle � � 1, the corresponding representations are the linear

representations of G. The map T induces a map

�

T : G ! PGL(V ) which is

a homomorphism, often also called a projective representation of G. So from

a geometric point of view, a projective representation of G is equivalent to

considering G as a transformation group on projective space, which certainly

was a natural point of view at the beginning of the century. But also from the

linear representation theoretic point of view, projective representations come

up naturally when one wants to study the connection between linear represen-

tations of a group G and of a normal subgroup H of G; this is fundamental in

the so-called Cli�ord theory (see [CR], [NT]).

Two projective representations T

1

and T

2

of G on K-vector spaces V

1

and

V

2

respectively, are projectively equivalent if there is an isomorphism A 2

Hom

K

(V

1

; V

2

) and a map � : G! K

�

such that

�(x)AT

1

(x)A

�1

= T

2

(x) for all x 2 G :

The equivalence of projective representations induces an equivalence of factor

sets; these equivalence classes form an abelian group M(G), called the Schur

multiplier of G, which is isomorphic to the cohomology group H

2

(G;Cl

�

).

Now Schur realized that projective representations can be `linearized' by

enlarging the group. More precisely, there is a central extension

e

G of G such

that the projective representations of G can be lifted to linear representations

of

e

G. A minimal such group is called a representation group of G. In fact, one

obtains a representation group by taking the central kernel to be the Schur

multiplier. So we have a non-split extension with central kernel contained in

the commutator subgroup of

e

G in the �rst row of the following commutative

diagram:

1 �! M(G) �!

e

G

�

�! G �! 1

?

?

y

�

?

?

y

�

T

1 �! Cl

�

�! GL(V ) �! PGL(V ) �! 1

and T as above is equivalent to the projective representation � � u : G !

GL(V ), where u is a �xed section of � and � is a suitable linear representation

of

e

G.

We now turn to the speci�c situation G = S

n

which Schur studied in his

1911 paper.

Theorem 1.1 (Schur [S3])

H

2

(S

n

;Cl

�

) '

(

0 for n � 3

ZZ

2

for n > 3

:
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Theorem 1.2 (Schur [S3]) For n � 4, there are two representation groups of

S

n

, which are isomorphic only for n = 6.

Both representation groups can be given explicitly in terms of generators

and relations. Since the representation theory for these two groups is virtually

the same, i.e. one easily transforms results for one into such for the other, we

will only deal with one of them and take Schur's choice:

e

S

n

= <t

1

; : : : ; t

n�1

; z j z

2

= 1; t

2

i

= z; 1 � i � n � 1;

t

i+1

t

i

t

i+1

= t

i

t

i+1

t

i

; 1 � i � n� 2;

t

i

t

j

= zt

j

t

i

for ji� jj > 1; 1 � i; j � n� 1>

for n 2 IN. So

e

S

n

is a central non-split extension of S

n

by <z>, a double

cover of S

n

, and it is a representation group for S

n

, for n � 4.

Classi�cation of irreducible projective S

n

-representations now means clas-

si�cation of the irreducible linear

e

S

n

-representations. The irreducible linear

e

S

n

-representations with z in their kernel correspond to the well-known irre-

ducible linear S

n

-representations. So we are only interested in the linear

e

S

n

-

representations which map z to �id

V

, and we call these spin representations.

Now Schur succeeded in classifying the irreducible complex spin represen-

tations by giving their characters; he also produced the basic spin represen-

tations explicitly. Only recently Nazarov [N] has constructed all the irreducible

spin representations explicitly by presenting suitable orthogonal matrices, in

analogy to Young's orthonormal representations in the case of S

n

.

The �rst step towards the computation of the irreducible spin character

table is the determination of the conjugacy classes in

e

S

n

. Let � be a partition

of n, i.e. a sequence � = (`

1

; `

2

; : : : ; `

m

) of positive integers where `

1

� `

2

�

: : : � `

m

> 0 and

P

m

i=1

`

i

= n; we call m = `(�) the length of �. We then set

C

�

= f� 2

e

S

n

j �(�) 2 S

n

is of cycle type �g :

Furthermore, we let P(n) be the set of all partitions of n, O(n) the set of

partitions of n with odd parts only, and we let D(n) be the set of partitions

of n into distinct parts. Then D

�

(n) resp. D

+

(n) denote the sets of those

partitions in D(n) with an odd resp. an even number of even parts; we call the

corresponding partitions odd resp. even partitions.

For the following results of Schur see [S3], [Jo], [HH], [St1, St2].

Theorem 1.3 (Schur) Let � 2 P(n). Then C

�

splits into two

e

S

n

-conjugacy

classes if and only if � 2 O(n) [ D

�

(n), otherwise C

�

does not split.

In the case that C

�

splits, a speci�c labelling for the two

e

S

n

-conjugacy

classes in C

�

is needed. If � = (`

1

; : : : ; `

m

) 2 P(n) we set

�

�

= v

1

� � � v

m

; where v

j

= t

i+1

t

i+2

� � � t

i+`

j

�1

; i =

j�1

X

k=1

`

k

; j = 1; : : : ;m :
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Then we let C

+

�

denote the conjugacy class of �

�

, and C

�

�

the conjugacy class

of z�

�

. Note that any spin character vanishes on the non-split classes so we

only have to consider the values on the split classes in the following.

Since the number of non-equivalent irreducible complex representations

of a �nite group G is equal to the number of G-conjugacy classes, we can

already conclude that the number of non-equivalent irreducible complex spin

representations equals

jO(n)j+ jD

�

(n)j = jD(n)j+ jD

�

(n)j = jD

+

(n)j+ 2jD

�

(n)j :

In fact the last expression corresponds nicely to the classi�cation of irre-

ducible spin characters. Before giving this, we need one further de�nition. Let

sgn denote the sign character of

e

S

n

(induced from the sign character of S

n

).

A character � of

e

S

n

is called self-associate if sgn � � = �, otherwise we have a

pair �, �

0

= sgn � � of associate characters.

Theorem 1.4 (Schur) A complete list of irreducible complex spin characters

of

e

S

n

is given as follows.

