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1 Introduction

In 1998, Zalesskii proposed to classify all instances of irreducible characters

of quasi-simple groups which are of prime power degree. In joint work, Malle

and Zalesskii then dealt with all quasi-simple groups with the exception of

the alternating groups and their double covers [5]. In an earlier article [1]

we have classi�ed all the irreducible characters of S

n

of prime power degree

and have deduced from this also the corresponding classi�cation for the

alternating groups. In the present article we complete Zalesskii's programme

by dealing with the �nal case left open in [5], the double covers of the

alternating groups. We derive this result from a corresponding result on

the double covers of the symmetric groups. If one is only interested in spin

characters, one easily sees that only 2-powers can occur as prime power

degrees. But from a combinatorial point of view it is natural to ask more

generally: when is the number of shifted standard tableaux of a given shape a

prime power? Since our method is independent of the prime, we will answer

this question, showing that apart from a few accidental cases for small n

only the 'obvious' partitions satisfy the prime power condition. Thus in

turn for the spin characters, apart from exceptions for small n, the 'obvious'

spin characters of 2-power degree are indeed the only ones (this con�rms the

conjecture stated in [5]).

The paper is organized as follows. In section 2, we determine the two-part

partitions of shifted prime power degree, and we provide a spin analogue of

a theorem of Burnside describing the minimal shifted degrees for su�ciently

large n. We also prove results on bar lengths in strict partitions which lead to

an algorithm showing that every strict partition of n whose shifted degree

is a prime power has a large bar. In section 3, we explicitly determine

the degree polynomial of spin characters resp. the shifted tableaux count

(Theorem 3.1), and then apply this to classify the strict partitions of shifted

prime power degree which are close to two-part partitions. In section 4 we

complete the proof of Theorem 2.3, i.e, the classi�cation of strict partitions

of shifted prime power degree. We then derive the classi�cation of irreducible

spin characters of the double covers of S

n

and A

n

of prime power degree.
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2 An algorithm for bar lengths

We refer to [3], [4], [6], [8] for details about partitions, Young diagrams,

shifted diagrams, tableaux, hooks and bars.

Consider a partition � = (�

1

; �

2

; : : : ; �

m

) of the integer n into distinct parts.

Thus �

1

> �

2

> � � � > �

m

> 0 and �

1

+ �

2

+ : : : + �

m

= n. We call the �

i

's

the parts of � and m the length l(�) of �. The shifted diagram of � consists

of n nodes (boxes) with �

i

nodes in the ith row, indented along the diagonal

(see the example below). We refer to the nodes in matrix notation, i.e. the

(i; j)-node is the jth node in the ith row. Thus

is the shifted diagram of � = (5; 4; 1). A node (i; �

i

) is called a removable

node if �

i

> �

i+1

+1, so that after removing the node the resulting partition

is again a partition into distinct parts.

The length b

ij

of the (i; j)-bar is the length of the (i; j+ i)-hook in the shift-

symmetric diagram to �, which is obtained from � by a reection along the

diagonal. For j < l(�), the corresponding bar is called mixed, the other bars

are called unmixed.

The shift-symmetric diagram to � = (5; 4; 1) and the bar lengths �lled into

the corresponding nodes of � are depicted by

: 9 6 5 3 2

: : 5 4 2 1

: : : 1

: :

: :

We put b

i

= b

1i

for the �rst row bar lengths, abbreviated by frb. Moreover,

we let B(�) =

Q

i;j

b

ij

be the product of all bar lengths in �.

Then the number of shifted standard tableaux g

�

of � is given by the Bar

formula (see [3], Prop. 10.6):

g

�

=

n!

B(�)

:

We will call g

�

the shifted degree of the partition �.
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It is known that the degree of the complex irreducible spin character of the

double cover

~

S

n

of the symmetric group S

n

labelled by � is then obtained

by the Bar formula for spin character degrees as

h�i(1) = 2

[

n�l(�)

2

]

g

�

(see [3], Theorem 10.7, or [8]).

In particular, for � = (n), g

(n)

= 1 and the (basic) spin character hni is of

2-power degree 2

[

n�1

2

]

.

We �rst have to deal with the case of two-part partitions.

Lemma 2.1 Let � = (n�k; k) be a partition of n with 0 < k < n�k. Then

g

�

=

n� 2k

k

�

n� 1

k � 1

�

:

This is a power of the prime p if and only if either � = (n � 1; 1) and n =

2+ p

a

for some a, or � = (3; 2); (4; 2); (5; 2); (4; 3); (8; 2) with p = 2; 5; 3; 5; 3

respectively.

Proof. Using the Bar formula we obtain immediately

g

�

=

n!

n � (n� k)(n� k � 1) � � � (n� 2k + 1) � (n� 2k � 1)! � k!

=

n� 2k

k

�

n� 1

k � 1

�

:

One easily checks that for all the partitions stated in the assertion the shifted

degree is indeed a power of the given prime p, as described in the Lemma.

In particular, the assertion of the Lemma holds for n � 6.

So we may now assume that n � 7. For the converse part of the Lemma we

now consider a partition � = (n � k; k) with 0 < k < n � k which satis�es

g

�

= p

a

for a prime p and an integer a 2 N.

Since k < n� k, k �

n�1

2

and hence, since n � 7, k �

(n�2)(n�3)

6

.

Since

�

n�1

k�1

�

is a divisor of p

a

k, and since any prime power dividing this

binomial coe�cient is bounded by n� 1 [10], we obtain

�

n� 1

k � 1

�

� (n� 1)k �

(n� 1)(n� 2)(n� 3)

6

=

�

n� 1

3

�

:

Since n � 7, the monotonicity of the binomial coe�cients then yields k � 4.

