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Abstract

Generalizing results on spin character degrees, we determine for

a given conjugacy class of odd type in the double cover of S

n

spin

characters of S

n

which have the minimal 2-power on this class in their

character value. Surprisingly, the Glaisher map plays an important

rôle here.

Mathematics Subject Classi�cation (2000): 20C30, 05A15

1 Introduction

In this article we consider the values of spin characters of a double cover

b

S

n

of the symmetric group S

n

on 2-regular classes. In [2] we have determined

the maximal 2-power dividing all spin character values on a �xed conjugacy

class corresponding to a cycle type with odd parts only. For the class (1

n

),

i.e., the spin character degrees, Wagner [12] showed that the spin character

corresponding to the 2-adic decomposition of n has the minimal 2-power in

its degree. This was also obtained in [1], where we also determined explicitly

all the spin characters where this minimum is attained. In this note, we are

now generalizing and re�ning the results on the 2-powers in the spin charac-

ter degrees to all odd classes.
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Before we can state the main result precisely, we need to introduce some

notation. For the required information on the character theory of the sym-

metric groups and its double covers we refer the reader to [4], [6] and [8].

The associate classes of spin characters of

b

S

n

are labelled canonically by the

partitions � of n into distinct parts, i.e. � = (�

1

; �

2

; � � � ; �

m

), �

1

> �

2

>

� � � > �

m

> 0, �

1

+ � � �+ �

m

= n. We write j�j = n and `(�) = m, the car-

dinality and length of �. Also the sign of � is sgn(�) = (�1)

n�m

. According

to the signs the set D(n) of partitions of n into distinct parts is divided into

disjoint subsets D

+

(n) and D

�

(n). We set D =

S

n

D(n), and we de�ne D

+

and D

�

correspondingly.

Then the self-associate spin characters in S

n

are labelled by the partitions

in D

+

(n) and the associate pairs of non-self-associate spin characters are

labelled by the partitions in D

�

(n). We will abbreviate self-associate and

non-self-associate by s.a. and n.s.a. respectively.

The conjugacy classes of elements of odd order in S

n

are labelled canon-

ically via their cycle type by the elements in the set O(n) of partitions

of n into odd parts. We will use an `exponential' notation for partitions

� 2 O(n): � = (1

m

1

; 3

m

3

; � � � ). Thus j�j =

P

i odd

im

i

; `(�) =

P

i odd

m

i

. We

set O =

S

n

O(n).

It is well known that jD(n)j = jO(n)j; we denote this cardinality by d(n).

In fact, J.W.L. Glaisher [3] de�ned a bijection between partitions with parts

not divisible by a given number k on the one hand and partitions where

no part is repeated k times on the other hand; so in particular for k = 2

this gives a bijection between O(n) and D(n). In this situation, Glaisher's

map G is de�ned as follows. Suppose that � = (1

m

1

; 3

m

3

; � � � ) 2 O(n).

Write each multiplicity m

i

as a sum of distinct powers of 2, i.e., in its 2-

adic decomposition: m

i

=

P

j

2

a

ij

. Then G(�) 2 D(n) consists of the parts

(2

a

ij

i)

i;j

, of course in descending order.

For any integer m � 0, let s(m) be the number of summands in the 2-

adic decomposition of m. Then for � = (1

m

1

; 3

m

3

; � � � ) the length of G(�) is

`(G(�)) =

P

i odd

s(m

i

). We de�ne k

�

=

P

i odd

(m

i

� s(m

i

)) and set �(�) =

(�1)

k

�

. We denote by O

"

(n) the set of partitions � in O(n) with the sign of

�(�) being ". Then the Glaisher map G induces bijections O

�

(n) ! D

�

(n),

where � is a sign (see [2]).

The integer k

�

is also of group-theoretic signi�cance. For any integer m,

we denote by �(m) the exponent to which 2 divides m. Thus m

2

:= 2

�(m)
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is the exact 2-power dividing m. Let � 2 O(n) and let x

0

�

be an element of

cycle type � in S

n

. Then �(jC

S

n

(x

0

�

)j) =

Q

i odd

�(m

i

!) = k

�

. Hence k

�

is the

2-defect of C

�

, the conjugacy class of S

n

labelled by � 2 O(n).

The preimage �

�1

(C(�)) consists of two conjugacy classes in

b

S

n

, say C

(1)

�

and C

(2)

�

. We choose notation such that the elements of C

(1)

�

have odd order,

and we let x

�

be the preimage of x

0

�

in this class. Then C

(2)

�

= z C

(1)

�

, and the

elements in this second conjugacy class have even order. These conjugacy

classes have 2-defect k

�

+ 1.