For each � 2 D

+

(n) there is a self-associate spin character h�i, and for each

� 2 D

�

(n) there is a pair of associate spin characters h�i, h�i

0

which take the

following values on �

�

2 C

+

�

:

h�i(�

�

) = h�i

0

(�

�

) for � 2 O(n); � 2 D

�

(n)

h�i(�

�

) = 0 for � 2 D

�

(n); � 6= �

h�i(�

�

) = �h�i

0

(�

�

) = i

(n�m+1)=2

q

Q

j

`

j

=2 for � = (`

1

; : : : ; `

m

) 2 D

�

(n)

and h�i(�

�

) for � 2 O(n) is determined by the following expansion of the

Schur Q-function into power sum functions:

Q

�

=

X

�2O(n)

2

(`(�)+`(�)+"(�))=2

1

z

�

h�i(�

�

)p

�

;

where z

�

= jC

S

n

(�(�

�

))j =

Q

j�1

j

m

j

(j!) if � = (1

m

1

; 2

m

2

; : : :) and

"(�) =

(

0 if � is even

1 if � is odd

The Q-functions appearing above are special instances of Hall-Littlewood

functions, more precisely:

Q

�

(x

1

; : : : ; x

n

) = 2

m

X

w2S

n

=S

n�m

w

0

@

m

Y

i=1

x

`

i

i

m

Y

i=1

n

Y

j=i+1

x

i

+ x

j

x

i

� x

j

1

A

for � = (`

1

; : : : ; `

m

), m � n; if `(�) > n, then Q

�

(x

1

; : : : ; x

n

) = 0.
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Their combinatorial signi�cance comes from the fact that they are tableaux

generating functions, indeed,Q

�

corresponds to a weight enumeration of marked

shifted �-tableaux (see [St1, St2]). The shifted �-diagrams and shifted �-

tableaux are the analogues of the Young diagrams and Young tableaux in the

ordinary S

n

-case, the shifting meaning that the rows are indented along the

diagonal. For example, for � = (5; 3; 2) the shifted Young diagram S(�) is

depicted by

The standard shifted �-tableaux are obtained by �lling the shifted �-diagram

S(�) with the integers f1; : : : ; ng such that entries increase along rows and

down the columns; for example the following is a standard shifted (5; 3; 2)-

diagram:

1 2 3 6 7

4 5 9

8 10

That these are the right combinatorial concepts is seen for example in the

degree formula which explicitly computes the spin character values at 1 ([S3],

[Mo1], [St1, St2]). Before giving this, we need one further central notion due to

Morris: the bar lengths in �. These are the hook lengths of the �-nodes in the

shift-symmetric diagram SS(�) associated with �. Instead of giving a formal

de�nition, we illustrate this again with our example � = (5; 3; 2) 2 D(10). We

have to adjoin the parts of � as columns to the shifted diagram and then get

the following shift-symmetric diagram SS(�), where we have already written

the bar lengths into the �-nodes of SS(�):

2 8 7 5 4 1

2 2 5 3 2

2 2 2 2 1

2 2 2

2

Theorem 1.5 Let � = (`

1

; : : : ; `

m

) 2 D(n). Then

h�i(1) = 2

[(n�m)=2]

n!

Q

(`

i

!)

Y

i<j

`

i

� `

j

`

i

+ `

j

Denoting by H

�

the product of the bar lengths in � and by g

�

the number of

standard shifted �-tableaux, we also have:

h�i(1) = 2

[(n�m)=2]

n!

H

�

= 2

[(n�m)=2]

g

�
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Schur explicitly constructed the basic spin representation which is the one

labelled by � = (n) and calculated the values of the basic spin character hni.

The problem of actually computing all the spin character values by a recursive

formula analogous to the Murnaghan-Nakayama formula for the characters of

the symmetric groups was solved by Morris [Mo1, Mo2]. First we have to

explain the process of `-bar removal. Given a partition � 2 D(n), we may

subtract ` from a part of � (if the resulting partition is in D(n� `)), or remove

a part ` from � (if there is such a part), or we may remove two parts m and

`�m from � (if possible). Any of these operations is called removal of an `-bar;

an `-bar corresponds to an `-hook in SS(�) belonging to one of the �-nodes.

The leg length L(b) of the `-bar b is then de�ned to be the leg length of the

corresponding `-hook in SS(�). The partition resulting in removing b from �

is denoted by � n b.

Theorem 1.6 (Morris' recursion formula) Let � 2 D(n), and let � 2 O(n)

be a partition with ` as a part. Then

h�i(�

�

) =

X

b `-bar

(�1)

L(b)

2

m(b)

h� n bi(�

�n`

)

where

m(b) =

(

1 if "(� n b)� "(�) = 1

0 otherwise

:

As a consequence, one easily deduces the Branching Theorem which de-

scribes h�i restricted to

e

S

n�1

, where

e

S

n�1

= <t

1

; : : : ; t

n�2

> �

e

S

n

, and dually

induction of h�i to

e

S

n+1

. Up to the modi�cation coming from associate spin

characters this is again very similar to the ordinary Branching Theorem for

S

n

. For later purposes we state only the induction version; �rst we need to set

up some further notation.

For � 2 D(n) we put

^

h�i =

(

h�i if � 2 D

+

(n)

h�i + h�i

0

if � 2 D

�

(n)

and set

N(�) = f� 2 D(n + 1) j � is obtained from � by removing a 1-barg ;

N(�)

0

= f� 2 N(�) j `(�) = `(�)g :

Theorem 1.7 (Branching Theorem [Mo2]) If � 2 D

+

(n), then

h�i"

e

S

n+1

=

X

�2N(�)

^

h�i :
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If � = (`

1

; : : : ; `

m

) 2 D

�

(n), then

h�i"

e

S

n+1

= h�i

0

"

e

S

n+1

=

P

�2N(�)

h�i if `

m

= 1 ;

h�i"

e

S

n+1

=

P

�2N(�)

0
h�i + h`

1

; : : : ; `

m

; 1i if `

m

> 1 ;

(and similarly for the associate character).

2 Generalities from modular representation

theory

Let p be a prime dividing the order of the �nite group G, and let (R;K;F )

be a p-modular splitting system, i.e. R is a complete discrete valuation ring

with quotient �eld K of characteristic 0 and residue �eld F of characteristic

p, and F and K are splitting �elds for G (for more details on this and any

unexplained notation we refer to [CR] or [NT]). Typically, K is an extension

of the p-adic �eld Ql

p

, containing a primitive jGj-th root of unity, R is the

standard valuation ring of K, and F is the residue �eld of R.

Given a KG-module V (�nite-dimensional over K) there is an RG-lattice

U with V = U 


R

K, called an R-form of V . Then U and

�

U = U 


R

F are not

uniquely determined up to isomorphism, but the following important result

due to Brauer and Nesbitt holds (see [CR], [NT]):

Theorem 2.1 The FG-composition factors of

�

U = U 


R

F only depend on

V and not on the choice of U .

