Spin representations, powers of 2 and the Glaisher map

Christine Bessenrodt

Fakultat fiir Mathematik, Otto-von-Guericke-Universitat Magdeburg
D-39016 Magdeburg, Germany
Email: bessen@mathematik.uni-magdeburg.de

Jorn B. Olsson

Matematisk Afdeling, University of Copenhagen
Copenhagen, Denmark
Email: olsson@math.ku.dk

March 29, 2002

Abstract

Generalizing results on spin character degrees, we determine for
a given conjugacy class of odd type in the double cover of S, spin
characters of S,, which have the minimal 2-power on this class in their
character value. Surprisingly, the Glaisher map plays an important
role here.
Mathematics Subject Classification (2000): 20C30, 05A15

1 Introduction

In this article we consider the values of spin characters of a double cover §n
of the symmetric group S, on 2-regular classes. In [2] we have determined
the maximal 2-power dividing all spin character values on a fixed conjugacy
class corresponding to a cycle type with odd parts only. For the class (1"),
i.e., the spin character degrees, Wagner [12] showed that the spin character
corresponding to the 2-adic decomposition of n has the minimal 2-power in
its degree. This was also obtained in [1], where we also determined explicitly
all the spin characters where this minimum is attained. In this note, we are
now generalizing and refining the results on the 2-powers in the spin charac-
ter degrees to all odd classes.



Before we can state the main result precisely, we need to introduce some
notation. For the required information on the character theory of the sym-
metric groups and its double covers we refer the reader to [4], [6] and [8].
The associate classes of spin characters of §n are labelled canonically by the
partitions A of n into distinct parts, i.e. A = (A1, Ao, -+, An), A1 > Ay >
s> Ay >0, A+ -+ Ay, = n. We write |A] = n and £(\) = m, the car-
dinality and length of A. Also the sign of A is sgn(A) = (—1)"~™. According
to the signs the set D(n) of partitions of n into distinct parts is divided into
disjoint subsets D*(n) and D~ (n). We set D =, P(n), and we define D
and D~ correspondingly.

Then the self-associate spin characters in .S, are labelled by the partitions
in D*(n) and the associate pairs of non-self-associate spin characters are
labelled by the partitions in D~(n). We will abbreviate self-associate and
non-self-associate by s.a. and n.s.a. respectively.

The conjugacy classes of elements of odd order in S,, are labelled canon-
ically via their cycle type by the elements in the set O(n) of partitions
of n into odd parts. We will use an ‘exponential’ notation for partitions
a€ On): a=(1™,3m,...). Thus |of = > im;, L(a) = > m;. We

1 odd 1 odd
set O =, O(n).

It is well known that |D(n)| = |O(n)|; we denote this cardinality by d(n).
In fact, J.W.L. Glaisher [3] defined a bijection between partitions with parts
not divisible by a given number k£ on the one hand and partitions where
no part is repeated k times on the other hand; so in particular for £ = 2
this gives a bijection between O(n) and D(n). In this situation, Glaisher’s
map G is defined as follows. Suppose that o = (1™ ,3™s ...) € O(n).
Write each multiplicity m; as a sum of distinct powers of 2, i.e., in its 2-
adic decomposition: m; = »_;2%. Then G(a) € D(n) consists of the parts
(2%i4); ;, of course in descending order.

For any integer m > 0, let s(m) be the number of summands in the 2-
adic decomposition of m. Then for o = (1™,3™3,..-) the length of G(«) is
((G(a) = > s(m;). We define ko = >, 4q(mi — s(m;)) and set o(a) =

i 'odd
(—1)*=. We denote by O¢°(n) the set of partitions o in O(n) with the sign of
o(a) being . Then the Glaisher map G induces bijections O¢(n) — D¢(n),
where € is a sign (see [2]).

The integer k, is also of group-theoretic significance. For any integer m,
we denote by v(m) the exponent to which 2 divides m. Thus my = 2™



is the exact 2-power dividing m. Let a € O(n) and let z/, be an element of

cycle type a in S,,. Then v(|Cg, (2)]) = ][ v(m;!) = k.. Hence k, is the
i odd

2-defect of C,, the conjugacy class of S,, labelled by o € O(n).

The preimage 71 (C(a)) consists of two conjugacy classes in S,, say cV
and C&Q). We choose notation such that the elements of C&l) have odd order,
and we let z, be the preimage of #/, in this class. Then C&Q) =z C&l), and the
elements in this second conjugacy class have even order. These conjugacy
classes have 2-defect k, + 1.