Since we want to use the standard notation [�] for the ordinary character

of S

n

labelled by the partition � of n, we will write brc for the integer part

of the real number r to avoid confusion.

The result from [2] mentioned above says:

Theorem 1.1 Let � = (1

m

1

; 3

m

3

; � � � ) 2 O(n). Then 2

bk

�

=2c

is the maximal

power of 2 which divides all spin character values h�i(x

�

), � 2 D(n), i.e.,

�(h�i(x

�

)) � bk

�

=2c for all � 2 D(n).

The goal now is to prove

Theorem 1.2 Let � = (1

m

1

; 3

m

3

; � � � ) 2 O(n), and let � = G(�) be its

Glaisher image. Then �(h�i(x

�

)) = bk

�

=2c.

Furthermore, if � 2 D

�

(n), then h�i and h�i

0

are the only spin characters

where this equality holds.

2 Preliminaries

Here we collect the results that are needed later on.

From [1] we need the description of the set of spin characters of self-

associate and non-self-associate type where the minimal 2-power in the degree

is attained.

3



For n 2 N we set

�

M(1

n

) = f� 2 D(n) j �(h�i(1)) =

�

n� s(n)

2

�

g

�

M

+

(1

n

) = f� 2 D

+

(n) j �(h�i(1)) =

�

n� s(n) + 1

2

�

g

�

M

�

(1

n

) = f� 2 D

�

(n) j �(h�i(1)) =

�

n� s(n)

2

�

g =

�

M(1

n

) \ D

�

(n)

�

M

1

(1

n

) = f� 2 D(n) j �(h�i(1)) =

�

n� s(n)

2

�

+ 1g

We also set

�

M =

S

n

�

M(1

n

), and similarly we de�ne

�

M

1

.

Furthermore, if n =

P

s

i=1

2

k

i

, k

1

> k

2

: : : > k

s

, is the 2-adic decomposition

of n, then we denote by �(n) = (2

k

1

; 2

k

2

; : : : ; 2

k

s

) the corresponding partition

of n, and so, we have sgn(�(n)) = �(1

n

).

If � 2 D, we write � =

P

i�0

2

i

�

i

with �

i

2 D \ O for all i.

For any partition � let s(�) = s(j�j).

A careful analysis of the proof of part (b) of Theorem 2.6 in [1] shows

that the description given in Theorem 2.7 [1] can be improved a little:

Theorem 2.1 ([1]) Let n 2 N, s = s(n), and let " be a sign. Set

D

"

0

(n) = f� =

X

i�0

2

i

�

i

2 D

"

(n) j 9!i

0

: j�

i

0

j > 1; and this �

i

0

satis�es:

s(�

i

0

) � 2; �

i

0

2

�

M

1

; s = jf�

i

6= ;gj+ s(�

i

0

)� 1g

Then

�

M

"

(1

n

) =

(

f�(n)g if " = sgn(�(n))

D

"

0

(n) otherwise

�

M(1

n

) =

(

f�(n)g [ D

�

0

(n) if �(1

n

) = +1

f�(n)g if �(1

n

) = �1

From [9] we need the values of spin characters on a class of type (e

m

), e

odd. For a partition � we denote by H(�) the product of its hook lengths,

and if � 2 D we denote by

�

H(�) the product of its bar lengths.
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Theorem 2.2 ([9], Cor. (4.3)) Let � 2 D(me), e odd, with �

(�e)

= ;, �

(�e)

=

(�

0

; �

1

; : : : ; �

t

), t = (e� 1)=2. Then

h�i(x

(e

m

)

) = �2

j

m�`(�

0

)

2

k

m!

�

H(�

(�e)

)

where

�

H(�

(�e)

) =

�

H(�

0

)

Q

t

j=1

H(�

j

).

We can rewrite this in the following form:

Corollary 2.3 Set r =

j

m�`(�

0

)

2

k

�

j

j�

0

j�`(�

0

)

2

k

. Then

h�i(x

(e

m

)

) = �2

r

�

m

j�

0

j; : : : ; j�

t

j

�

h�

0

i(1)[�

1

](1) � � � [�

t

](1)

Remark. Since �(n) = n� s(n) we have

�(

�

m

j�

0

j; : : : ; j�

t

j

�

) =

t

X

j=0

s(�

j

)� s(m) :

For a reduction to the analogues of Young subgroups we have to collect

some results on reduced Cli�ord products (see [5], [7], [10], [11]).