This allows to de�ne the decomposition matrix of G as follows. Let

V

1

; : : : ; V

t

be the (pairwise nonisomorphic) irreducible KG-modules, �

i

the

character belonging to V

i

, let U

1

; : : : ; U

t

be R-forms of V

1

; : : : ; V

t

resprectively,

and let S

1

; : : : ; S

r

be the (pairwise nonisomorphic) simple FG-modules. Then

we de�ne the p-decomposition matrix D = (d

ij

)

i;j

by

d

ij

= multiplicity of S

j

as a composition factor of

�

U

i

If P

1

; : : : ; P

r

are the projective indecomposable RG-lattices, ordered such that

�

P

j

= P

j




R

F is a projective cover of S

j

, j = 1; : : : ; r, and �

P

j

are their

characters, then we also have:

d

ij

= <�

i

; �

P

j

> ; for i = 1; : : : ; t; j = 1; : : : ; r ;

where we take the usual inner product < :; : > on characters.

Since we have chosen our �elds to be su�ciently large, we know the size

of D:

t is the number of conjugacy classes of G, and r is the number of p-regular

conjugacy classes of G (which are the ones corresponding to elements whose

order is not divisible by p).
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Brauer associated certain complex-valued class functions (now called Brauer

characters) also with FG-modules, but these take values only on the p-regular

classes. The Brauer character uniquely determines the composition factors of

the p-modular representation to which it is associated. Denoting by '

j

the

irreducible Brauer character belonging to S

j

, we have

�

i

=

X

j

d

ij

'

j

on p-regular classes

So the p-decomposition matrix is an important link between ordinary (i.e. char-

acteristic 0) and p-modular representation theory of G, and any information

on its entries is valuable for both areas.

Let us �rst consider the decomposition of the decomposition matrix into

indecomposable diagonal matrix blocks! That is, sort the modules V

i

and S

j

in such a way that

D =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

*

*

0

.

.

.

0

.

.

.

�

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and no further decomposition of this type is possible.

Then these matrix blocks correspond to the p-blocks of the group algebra

which may be de�ned resp. viewed in various ways. In algebra terms, we have

RG = B

1

� : : :�B

s

with indecomposable 2-sided ideals B

1

; : : : ; B

s

, these are the p-blocks of RG.

They are of the form B

i

= e

i

RG, e

i

a primitive central idempotent, the block

idempotent belonging to B

i

. Reduction modulo the maximal ideal of R sends

p-blocks of RG to p-blocks of FG, thus giving a corresponding decomposition

for FG.

Let A 2 fR;Fg. For any indecomposable AG-module V there is an i 2

f1; : : : sg such that V e

i

= V and V e

j

= 0 for all j 6= i. We then say that V (and

its character) belongs to the block B

i

and write V 2 B

i

. Thus in particular

the simple and the projective indecomposable modules are sorted into blocks.

Also, sometimes a block is viewed as a set of irreducible characters; indeed,

there is a direct criterion to test whether two irreducible characters belong to

the same p-block which can be read o� the character table [CR, NT]. We write

� 2 B if � belongs to the block B, and denote by Irr(B) the set of irreducible

characters belonging to B.
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The p-blocks play a fundamental rôle in modular representation theory,

and it is of central importance to compute their invariants. First, there are

the obvious arithmetical invariants for a p-block B of G:

k(B) = jIrr(B)j

l(B) = jf1 � j � r j S

j

2 Bgj

As mentioned before, the p-block decomposition of the group algebra AG cor-

responds to the matrix decomposition of the p-decomposition matrix D of

G, so the invariants k(B) and l(B) determine the size of the matrix block

corresponding to B in D.

A structural invariant is the defect group �(B) of B which is a p-subgroup

of G (unique up to G-conjugacy). It can be computed from the block idempo-

tent e

B

, or from considering the indecomposable AG-modules in B (see [CR]).

The defect d(B) of B is then de�ned by j�(B)j = p

d(B)

. Blocks of defect 0 are

just (isomorphic to) full matrix rings; their decomposition matrix is D = (1).

For any n 2 IN, let �

p

(n) = r if p

r

is the exact p-power dividing n. Let

a = �

p

(jGj), then it is well-known that for any � 2 Irr(B) the power p

a�d(B)

divides the degree �(1). The height h(�) of � is then de�ned by

a� d(B) + h(�) = �

p

(�(1)) :

Since �(1) divides jGj, the height h(�) is at most d(B). The invariant k(B) is

now re�ned to

k

i

(B) = jf� 2 Irr(B) j h(�) = igj ; for 0 � i � d(B) :

The central conjectures in modular representation theory are about these in-

variants. Here we recall some long standing conjectures dealing with ordinary

characters:

Conjecture 2.2 (Brauer's Height 0 Conjecture) The defect group �(B) of a

p-block B is abelian if and only if k(B) = k

0

(B).

Conjecture 2.3 (Brauer) Any p-block B satis�es k(B) � j�(B)j.

Conjecture 2.4 (Olsson) Let B be a p-block with defect group �. Then

k

0

(B) � j� : �

0

j.

Finally we would like to mention the following conjecture on heights of

characters which was recently put forward by Robinson [R]:

Conjecture 2.5 (Robinson) Let B be a p-block with non-abelian defect group

�. Then for any � 2 Irr(B) one has h(�) < j� : Z(�)j.

By now, quite a bit of evidence has been collected for these conjectures; in

particular, they are known to be true for the symmetric groups S

n

. In coming

back to

e

S

n

, we will keep in mind to check the conjectures also for this family

of groups.
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3 Modular representation theory of

f

S

n

at odd

characteristic p

The guide for work on the spin representations of the double covers

e

S

n

of S

n

is

always the theory of the symmetric groups S

n

itself. In characteristic 0 we have

seen that the rôle of the partitions as labels of the irreducible characters of S

n

is played in the

e

S

n

-case by the partitions into distinct parts (sometimes called

bar partitions) as labels of self-associate resp. pairs of associate irreducible spin

characters.

The p-modular irreducible S

n

-representations are labelled by the p-regular

partitions, i.e. the partitions where all parts have mulitiplicity < p. The main

point about these combinatorial labels is that representation theoretical in-

variants like the p-blocks B and their invariants k(B), l(B), k

i

(B) and d(B)

can be computed via combinatorial algorithms on partitions, and one obtains

some general information on the decomposition matrix by combinatorial con-

siderations. In fact, there is more behind this, namely the Specht modules for

S

n

which have a characteristic-free de�nition. We refer the reader to [JK], [J],

[O4] for details on this. Note that there is as yet no general analogue for the

p-modular labels on the

e

S

n

-side, and there are no analogues for the Specht

modules so far.

First, we recall the p-block distribution of irreducible spin characters of

e

S

n

;

we assume for the rest of this section that p 6= 2. The situation for p = 2 is

completely di�erent and will be discussed in the next section.