Since we want to use the standard notation [p] for the ordinary character
of S, labelled by the partition p of n, we will write |r| for the integer part
of the real number r to avoid confusion.

The result from [2] mentioned above says:

Theorem 1.1 Let o = (1™,3™ ...) € O(n). Then 2%/2l s the mazimal
power of 2 which divides all spin character values (\)(z4), A € D(n), i.e.,
v({N)(xa)) > |ka/2] for all X € D(n).

The goal now is to prove

Theorem 1.2 Let o = (1™,3™3,.-+) € O(n), and let A = G(«) be its
Glaisher image. Then v((\)(x4)) = |ka/2].

Furthermore, if A\ € D~(n), then (\) and ()" are the only spin characters
where this equality holds.

2 Preliminaries

Here we collect the results that are needed later on.

From [1] we need the description of the set of spin characters of self-
associate and non-self-associate type where the minimal 2-power in the degree
is attained.



For n € N we set

M) = e pin) [ = |25

M™M= {AeDt(n) | v((N)(1)) = {%J}

M) = e D ) = | "y = ) n o)

M%) = (e D) L) = |2 vy

We also set M = |J, M(1"), and similarly we define M.
Furthermore, if n = 37, 2Fi k1 > ky... > kg, is the 2-adic decomposition
of n, then we denote by &(n) = (2%, 2F2, ... 2%+) the corresponding partition
of n, and so, we have sgn(d(n)) = o(1").

If A\ € D, we write A =) ., 2! )\; with \; € DN O for all i.
For any partition p let s(p) = s(|p|).

A careful analysis of the proof of part (b) of Theorem 2.6 in [1] shows

that the description given in Theorem 2.7 [1] can be improved a little:

Theorem 2.1 ([1]) Let n € N, s = s(n), and let € be a sign. Set

Di(n) = {\= Z2i)\i € D°(n) | ig : |Niy| > 1; and this N, satisfies:
$(hio) < 2, Mg € My, 5= [{A # 0} + s(A,) — 1}
Then
{o(n)} ife = sgn(5(n))
Di(n)  otherwise
KA1 — {6(n)} UDF(n) if o(1™) = +1
SR RN fo(m) = -1

MeE(1M) = {

From [9] we need the values of spin characters on a class of type (e™), e
odd. For a partition A we denote by H()) the product of its hook lengths,
and if A € D we denote by H()\) the product of its bar lengths.
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Theorem 2.2 ([9], Cor. (4.3)) Let p € D(me), e odd, with pe = 0, pl© =
(po; p1s---yp), t=1(e—1)/2. Then

{m—é(po)J i m!

<P> (x(em)) = 12 H(p(é))

where H(p) = H(po) TT-, H(py)-

We can rewrite this in the following form:

Corollary 2.3 Setr = {mfg(po)J — L'p("*;(”O)J. Then

() (@m) = ﬂ“( )<po>(1>[p11<1> )

|p0|7 T |Pt|
Remark. Since v(n) =n — s(n) we have

t

(g " ) = st = ).

;---7|pt| =0

For a reduction to the analogues of Young subgroups we have to collect
some results on reduced Clifford products (see [5], [7], [10], [11]).

Theorem 2.4 Let x;,1; be spin characters of S’ai, 1 =1,...,k. Then the
reduced Clifford products x = X.x; and ) = X0; have the following proper-
ties.

(i) x is n.s.a. if and only if t, = |{i | x; n.s.a.}| is odd.

(ii) Let o' be a partition of a;, i = 1,...k, a = (a',a?,...).
Then x(z4) = 25/ T, xi(Tar).

(1ii) x and ) are associate if and only if x; and ; are associate for all i,
and they are equal if and only if they are associate and t, is even, or

ty is odd but |{i | x; # ¥i}| is even.



3 Proof of the Theorem

In generalizing our previous result for spin character degrees we first deal
with the case of a class of type o = (¢™), e odd. Then the minimal 2-value

2 2
characterize the spin characters where this minimum is attained:

of the spin character values on this class is || = LMJ, and we now

Proposition 3.1 Let p € D(me), e odd. Set v, = (p)(x(em)). Let pl® =
(po; p1, -y pi), t=(e—1)/2.
Then v(v,) = L%WJ if and only if p@ey = O and one of the following holds:
(i) P = (po; 0,...,0) and py € M(1™).
(In particular, p = G(e™) is of this type.)