Theorem 2.4 Let �

i

;  

i

be spin characters of

^

S

a

i

, i = 1; : : : ; k. Then the

reduced Cli�ord products � = �

c

�

i

and  = �

c

 

i

have the following proper-

ties.

(i) � is n.s.a. if and only if t

�

= jfi j �

i

n.s.a.gj is odd.

(ii) Let �

i

be a partition of a

i

, i = 1; : : : k, � = (�

1

; �

2

; : : : ).

Then �(x

�

) = 2

bt

�

=2c

Q

i

�

i

(x

�

i

).

(iii) � and  are associate if and only if �

i

and  

i

are associate for all i,

and they are equal if and only if they are associate and t

�

is even, or

t

�

is odd but jfi j �

i

6=  

i

gj is even.
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3 Proof of the Theorem

In generalizing our previous result for spin character degrees we �rst deal

with the case of a class of type � = (e

m

), e odd. Then the minimal 2-value

of the spin character values on this class is

�

k

�

2

�

=

j

m�s(m)

2

k

, and we now

characterize the spin characters where this minimum is attained:

Proposition 3.1 Let � 2 D(me), e odd. Set v

�

= h�i(x

(e

m

)

). Let �

(�e)

=

(�

0

; �

1

; : : : ; �

t

), t = (e� 1)=2.

Then �(v

�

) =

j

m�s(m)

2

k

if and only if �

(�e)

= ; and one of the following holds:

(i) �

(�e)

= (�

0

; ;; : : : ; ;) and �

0

2

�

M(1

m

).

(In particular, � = G(e

m

) is of this type.)

(ii) m � s(m) is even, �

0

2

�

M(1

j�

0

j

), s(�

0

) + 1 = s(m), there is a unique

l > 0 such that �

l

6= ;, and j�

l

j is a 2-power, [�

l

](1) is odd, and either

(a) `(�

0

) = s(�

0

), or (b) `(�

0

) 6= s(�

0

) and j�

0

j � s(�

0

) odd.

We have � 2 D

�

(me) in case (i) when �

0

6= �(m), and in case (ii).

Proof. We already know from [2] that the minimal 2-value on x

�

is [k

�

=2],

so in our case we deduce that �(v

�

) � b(m � s(m))=2c. If �

(�e)

6= ;, then

v

�

= 0, so these partitions never have minimal 2-value on (e

m

). Hence we

may assume from now on that �

(�e)

= ;.

Assume �rst that �

(�e)

= (�

0

; ;; : : : ; ;). Then by 2.3, �(v

�

) = b(m �

s(m))=2c if and only if �

0

2

�

M(1

m

). This is case (i) in the Proposition.

Hence we may assume from now on that j�

0

j < m. Set s

j

= s(�

j

); then

the assumption is equivalent to saying that

P

j>0

s

j

� 1.

Case: �

0

2

�

M(1

j�

0

j

).

If `(�

0

) = s

0

, then we have (by Corollary 2.3 and the remark following it)

�(v

�

) =

�

m� s

0

2

�

+

X

j�0

s

j

� s(m) + �(

Y

j>0

[�

j

](1))

=

$

m� s(m)

2

+

1

2

(

X

j�0

s

j

� s(m)) +

1

2

(

X

j>0

s

j

)

%

+ �(

Y

j>0

[�

j

](1))
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Since

P

j�0

s

j

� s(m) � 0 and

P

j>0

s

j

> 0, we have �(v

�

) = b(m� s(m))=2c

if and only if we are in the situation described in case (ii)(a) in the statement

of the Proposition.

Now we deal with the case where l

0

:= `(�

0

) 6= s

0

. In particular, then

�

0

2 D

�

(because of the description of the set

�

M).

In this case we have (again using Corollary 2.3)

�(v

�

) =

�

m� l

0

2

�

�

�

j�

0

j � l

0

2

�

+

X

j�0

s

j

� s(m) +

�

j�

0

j � s

0

2

�

+ �(

Y

j>0

[�

j

](1))

=

$

m� s(m)

2

�

j�

0

j � 1

2

+

1

2

(

X

j�0

s

j

� s(m)) +

1

2

(

X

j�0

s

j

)

%

+

�

j�

0

j � s

0

2

�

+�(

Y

j>0

[�

j

](1))

If j�

0

j � s

0

is even, this simpli�es to

�(v

�

) =

$

m� s(m)

2

+

1

2

+

1

2

(

X

j�0

s

j

� s(m)) +

1

2

(

X

j>0

s

j

)

%

+ �(

Y

j>0

[�

j

](1))

and this is always larger than b(m� s(m))=2c.