In the ordinary S

n

case one has to remove p-hooks from a labelling partition

until the p-core is reached; the p-blocks are then determined by the p-core and

the weight (this is the content of the Nakayama Conjecture which was proved

by Brauer and G. de B. Robinson in 1947). In the spin case, hooks are replaced

by bars as we have already seen in the degree formula before: given � 2 D(n),

remove p-bars as long as possible; we then obtain a (uniquely determined) bar

partition �

(�p)

, called the �p-core. There is also a description by a suitable �p-

abacus. This abacus has runners labelled 0; : : : p�1, and we place the numbers

0; 1; 2; : : : on the runners as follows:

0 1 2 : : : p � 1

0 1 2 : : : p � 1

p p+ 1 p+ 2 : : : 2p � 1

2p 2p + 1 2p + 2 : : : 3p � 1

3p

.

.

.

.

.

. : : :

.

.

.

.

.

.

.

.

.

.

.

. : : :

.

.

.

The runners labelled i and p�i are called conjugate runners, for i = 1; : : : ;

p�1

2

.
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For a given bar partition � we place its parts as beads on this abacus. For

example, let p = 5 and take � = (14; 9; 7; 6; 5; 3) This has the bead con�gura-

tion:

0 1 2 3 4

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15

.

.

.

.

.

. : : :

.

.

.

.

.

.

.

.

.

.

.

. : : :

.

.

.

The removal of p-bars now corresponds to the following operations on a con-

�guration as above on the abacus.

(i) Sliding a bead one position up the runner (if the new position is not yet

occupied); beads in position 0 are dumped.

(ii) Removing the beads on two conjugate runners in the top row.

Operating according to these rules as long as possible we �nally obtain the

con�guration of the �p-core �

(�p)

of �; the process is recorded by the �p-quotient

�

(�p)

= � = (�

0

; �

1

; : : : ; �

t

), t =

p�1

2

, where �

0

is a bar partition describing the

0-runner of � while �

i

is a partition describing simultaneously the i-th and

(p � i)-th runner of � (for details, see [O4]). The weight of this �p-quotient is

w = j�

0

j + j�

1

j + : : : + j�

t

j and its sign is (�1)

w�`(�

0

)

. In the example above

one easily checks that �

(

�

5)

= (4).

We now have the following result on the p-block distribution of the char-

acters of

e

S

n

:

Theorem 3.1 (Morris' Conjecture [Mo2]; Humphreys [H], Cabanes [C])

(i) Let �, � 2 D(n). Then the spin characters h�i and h�i are in the same

p-block of

e

S

n

if and only if �

(�p)

= �

(�p)

.

(ii) Let � 2 D

�

(n). If � 6= �

(�p)

, then h�i and h�i

0

belong to the same p-block

of

e

S

n

. If � = �

(�p)

, then h�i and h�i

0

each form a p-block of defect 0 on

their own.

Based on this, Olsson has determined the block invariants in [O2, O3] (see

also [O4]). We now collect some of the results on the p-blocks of

e

S

n

:

Theorem 3.2 Let B be a p-block of

e

S

n

, p 6= 2.

(i) Irr(B) consists only of spin characters or only of ordinary characters.
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Assume now that B is a spin p-block of

e

S

n

, i.e. all characters in B are spin

characters. Let � be the �p-core of the spin characters in B. Then we have:

(ii) d(B) = �

p

((pw)!), where w =

n�j�j

p

is the weight of B.

(iii) Set " = (�1)

"(�)

. Then

k(B) = q

"

(�p;w) + 2q

�"

(�p;w)

where q

"

(�p;w) is the number of �p-quotients of weight w and sign ".

(iv) Let l

s

(B) resp. l

ns

(B) denote the number of self-associate resp. pairs of

associate modular irreducible spin representations in B. Then

l(B) = l

s

(B) + 2 l

ns

(B)

and

l

s

(B) =

(

k(t; w) if w � "(�) (mod 2)

0 otherwise

l

ns

(B) =

(

0 if w � "(�) (mod 2)

k(t; w) otherwise

where k(t; w) is the number of t-tuples of partitions with total sum w.

Also, an explicit formula for the height h(h�i) in terms of the so-called �p-

core tower of � is known, and the re�ned invariants k

i

(B) have been computed

by Olsson in analogy to the formula for k(B) (see [O2]). As consequences of

these results, the Brauer Conjectures and Olsson's Conjecture stated above

hold for the p-blocks of

e

S

n

, p 6= 2.

What do we know about the p-decomposition matrixD of

e

S

n

at this point?

We set D

p

(n) = f� = (`

1

; : : : ; `

m

) 2 D(n) j `

i

6� 0 (mod p); i = 1; : : : ;mg,

and then for a sign " we let D

"

p

(n) = D

p

(n) \ D

"

(n). Then the decomposition

matrix is of size t� r with t = jD

+

(n)j+ 2jD

�

(n)j, r = jD

+

p

(n)j+ 2jD

�

p

(n)j.

We can also calculate combinatorially the block decomposition of D by

Theorem 3.1, and we have good formulae for the size of the block matrices by

Theorem 3.2.

By a result of Wales [W] the rows of D corresponding to hni and hn � 1i

(and their associates) are known. For `small' n the decomposition matrices

of

e

S

n

have been computed by Morris and Yaseen; more precisely, the decom-

position matrices for n � 11 for p = 3 are given in [MY2] and for n � 13,

p = 5; 7 and n � 14 for p = 11 in [Y]. Yaseen has also obtained tables for

n = 12; 13 for p = 3 but with a few ambiguities unresolved. More recently,

the Brauer character tables for

e

S

n

for n � 13 have also been calculated using

computers. In the work of Morris and Yaseen, the question of �nding the
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`right' labels was not dealt with, the labels were chosen arbitrarily to a certain

extent.

In the case of S

n

, there is so far no algorithm available that automatically

computes the p-decomposition matrix, but there is at least the following gen-

eral shape result (see [JK]) due to Farahat, M�uller and Peel [FMP] and James

[J].

Order the partitions labelling the rows of the p-decomposition matrix

of S

n

in the following way: �rst the p-regular partitions in decreasing lex-

icographic ordering, then the other partitions. The p-regular partitions la-

belling the columns are also ordered lexicographically decreasing. Then the

p-decomposition matrix D of S

n

has the shape:

p-regular

partitions

p-singular

partitions

p-regular partitions

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

1 0

.

.

.

�

.

.

.

1

�

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Furthermore, the �nal non-zero entry in the row labelled by a partition � is a

1 in the column labelled by the p-regular partition �

R

, where �

R

is obtained

by a combinatorial `regularization' from �. The only non-zero entries in this

row are in columns labelled by p-regular partitions � � �

R

, where � denotes

the usual dominance order on partitions.

From the data obtained by Morris and Yaseen in the spin case it seemed

likely that a similar result might also hold for the p-decomposition matrix of

e

S

n

,

p 6= 2, except that one has to take the complication arising from the associate

pairs into account and perhaps with suitable 2-powers instead of the 1's above.