(i) m — s(m) is even, py € M(171), s(pg) + 1 = s(m), there is a unique
[ > 0 such that py £ 0, and |p| is a 2-power, [p](1) is odd, and either
(a) £(po) = s(po), or (b) L(po) # s(po) and |po| — s(po) odd.

We have p € D~(me) in case (i) when py # 6(m), and in case (ii).

Proof. We already know from [2] that the minimal 2-value on z, is [k,/2],
so in our case we deduce that v(v,) > [(m — s(m))/2]. If pey # 0, then
v, = 0, so these partitions never have minimal 2-value on (e™). Hence we
may assume from now on that pz = 0.

Assume first that p® = (pg;0,...,0). Then by 2.3, v(v,) = |(m —
s(m))/2] if and only if py € M(1™). This is case (i) in the Proposition.

Hence we may assume from now on that |pg| < m. Set s; = s(p;); then

the assumption is equivalent to saying that 2j>0 55 > 1.

Case: py € M(1ml).
If £(po) = so, then we have (by Corollary 2.3 and the remark following it)

o) = |52+ s stm) + o [Timgc0)

§>0 §>0

_ {m—TW%(ZSj_S(m)H%(Zs» o[ Tlo)

>0 7>0 7>0




Since } o485 —s(m) > 0and Y-, ;s; > 0, we have v(v,) = [(m —s(m))/2]
if and only if we are in the situation described in case (ii)(a) in the statement

of the Proposition.

Now we deal with the case where [, := E(po) # so. In particular, then

po € D~ (because of the description of the set M).
In this case we have (again using Corollary 2.3)

v(v,) = {m;loJ—{'p(";l“hzs]-—s(mwL"’“'Q_SOJJFV(H[W]@))

{m —23(m) _ |P0|2_ 1 + %(Z s; —s(m)) + %(Z Sj)J + VPMT_SOJ

+u(] Jlo1(1))

7>0

If |po| — so is even, this simplifies to

o) = {m%m) b 2D stm) + (3 sﬂJ [Tl

7>0 j>0 j>0

and this is always larger than |(m — s(m))/2].
If |po| — so is odd, the expression above simplifies to

(p) = {m%m) 33y sm) +5(Y sﬂJ [Tl )

and this is equal to |[(m — s(m))/2] exactly if we are in the situation de-
scribed in case (ii)(b) in the statement of the Proposition.

Case: py ¢ M(1lroly,

Then
v(v,) > _m;l"J - VM; ZUJ -I-j;osj—s(m)-i- {WT_SOJ +1
> m%'(”%%(;sj—s(m))%(;sj)‘%
ey




Therefore, here we do not have any further partitions of minimal 2-value on
Zp.

If in case (i) po # d(m), then we are in the situation where m = s(m)
(mod 2), 6(m) € DT and py € D~. But then clearly, p € D~ (me).
It remains to check that p € D~ (me) in case (ii).
In case (ii)(a), we have

me —L(p) =m —Ll(p)) =m— (s(m)—1)=1 (mod 2)
In case (ii)(b), we had already seen that py € D™, so
me —{(p) =m —(po) =m —s(po) =m — (s(m) —1) =1 (mod 2)
Hence in both situations py € D~. ¢

Remark. For m = 1, e odd, we obtain: the spin characters (e), (e — 1, 1),
(e —2,2),..., (2, <) (and their associates) have odd value on z(.). In
fact, these values are 1, and all other spin character values on this class are

7Z€ero.

We denote the set of those partitions p for which the corresponding spin
character attains the minimal 2-value on z(m) by M(e™). Then we have

Corollary 3.2 Lete,m € N, e odd; let (e™) € O°(em). Then

M(e™)ND" = {G(e™)}

and if e = —, then

As in the case of the spin degrees, also the following set plays a special
role:

MF (™) = {p € D*(me) | {p)(arom) = {%J}

For reduction purposes we need the following result.



Proposition 3.3 Let a = (1™,3™,...) € O(n). Set o' = (i™), a; = im;,
i=1,3,..., and let S, be the preimage of the Young subgroup Sa, X Say X .. .
mn Sy.

Then
v((Xe(pi))(xa)) = L%J

for all p = (w1, p3,--.), ;i € D(a;), and equality is attained on the set
M*(«v) described as follows. Let g(«) be the partition sequence defined by

g(a); = G(a') for all i.
If a € O™, then

M (a) = {g(a)} .
If o € OF, then
M () = {g(@)} U {p| 3:pm e MI™),sgn(u) # o (™),

)
or w € MFT(I™),o(I™) = -1,
and p; = G(a) for all i #1} .