If j�

0

j � s

0

is odd, the expression above simpli�es to

�(v

�

) =

$

m� s(m)

2

+

1

2

(

X

j�0

s

j

� s(m)) +

1

2

(

X

j>0

s

j

)

%

+ �(

Y

j>0

[�

j

](1))

and this is equal to b(m � s(m))=2c exactly if we are in the situation de-

scribed in case (ii)(b) in the statement of the Proposition.

Case: �

0

62

�

M(1

j�

0

j

).

Then

�(v

�

) �

�

m� l

0

2

�

�

�

j�

0

j � l

0

2

�

+

X

j�0

s

j

� s(m) +

�

j�

0

j � s

0

2

�

+ 1

�

$

m� s(m)

2

+

1

2

(

X

j�0

s

j

� s(m)) +

1

2

(

X

j>0

s

j

)

%

+

1

2

>

�

m� s(m)

2

�

7



Therefore, here we do not have any further partitions of minimal 2-value on

x

�

.

If in case (i) �

0

6= �(m), then we are in the situation where m � s(m)

(mod 2), �(m) 2 D

+

and �

0

2 D

�

. But then clearly, � 2 D

�

(me).

It remains to check that � 2 D

�

(me) in case (ii).

In case (ii)(a), we have

me� `(�) � m� `(�

0

) = m� (s(m)� 1) � 1 (mod 2)

In case (ii)(b), we had already seen that �

0

2 D

�

, so

me� `(�) � m� `(�

0

) � m� s(�

0

) = m� (s(m)� 1) � 1 (mod 2)

Hence in both situations �

0

2 D

�

. �

Remark. For m = 1, e odd, we obtain: the spin characters hei, he � 1; 1i,

he � 2; 2i; : : : ; h

e+1

2

;

e�1

2

i (and their associates) have odd value on x

(e)

. In

fact, these values are �1, and all other spin character values on this class are

zero.

We denote the set of those partitions � for which the corresponding spin

character attains the minimal 2-value on x

(e

m

)

by

�

M(e

m

). Then we have

Corollary 3.2 Let e;m 2 N, e odd; let (e

m

) 2 O

"

(em). Then

�

M(e

m

) \ D

"

= fG(e

m

)g

and if " = �, then

�

M(e

m

) = fG(e

m

)g :

As in the case of the spin degrees, also the following set plays a special

rôle:

�

M

+

(e

m

) = f� 2 D

+

(me) j h�i(x

(e

m

)

) =

�

m� s(m) + 1

2

�

g

For reduction purposes we need the following result.
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Proposition 3.3 Let � = (1

m

1

; 3

m

3

; : : : ) 2 O(n). Set �

i

= (i

m

i

), a

i

= im

i

,

i = 1; 3; : : : , and let

~

S

a

be the preimage of the Young subgroup S

a

1

�S

a

3

� : : :

in

~

S

n

.

Then

�((�

c

h�

i

i)(x

�

)) �

�

k

�

2

�

for all � = (�

1

; �

3

; : : : ), �

i

2 D(a

i

), and equality is attained on the set

M

�

(�) described as follows. Let g(�) be the partition sequence de�ned by

g(�)

i

= G(�

i

) for all i.

If � 2 O

�

, then

M

�

(�) = fg(�)g :

If � 2 O

+

, then

M

�

(�) = fg(�)g [ f� j 9!l : �

l

2

�

M(l

m

l

); sgn(�

l

) 6= �(l

m

l

);

or �

l

2

�

M

+

(l

m

l

); �(l

m

l

) = �1;

and �

i

= G(�

i

) for all i 6= lg :

Proof. For a sign " = �, let J

"

�

= fi j �

i

2 O

"

g.

For a given �, set T

�

�

= fi j �

i

2 D

�

g, I

"

0

(�) = fi 2 J

"

�

j �

i

2

�

M(�

i

)g and

I

"

1

(�) = J

"

�

n I

"

0

(�).

Let t

�

= jT

�

�

j and set

c

�

= (�

c

h�

i

i)(x

�

) = 2

b

t

�

2

c

Y

i

h�

i

i(x

�

i
) :

For i 2 I

"

1

(�) let r

i

= �(h�

i

i(x

�

i
))�

�

m

i

�s

i

2

�

2 N . Then

�(c

�

) =

�

t

�

2

�

+

X

i2I

+

0

(�)

m

i

� s

i

2

+

X

i2I

+

1

(�)

�

m

i

� s

i

2

+ r

i

�

+

+

X

i2I

�

0

(�)

m

i

� s

i

� 1

2

+

X

i2I

�

1

(�)

�

m

i

� s

i

� 1

2

+ r

i

�

=

6

6

6

4

k

�

2

+

1

2

(t

�

� jI

�

0

(�)j) +

X

i2I

+

1

(�)

r

i

+

X

i2I

�

1

(�)

�

r

i

�

1

2

�

7

7

7

5

Since T

�

�

� I

�

0

(�), this shows that �(c

�

) �

�

k

�

2

�

, and that equality holds if

and only if I

+

1

(�) = ; and either T

�

�

= I

�

0

(�), I

�

1

(�) = ; or T

�

�

= I

�

0

(�),

9



I

�

1

(�) = flg for some l with r

l

= 1, or T

�

�

= I

�

0

(�) [ flg for some l 2 I

+

0

(�).