The early proof of the result in the S

n

case was by combinatorial arguments on

the p-residue diagram together with suitable inductions fromYoung subgroups;

later this was proved using the fundamental Specht modules. As mentioned

before, there is no

e

S

n

analogue in sight for the Specht modules, so the approach

followed in the work described below is similar in spirit to the early proof in

the ordinary case.

First we have to introduce some further combinatorial concepts (see [MY1,

MY2]); remember that we still assume p 6= 2.

The �p-residue diagram of a partition � 2 D(n) is the �-part of the shifted

�p-residue diagram
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1 2 : : :

p�1

2

p+1

2

p�1

2

: : : 2 1 1 2 : : :

1 2 : : :

p�1

2

p+1

2

p�1

2

: : : 2 1 : : :

1 2 : : : : : :

.

.

.

The �p-content of � is given by (1

c

1

2

c

2

: : :

p+1

2

c

(p+1)=2

), where c

i

is the multi-

plicity of i in the �p-residue diagram of �.

For example, take � = (6; 5; 3; 1) and p = 5, then the

�

5-residue diagram

of � is

1 2 3 2 1 1

1 2 3 2 1

1 2 3

1

and the

�

5-content of � is (1

7

2

5

3

3

).

Theorem 3.3 (Morris and Yaseen [MY1]) Let � 2 D(n). Then the �p-content

of � determines the �p-core �

(�p)

.

For the proof one uses the analogous result on the p-content of the parti-

tion corresponding to the shift-symmetric diagram SS(�).

Consequently one can control the distribution of summands of h�i "

e

S

n+1

into p-blocks by only adding nodes of a speci�ed �p-residue to the shifted dia-

gram of � at a time. This is the principle of (r; �r)-induction as it was called

by Morris and Yaseen [MY2]. For a given �p-residue r 2 f1; : : :

p+1

2

g we will

denote by h�i "

r

the sum of the constituents of h�i"

e

S

n+1

which are labelled by

a � 2 D(n + 1) reached from � by adjoining an r-node. By the above, this is

one block component of h�i "

e

S

n+1

.

Let us consider again an example for p = 5. Take � = (5; 3; 2) and calculate

the block components of the induced character h�i"

e

S

11

. We have indicated in

bold the nodes to be added.

1 2 3 2 1 1

1 2 3 2

1 2

1

h5; 3; 2i "

1

=

^

h6; 3; 2i + h5; 3; 2; 1i

h5; 3; 2i "

2

=

^

h5; 4; 2i

h5; 3; 2i "

3

= 0

Now it is our aim to �nd column labels for the decomposition matrix that

are of `high' type, i.e. such that with respect to a suitable ordering of the labels
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the decomposition matrix has the shape

high type

partitions

other

partitions

high type partitions

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

.

.

.

0

*

.

.

.

*

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Here we have indicated that we may have 2 � 1, 1 � 2 or 2 � 2 matrix blocks

instead of just an entry along the `diagonal' in the upper part of the matrix in

the case of associated rows resp. columns occurring.

For achieving this, we de�ne a set of partitions of n by the following algo-

rithm which we call the top node algorithm. We keep a prime p 6= 2 �xed.

We set C

p

(1) = f(1)g.

Assume that C

p

(n � 1) has already been constructed. Then the partition �

belongs to C

p

(n) if it can be constructed from some � 2 C

p

(n� 1) by adding a

node to the �p-residue diagram of � which is the highest among the nodes with

the same �p-residue that could be adjoined to �.

Let us illustrate this by an example for p = 3. From (1) we can only

construct (2), by adding a 2-node. Now consider the

�

3-residue diagram of (2)

and the nodes that could be adjoined (these are marked bold below):

1 2 1

1

We are only allowed to add the highest 1-node to the diagram of (2), hence

C

3

(3) = f(3)g. Similarly, C

3

(4) = f(4)g. Now we are looking at

1 2 1 1 2

1

and we have the option of adding either the 1-node or the 2-node indicated

above, so C

3

(5) = f(5); (4; 1)g.

We now face the following problems:

(I) What is the `internal' description of C

p

(n)?

(II) What is jC

p

(n)j?
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In (II), we would like to have jC

p

(n)j = jD

p

(n)j, since then C

p

(n) could serve

as a set of column labels for the decomposition matrix of

e

S

n

.

For p = 3, both of these problems turned out to �nd satisfying answers:

Theorem 3.4 Let n 2 IN. Then

C

3

(n) = f� = (`

1

; : : : ; `

m

) 2 D(n) j `

i

� `

i+1

� 3 ; i = 1; : : : ;m� 1;

`

i

� `

i+1

> 3 if `

i

� 0(mod 3) ; i = 1; : : : ;m� 1g

and jC

3

(n)j = jD

3

(n)j:

Proof. The internal description follows easily with the combinatorial

description of the set on the right hand side given via `ladders' in the

�

3-residue

diagram, see below.

The enumerative identity is a special case of a partition identity due to

Schur [S4].

We call the partitions in C

3

(n) Schur regular partitions of n. For any such

partition of n, say �, there are usually quite di�erent construction paths in

the top node algorithm; we need one for which we have good control over the

constituents in the corresponding induction of h1i to

e

S

n

. We will then use this

to obtain an approximation to the column of the decomposition matrix which

we want to label by �. This will be achieved in this induction process since an

induced projective character is again projective (where here projective is again

used in the sense of ordinary representation theory, i.e. meaning a character

belonging to a projective lattice). Since by Theorem 3.1 above

�

3-cores label

irreducible projective characters, we will often use such Schur regular partitions

as a starting point for the induction. For describing an induction path good

for our purposes, we need the concept of ladders in the

�

3-residue diagram.

Let (i; j) denote the j-th node in the i-th row of the �p-residue diagram.

For i 2 IN, the i-th ladder L

i;r

in the

�

3-residue diagram joins the following

r-nodes (from bottom to top):

L

i;1

: (i; 1)! (i� 1; 4) ! (i� 1; 3)! (i� 2; 7) ! (i� 2; 6)! (i� 3; 10)! � � �

� � � ! (1; 3i� 2)! (1; 3i� 3)

L

i;2

: (i; 2)! (i� 1; 5) ! (i� 2; 8)! � � � ! (2; 3(i � 2) + 2)! (1; 3(i� 1) + 2) :

The top parts of these ladders are their highest nodes in the

�

3-residue diagram.

If � is a bar partition, the ladders in � are the non-empty intersections

L

i;j

(�) of the above ladders L

i;j

with (the

�

3-residue diagram of) �. It is not

hard to see that the Schur regular partitions are exactly those bar partitions

for which their nodes on each ladder form a top interval on that ladder (see

[BMO]). So the idea is be to construct a Schur regular partition along its

ladders, i.e. adding the nodes along the ladders L

1;1

, L

1;2

, L

2;1

, L

2;2

, L

3;1

, : : : ,

and each time from top down.
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The next proposition is a useful ingredient for having better control over

the coe�cients in the induction process; it is used to obtain the 2-powers

appearing in the theorem below. Note that if we only add a sequence of

nodes of the same

�

3-residue, then the assumption on the components below is

satis�ed.