Proof. For a sign ¢ = +, let J5 = {i | o’ € O°}. )
For a given i, set T, = {i | y; € D}, I§(p) = {i € J; | s € M(a’)} and
Ii(i) = J5 \ 15 (n)-

Let t, = |T| and set

en = el (wa) = 25 T (i) ()

i

For i € If(p) let r; = v({p;)(4i)) — | 252 | € N. Then

v(c,) = VEMJJFZ m2~2—31~+ > (mi;‘si+rl~>+

zEIg'(u) iEIT(M)
m; —s; — 1 m; —s; — 1
Py et (et
icly (1) i€l (w)
k 1 7 1
S R U I R ST S G
i€l (n) i€y (1)

Since T, 2 I (), this shows that v(c,) %‘*J, and that equality holds if
and only if I;"(u) = 0 and either T, = (,u) L () =0or T, = I (1),



I7 (1) = {1} for some | with r; =1, or T,7 = I () U {l} for some | € I (11).
Together with our previous results, this gives the description of the set M*(«)
stated in the Proposition. ©

Proof of Theorem 1.2. .
Let a = (i™);—13... € O, o' = (i™), a; = im;, S, as before.

Let A € D. Restricting to S, gives

Ne, = D gaxelm)+ > Gh(xem)

u=(1,43,--- ) u=(p1,43,... )0.S.a.

where p = (1, 3, - - . ) runs over all sequences with y; a partition of a;, and
we call p n.s.a. if the corresponding reduced Clifford product is n.s.a.
Then

) (a) = Zgﬁ ot /2] H(Mi>(x(imi)) + Z Qﬁ oltu/?2] H(Mﬁ(l‘(mg)

i /4 n.s.a. i

As the 2-value of each summand is at least [k,/2] by Proposition 3.3, “we
can have equality only if there exists ;1 € M*() such that g} is odd. Fur-
thermore, note that by [11] we have for n.s.a. u: g, = g, whenever A € D¥,
or A € D~ but A # |J u;. Hence taking the associate characters together, we
obtain for the n.s.a. y a contribution of non-minimal 2-value for such .

Case: a € O .
Let A = G(a). We want to show that () and its associate are the only
spin characters which have the minimal 2-value [k, /2] on z,. Since o € O,
by Proposition 3.3 the set M*(«) only contains the n.s.a. partition sequence
p = g(«). By the above considerations, the only possible (\) with minimal
2-value on z, then is given by A = |, ; = G(«), as was to be proved.

Case: a € O,
Let A = G(«). We want to show that (\) has the minimal 2-value [k, /2] on
To. By Proposition 3.3, for « € O" the set M*(«) contains two types of
partition sequences. On the one hand, we have the s.a. partition sequence
p = g(a). On the other hand, we have certain n.s.a. u € M*(«a), but as
remarked above, together with the associate character this gives a summand
of non-minimal 2-value for (A)(x,). Thus it only remains to show that the
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9 iLe., the multiplicity of (G(a))

in the induction to S, of the reduced Clifford product corresponding to g(a),

spin Littlewood-Richardson coefficient g

is odd. Indeed, ggG(S;) = 1 by the following result:

Lemma 3.4 Let v = (v',v%,...) be a sequence of partitions v* € D, with

pairwise disjoint parts. Let p=\J, V', |p| = n. Then
g0 = ((xc(v) 1%, (p)) = 1.

Proof. Use the spin analogue of the Littlewood-Richardson rule due to
Stembridge [11]. ©

Remarks. More precisely, we believe that also in the second case, when
«a € OF, the spin character (G(«)) is the only one with its sign being equal
to o(a) that is minimal on .. The only critical candidates are A € D" such
that g;‘(a) is odd; in particular, then we must have £(\) = /(G (a)). Tt seems
to require a rather delicate tableaux counting argument to show that this
situation cannot occur.

Moreover, in this second case there usually do exist n.s.a. spin characters
that are minimal on z,. These come from the n.s.a. partition sequences in
M*(«) (by taking unions of the partitions in the sequence); note that we then
have a choice different from the Glaisher image at the component p; where
the sign differs from that of the corresponding a’. These spin characters are
still labelled by partitions ‘close’ to the Glaisher image of a.
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