Together with our previous results, this gives the description of the setM

�

(�)

stated in the Proposition. �

Proof of Theorem 1.2.

Let � = (i

m

i

)

i=1;3;:::

2 O, �

i

= (i

m

i

), a

i

= im

i

,

~

S

a

as before.

Let � 2 D. Restricting to

~

S

a

gives

h�i

~

S

a

=

X

�=(�

1

;�

3

;::: )

g

�

�

(�

c

h�

i

i) +

X

�=(�

1

;�

3

;::: )n.s.a.

�g

�

�

(�

c

�

i

)

0

where � = (�

1

; �

3

; : : : ) runs over all sequences with �

i

a partition of a

i

, and

we call � n.s.a. if the corresponding reduced Cli�ord product is n.s.a.

Then

h�i(x

�

) =

X

�

g

�

�

2

[t

�

=2]

Y

i

h�

i

i(x

(i

m

i

)

) +

X

� n.s.a.

�g

�

�

2

[t

�

=2]

Y

i

h�

i

i(x

(i

m

i

)

)

As the 2-value of each summand is at least [k

�

=2] by Proposition 3.3, �we

can have equality only if there exists � 2 M

�

(�) such that g

�

�

is odd. Fur-

thermore, note that by [11] we have for n.s.a. �: g

�

�

= �g

�

�

whenever � 2 D

+

,

or � 2 D

�

but � 6=

S

�

i

. Hence taking the associate characters together, we

obtain for the n.s.a. � a contribution of non-minimal 2-value for such �.

Case: � 2 O

�

.

Let � = G(�). We want to show that h�i and its associate are the only

spin characters which have the minimal 2-value [k

�

=2] on x

�

. Since � 2 O

�

,

by Proposition 3.3 the set M

�

(�) only contains the n.s.a. partition sequence

� = g(�). By the above considerations, the only possible h�i with minimal

2-value on x

�

then is given by � =

S

i

�

i

= G(�), as was to be proved.

Case: � 2 O

+

.

Let � = G(�). We want to show that h�i has the minimal 2-value [k

�

=2] on

x

�

. By Proposition 3.3, for � 2 O

+

the set M

�

(�) contains two types of

partition sequences. On the one hand, we have the s.a. partition sequence

� = g(�). On the other hand, we have certain n.s.a. � 2 M

�

(�), but as

remarked above, together with the associate character this gives a summand

of non-minimal 2-value for h�i(x

�

). Thus it only remains to show that the

10



spin Littlewood-Richardson coe�cient g

G(�)

g(�)

, i.e., the multiplicity of hG(�)i

in the induction to

^

S

n

of the reduced Cli�ord product corresponding to g(�),

is odd. Indeed, g

G(�)

g(�)

= 1 by the following result:

Lemma 3.4 Let � = (�

1

; �

2

; : : : ) be a sequence of partitions �

i

2 D, with

pairwise disjoint parts. Let � =

S

i

�

i

, j�j = n. Then

g

�

�

= ((�

c

h�

i

i) "

~

S

n

; h�i) = 1 :

Proof. Use the spin analogue of the Littlewood-Richardson rule due to

Stembridge [11]. �

Remarks. More precisely, we believe that also in the second case, when

� 2 O

+

, the spin character hG(�)i is the only one with its sign being equal

to �(�) that is minimal on x

�

. The only critical candidates are � 2 D

+

such

that g

�

g(�)

is odd; in particular, then we must have `(�) = `(G(�)). It seems

to require a rather delicate tableaux counting argument to show that this

situation cannot occur.

Moreover, in this second case there usually do exist n.s.a. spin characters

that are minimal on x

�

. These come from the n.s.a. partition sequences in

M

�

(�) (by taking unions of the partitions in the sequence); note that we then

have a choice di�erent from the Glaisher image at the component �

i

where

the sign di�ers from that of the corresponding �

i

. These spin characters are

still labelled by partitions `close' to the Glaisher image of �.
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