Proposition 3.5 Let

�

� 2 D(n� k) and � 2 D(n) such that the skew diagram

S(�) n S(

�

�) has connected components of type , , and , only. Then

< h

^

�

�i"

e

S

n

; h�i >= 2

a(�;

�

�)

k !

where a(�;

�

�) = (i(�;

�

�)� "(�) + "(

�

�))=2 and i(�;

�

�) is the number of isolated

nodes in S(�) n S(

�

�) that are not on the diagonal.

For the proof, count �llings of the boxes in S(�) n S(

�

�) by 1; : : : ; k, keep

track of parity changes from odd to even for the partitions arising and apply

the Branching Theorem (see [BMO]).

Inducing along ladders and using this proposition now allows to obtain

`good' projective characters. Before we can formulate this, we have to intro-

duce the notion of Schur regularization of a bar partition � 2 D(n) in the

�

3-residue diagram. For this, take the

�

3-residue diagram of � and consider its

nodes as beads on the ladders de�ned above. To obtain the Schur regulariza-

tion �

S

2 C

3

(n), push the beads to the top of their ladders, i.e. if � has j nodes

on a particular ladder L, then �

S

has the top j nodes on this ladder. This is

a well-de�ned process that indeed produces a Schur regular partition.

For example, for � = (4; 3; 2) the Schur regularization gives

1 2 1 1 1 2 1 1 2 1 1 2

1 2 1 ! 1

1 2

Hence �

S

= (8; 1).

A detailed analysis of the induction process and its combinatorics, in par-

ticular the compatibility of dominance and regularization, then leads to:

Theorem 3.6 ([BMO]) For any Schur regular partition � 2 C

3

(n), there is a

projective character �

�

satisfying

�

�

=

X

� 2 D(n)

�

S

/ �

t

�

^

h�i +

X

� 2 D(n)

�

S

= �

2

a(�)

^

h�i

with t

�

= 0 if �

(

�

3)

6= �

(

�

3)

, and a(�) =

l

1

2

(m

0

(�) + "(�

c

)� "(�) + o(�))

m

,

where m

0

(�) = jfi j �

i

� 0(mod 3)gj, �

c

denotes the bar partition correspond-

ing to the union of the complete ladders in �, and o(�) = jf2-ladders in � n

�

0

with an odd number of nodesgj, where �

0

corresponds to the union of the

complete ladders together with the next two ladders in �.
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From this we deduce the desired result on the shape of the decomposition

matrix at characteristic 3:

Theorem 3.7 Let B be a 3-spin block of

e

S

n

. Order the spin characters in B

by �rst taking the ones with Schur regular label in lexicographic order, and then

the others; take as column labels for the decomposition matrix D

B

the Schur

regular partitions in lexicographic order (doubling the columns if all irreducible

modular spin representations in B are non-selfassociate). Then we have

D

B

=

Schur regular

partitions

other

partitions

Schur regular partitions

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

.

.

.

0

*

.

.

.

*

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Moreover, the last non-zero entry in the row labelled by � 2 D(n) is in

the (double-)column labelled by �

S

, and it is at most 2

a(�)

with a(�) as in

Theorem 3.6.

Furthermore, the �nal (double-)column in D

B

(labelled by the minimal

Schur regular partition � in B) is determined quite precisely (see [BMO]).

Now we turn to the case p = 5. It turns out that already the �rst combi-

natorial step is much more complicated than for p = 3.

Theorem 3.8 ([ABO]) Let n 2 IN. Then

C

5

(n) = f� = (`

1

; `

2

; : : : ; `

m

) 2 D(n) j `

i

� `

i+2

� 5 for all i � m� 1;

`

i

� `

i+2

> 5 if `

i

� 0 (mod 5) or if `

i

+ `

i+1

� 0 (mod 5) ;

and there are no subsequences of the following types:

(5j + 3; 5j + 2); (5j + 11; 5j + 9; 5j + 5); (5j + 10; 5j + 6; 5j + 4);

(5j + 11; 5j + 10; 5j + 5; 5j + 4); j � 0g

and

jC

5

(n)j = jD

5

(n)j :
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A set

e

C

5

(n) very similar to the set C

5

(n) was de�ned by Andrews in the

context of generalizing the Rogers-Ramanujan identities [A1, A2]; in fact, there

is an easy bijection between these two sets. Hence, the second statement in

the Theorem above is equivalent to showing j

e

C

5

(n)j = jD

5

(n)j. This equality

was conjectured by Andrews in 1974, and indeed, for the proof of the second

part of Theorem 3.8 suitable generating functions for partitions in

e

C

5

(n) are

considered in [ABO] and shown to satisfy the correct fourth order recurrence

relation.

The proof of the inclusion `�' for the internal description of C

5

(n) above

is by induction on n, while the other inclusion is proved by actually providing

a speci�c top node construction for the partitions under consideration. The

basic observation is that the partitions described in the Theorem have a similar

description as in the case p = 3, this time their nodes are `almost' at the top

of their ladders, the only possible exception being a `hole' in (j; 5k + 2) at the

penultimate position of a 2-ladder.

For example, take � = (16; 14; 6; 4) 2 C

5

(40) and look at its

�

5-residue

diagram (where the critical 2-holes are indicated as boxes):

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2

1 2 3 2 1 1 2 3 2 1 1 2 3 2

1 2 3 2 1 1 2

1 2 3 2

The ladders in the

�

5-residue diagram are de�ned similarly as in the 3-case,

i.e. by giving the nodes that they are joining, from bottom to top:

L

i;1

: (i; 1)! (i� 2; 6) ! (i� 2; 5)! (i� 4; 11)! (i� 4; 10)! � � �

L

i;2

: (i; 2)! (i� 1; 4) ! (i� 2; 7)! (i� 3; 9)! (i� 4; 12) ! � � �

L

i;3

: (i; 3)! (i� 2; 8) ! (i� 4; 13) ! (i� 6; 18) ! (i� 8; 23) ! � � �

So in the example above the ladders L

5;2

(�) and L

7;2

(�) have holes in the

penultimate position (indicated by a box), and all other ladders have their

nodes at the top.

Now again we construct � 2 C

5

(n) by going along the ladders from top

down except that we take detours caused by `accessible' holes in 2-ladders, i.e.

holes in position (j; 5k + 2) where �

j

= 5k + 1.

Let us consider a big example for illustrating the path chosen. We �rst

show the

�

5-residue diagram of the partition

� = (36; 31; 30; 26; 21; 20; 16; 11; 10; 6; 3; 1)

(with the holes indicated by boxes) and then give the path in tableau nota-

tion, starting with the 1-ladder before the �rst 2-ladder with an accessible hole.
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1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1 2 3 2 1

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1 1

1 2 3 2 1 1 2 3 2 1 1 2

1 2 3 2 1 1 2 3 2 1

1 2 3 2 1 1

1 2 3

1

: 8 19 20 24 29 32 34 35

: 1 2 9 16 25 31 36 2

: 10 21 22 26 30 33 37

: 3 4 11 17 27 38 39

: 12 23 40 2

: 5 6 13 18 28 41

: 14 42 43

: 7 44 2

: 15 45

: 46 47

: :

48

That is, in going down a 1-ladder one has to watch out for neighbours of

2-holes; if such a node would be added in the next step one goes to the top of

the next ladder. In going down a later 1-ladder, L

i;1

(�) say, one then may be

required to add the left-out neighbour of a 2-hole on L

i�1;1

(�) before adjoining

the �nal node of L

i;1

(�). Then one jumps back to L

i�1;1

(�) to add the tail end

of this, again using the same procedure.

For � 2 C

5

(n) let s(�) be the sequence of

�

5-residues of its nodes in the

order of the construction path described above. We say that � 2 C

5

(n) can be

constructed along s(�) if � has a construction path (not necessarily of the top

node type) with the same

�

5-residue sequence.

Now we have the following crucial combinatorial result:

Proposition 3.9 Let � 2 C

5

(n) and suppose � 2 C

5

(n) can be constructed

along s(�). Then �� �.

As a consequence we obtain the desired approximation to the decomposi-

tion matrix for

e

S

n

at characteristic 5:

Theorem 3.10 For any � 2 C

5

(n) there is a projective character �

�

of

e

S

n

of

the form

�

�

=

X

� 2 C

5

(n)

�� �

c

��

^

h�i +

X

� 62 C

5

(n)

c

��

^

h�i ;



22 C. Bessenrodt

with c

��

6= 0. In particular, with respect to decreasing lexicographical ordering

of the C

5

(n)-partitions we obtain an approximation to the decomposition matrix

of

e

S

n

at characteristic 5 of the form

C

5

(n)

D(n) n C

5

(n)

C

5

(n)

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

�

� 0

.

.

.

�

.

.

.

�

�

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(up to splitting of rows)

and hence the 5-decomposition matrix of

e

S

n

also has the form above (up to

splitting of rows and columns).

For p = 5 we have as yet no suitable regularization process, so this result

is weaker than Theorem 3.7 for p = 3 where we had determined the �nal non-

zero entry for each row.

In trying to extend our approach to p > 5, a bad surprise came up:

jC

7

(21)j = 52 < jD

7

(21)j = 53

so the top node algorithm no longer produces enough labels for p = 7. In fact,

jC

p

(3p)j < jD

p

(3p)j for p = 7, 11 and 13, and the di�erence between jC

p

(n)j

and jD

p

(n)j gets worse for larger n.

On the other hand, more important than the choice of the labelling parti-

tions � is the right choice of the induction path s(�), as we have seen above. It

turns out that indeed for p = 7, n = 21, it is possible to choose two `indepen-

dent' induction paths for the partition (9; 7; 5) 2 C

7

(21) and thus still obtain a

full approximation matrix { which is of the desired shape. The problem now is:

how to get control over the induction paths? One should keep in mind though

that this approach was led by the hope that one can �nd enough projective

characters just via inducing { and it is still an open question whether this

holds.

4 Spin representations at characteristic 2

The situation for p = 2 is completely di�erent from the odd characteristic case.

Whereas the conjecture on the p-block distribution of the spin characters had
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been formulated by Morris for odd p already in 1965, such a conjecture on

the 2-block distribution was only suggested in 1987 by Kn�orr and Olsson [O1],

based on work by Benson. In [B1], Benson had calculated the 2-decomposition

matrices up to n = 15 (with slight ambiguities for n � 14). He had also

obtained information on special rows of the 2-decomposition matrix for

e

S

n

.

In contrast to odd characteristic, the 2-blocks of

e

S

n

are mixed, i.e. contain

ordinary as well as spin characters. The simple

e

S

n

-modules in characteristic

2 all have <z> in their kernel, so they may be identi�ed with the simple S

n

-

modules D

�

which are labelled by partitions � 2 D(n). So we do not have to

worry about the labelling of the columns of the decomposition matrix. This

knowledge of the simple modules was exploited in the 2-block determination

achieved in [BO1].

First we have to introduce some more notation. For a partition � =

(`

1

; : : : ; `

m

) 2 D(n) we set

dbl (�) =

 "

`

1

+ 1

2

#

;

"

`

1

2

#

;

"

`

2

+ 1

2

#

;

"

`

2

2

#

; : : : ;

"

`

m

+ 1

2

#

;

"

`

m

2

#!

2 P(n) ;

the doubling of �. Furthermore, for � 2 P(n) we denote by [�] the corre-

sponding ordinary character of S

n

.

Using this terminology, Kn�orr and Olsson conjectured the following 2-block

distribution [O1] which was recently proved in [BO1]:

Theorem 4.1 ([BO1]) Let � 2 D(n). Then h�i and [dbl(�)] belong to the

same 2-block of

e

S

n

.

The strategy of the proof of this Theorem is quite surprising: we �rst

determined the number of spin characters in a �xed 2-block of

e

S

n

(and simi-

larly for the 2-blocks of

e

A

n

, the double covers of the alternating groups), and

the result on the 2-block distribution was then proved by an intricate induc-

tion on n and the weight of relevant blocks, using the outcome of the spin

character count (see [BO1]). The key to the counting of spin characters in

a 2-block was that as a consequence of Brauer's Second Main Theorem the

number of ordinary characters in a p-block is `locally determined' by the num-

ber of p-modular characters, and in our case 2-modular

e

S

n

-representations are

essentially 2-modular S

n

-representations. Further ingredients were a group

theoretic analysis of certain centralizer subgroups in S

n

, Cli�ord theory, the

usage of speci�c spin character values and some combinatorial identities.

Before we state the result of this spin character enumeration, we recall some

more de�nitions and results from the S

n

case. Given a partition � 2 P(n),

we obtain its 2-core �

(2)

by removing as many 2-hooks (i.e. dominoes) from

the Young diagram of � as possible; �

(2)

determines the 2-block of [�]. The

number of removed 2-hooks is then the weight of the 2-block of S

n

to which
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the character [�] belongs. Any 2-block B of a symmetric group is uniquely

determined by its 2-core and its weight w. It is well-known that k(B) = k(2; w)

where k(2; w) is the number of 2-quotients of weight w, i.e. the number of pairs

of partitions (�

0

; �

1

) with j�

0

j+ j�

1

j = w. Note also that l(B) = p(w).

Theorem 4.2 Let B be a 2-block of S

n

of weight w, and let

e

B be the 2-block

of

e

S

n

containing B (as sets of characters). Then

k(

e

B)� k(B) = p(w) +

e

p

�

(w) :

Furthermore, let B

0

be the block of A

n

covered by B and let

e

B

0

be the block

of

e

A

n

covered by

e

B. Then

k(

e

B

0

)� k(B

0

) = p(w) +

e

p

+

(w) :

Here,

e

p

"

(w) counts the partitions � of w with (�1)

`(�)

= ".

With these results at hand, a combinatorial toolkit for dealing with spin

characters was developed that was similar to the one encountered before in

odd characteristic.

Let us �rst recall that for studying the representations at characteristic 2

the partitions labelling the ordinary characters of S

n

resp.

e

S

n

are handled

by the 2-residue diagram, i.e. by considering ladders and regularization along

these ladders in the 2-residue diagram:

0 1 0 1 0 1 0 1 0 : : :

1 0 1 0 1 0 1 0 : : :

0 1 0 1 0 1 0 : : :

1 0 1 0 1 0 1 : : :

.

.

.

Here the ladders connect the nodes (from bottom to top):

L

i;0

: (2i� 1; 1)! (2i� 2; 2)! (2i� 3; 3)! : : :! (1; 2i � 1)

L

i;1

: (2i; 1)! (2i � 1; 2) ! (2i � 2; 3) ! : : :! (1; 2i)

Again, the ladders in a partition � are just the intersections of the L

i;j

with

(the 2-residue diagram of) �. It is clear that the 2-regular partitions are exactly

those partitions � where all the nodes on the ladders of � form top parts of

these ladders. Given an arbitrary partition �, we \regularize" � by replacing

the nodes in each ladder L

i;j

(�) by the same number of nodes at the top of L

i;j

;

it is easy to check that this gives a 2-regular partition which we call �

R

(see

[JK, p. 282]).
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For example, take � = (4

2

; 3; 1

2

). Then the regularization of the 2-residue

diagram of � is as follows:

0 1 0 1 0 1 0 1 0

1 0 1 0 ! 1 0 1 0

0 1 0 0 1 0

1 1

0

so �

R

= (5; 4; 3; 1).

For the spin characters we consider instead of the 2-residue diagram the

�

4-residue diagram. For example, � = (13; 11; 8; 5; 2) 2 D(39) has

�

4-residue

diagram

0 1 1 0 0 1 1 0 0 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1

0 1 1 0 0 1 1 0

0 1 1 0 0

0 1

In the

�

4-residue diagram the ladders L

i;j

join the 0- resp. 1-nodes as follows

(from bottom to top):

L

i;0

: (i; 1)! (i� 1; 5)! (i� 1; 4)! (i� 2; 9) ! (i� 2; 8)! : : :

: : :! (1; 4(i� 1) + 1)! (1; 4(i� 1))

L

i;1

: (i; 3)! (i; 2)! (i� 1; 7) ! (i� 1; 6)! : : :

: : :! (1; 4(i� 1) + 3)! (1; 4(i� 1) + 2)

Note that with these de�nitions the

�

4-content of � equals the 2-content of

dbl(�), and this content determines the common 2-block of h�i and [dbl(�)].

Now induction along the ladders in the 2-residue diagram of a given bar

partition � 2 D(n) gives the well-known shape result for the part of the 2-

decomposition matrix corresponding to the ordinary characters of S

n

resp.

e

S

n

,

and at the same time, by careful consideration of the ladders in the

�

4-diagram

of the bar partitions labelling the spin characters, gives the following result for

rows corresponding to the spin characters:

Theorem 4.3 ([BO1]) Let � 2 D(n). Set dbl

2

(�) = dbl(�)

R

, and let m

0

(�)

denote the number of even parts of �. Furthermore, for � 2 D(n) let D

�

denote the corresponding 2-modular simple representation of S

n

.

Then the 2-modular composition factors of the spin representation labelled by

� are given by:

h�i � 2

[m

0

(�)=2]

D

dbl

2

(�)

+

X

�.dbl

2

(�)

c

�

D

�

:
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For special bar partitions � this result was proved by di�erent methods by

Benson [B2].

Based on the knowledge of the 2-block distribution of spin characters,

results about the heights of spin characters in 2-blocks have recently been

proved in [BO2]. Remember that by the degree formula the height of the spin

character h�i is intimately connected with the number g

�

of standard shifted

�-tableaux.

We have already had a glimpse of the signi�cance of the

�

4-combinatorics

for spin characters before; the

�

4-quotient of a bar partition � 2 D(n) describes

the bead positions of the �-parts on the runners of a suitable

�

4-abacus (see

[BO1]). We denote this

�

4-quotient of � by � = �

(

�

4)

, say � = (i

2m

i

+"

i

) with

"

i

2 f0; 1g; and we set �

o

= (i

m

i

) and �

e

= (i

"

i

). Let �

o

resp. �

e

denote

the partition consisting of all odd resp. even parts of �. Then �

e

= 2�

e

and

�

o

= �(�

o

) in the notation of [O4]. Furthermore, the spin character h�i belongs

to a 2-block of weight w = w(�) = 2j�

o

j+j�

e

j. Finally, we de�ne

�

h(�) = h(h�i)

to be the height of h�i in its 2-block of

e

S

n

.

With these notations we have:

Theorem 4.4 Let � 2 D(n), w = w(�), �

o

; �

e

as de�ned above. Then

�

h(�) = �

2

([�

o

] (1)) + �

2

(h�

e

i(1)) + �

2

 

w

j�

e

j

!

+ 2j�

o

j+

"

j�

e

j

2

#

+ (�

e

)

where

(�

e

) =

(

1 if j�

e

j odd and �

e

2 D

�

0 otherwise

:

Note that by this formula the height of h�i does not depend on the 2-core

of its 2-block but only on the

�

4-quotient of �.

With this formula and a detailed study of the minimal 2-powers dividing

spin character degrees we then obtained a sharp lower bound for the heights;

also an upper bound was given in [BO2].

Theorem 4.5 Let n 2 IN, � 2 D(n), w = w(�) and let s = s(w) be the

number of summands in the 2-adic decomposition of w. Then

�

2w � s

2

�

�

�

h(�) �

�

3w � 2s

2

�

:

In fact, an explicit description of the bar partitions � attaining the lower

resp. upper bound is given in [BO2].

As an application of our results on the 2-block distribution of spin charac-

ters and their heights, we have shown in [BO2] that the conjectures by Brauer,

Olsson and Robinson stated before all hold for the covering groups

e

S

n

also at

characteristic p = 2.
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