We now discuss all these cases in turn.

For k = 1, the partition has the form � = (n � 1; 1) with g

�

= n � 2, and

hence n = 2 + p

a

as stated in the assertion.
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For k = 2, the equation p

a

=

1

2

(n� 4)(n� 1) leads immediately to p = 3. If

n�4 = 3

j

for some j 2 N, then n�1 = 3

j

+3 = 2 �3

a�j

. But then a� j = 1

and hence n = 7. This corresponds to the partition (5; 2) in our list, which

is of shifted degree 9.

In the second case, when n � 1 = 3

j

for some j 2 N, j > 1, we have

n� 4 = 3

j

� 3 = 2 � 3

a�j

, and thus again a� j = 1 and then n = 10. This

corresponds to the partition (8; 2) in our list, which is of shifted degree 27.

For k = 3, the condition p

a

=

1

6

(n � 6)(n � 1)(n � 2) leads to (n � 6)(n �

1)(n � 2) = 6 p

a

; since n � 1, n � 2 cannot both be p-powers, this implies

n � 1 = 6 or n � 2 = 6. The �rst case gives the example (4; 3) of shifted

degree 5, while the second case leads to a contradiction.

For k = 4, we obtain similarly as above (n� 8)(n� 1)(n� 2)(n� 3) = 24 p

a

.

Using again that at least one of the consecutive factors is not a p-power, one

easily sees that this case cannot occur. �

The following result includes in particular a "spin analogue" of a theorem

of Burnside, describing the minimal shifted degrees for n su�ciently large.

More precisely, for n > 10, the minimal shifted degrees are 1, n � 2 and

1

2

(n� 1)(n� 4), and the corresponding partitions are explicitly given.

Proposition 2.2 Let � be a partition of n into distinct parts.

Then g

�

>

1

2

(n� 1)(n� 4) > n unless � is in the following list of partitions.

(i) For � = (n), g

�

= 1.

(ii) For n � 3 and � = (n� 1; 1), g

�

= n� 2.

(iii) For n � 5 and � = (n� 2; 2), g

�

=

1

2

(n� 1)(n� 4).

(iv) Some special cases for small n:

n � g

�

6 (3; 2; 1) 2

7 (4; 3) 5

(4; 2; 1) 7

8 (5; 3) 14

(4; 3; 1) 12

9 (5; 4) 14

(4; 3; 2) 12

10 (4; 3; 2; 1) 12

Proof. The degrees occurring in the statement of the Proposition can all

easily be computed by the Bar formula or they have already appeared in

the previous Lemma. Note that the partitions with distinct parts of n � 7

are all covered.
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We now prove by induction on n the main assertion that up to the exceptions

for small n given in (iv), the degrees in cases (i)-(iii) are the minimal shifted

degrees, using the branching property (see [3], (10.5)):

g

�

=

X

A

g

�nA

where A runs through the removable nodes of �.

So let � be a partition of n into distinct parts, not occurring in one of the

cases of the statement of the Proposition.

We assume �rst that � has at least 2 removable nodes.

If � does not arise by adjoining a node to one of the partitions in the state-

ment of the Proposition, then we obtain by induction g

�

> (n � 2)(n � 5),

which is greater than

1

2

(n� 1)(n� 4), as n � 7.

Now we discuss the situation where � is an extension of one of the partitions

in the list by a node.

If � = (n � 3; 3), then g

�

=

1

6

(n � 1)(n � 2)(n � 6), which is greater than

1

2

(n � 1)(n � 4) for n > 8 (the case n = 8 gives the example (5; 3) in case

(iv) of the Proposition).

If � = (n� 3; 2; 1), then for n � 9 we obtain by induction:

g

�

=

1

2

(n� 2)(n� 5) + g

(n�4;2;1)

> (n� 2)(n� 5)

which is greater than

1

2

(n� 1)(n� 4). For n = 8 we have g

(5;2;1)

= 9 + 7 =

16 > 14.

For the partitions (5; 3; 1), (6; 4), (5; 4; 1), (5; 3; 2), (5; 3; 2; 1) one easily

checks that the assertion holds.

Now we turn to the case where � has only one removable node.

First we consider the case where � = (k; k � 1; : : : ; r) for some r 2 N,

1 < r < k. Note that n � 11. Using branching and induction (and an easy

check for (6; 5)) we have:

g

�

= g

(k;::: ;r)

= g

(k;::: ;r+1;r�1)

= g

(k;::: ;r+1;r�2)

+ g

(k;::: ;r+2;r;r�1)

> (n� 3)(n� 6)

For n � 11, this is greater than

1

2

(n� 1)(n� 4), as claimed.

We �nally deal with the case where r = 1; here we know that n � 15. Again,

by branching and induction we obtain

g

�

= g

(k;::: ;2;1)

= g

(k;::: ;2)

= g

(k;::: ;3;1)

= g

(k;::: ;3)

+ g

(k;::: ;4;2;1)

> (n� 4)(n� 7)
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For n � 14, this is greater than

1

2

(n� 1)(n� 4), as claimed. �

Our aim is to prove:

Theorem 2.3 Let � be a partition of n into distinct parts. Then g

�

= p

a

for some prime p and a 2 N, if and only if one of the following occurs:

n = p

a

+ 2 ; � = (p

a

+ 1; 1)

or we are in one of the following exceptional cases:

n = 5 : � = (3; 2); g

�

= 2

n = 6 : � = (4; 2); g

�

= 5

� = (3; 2; 1); g

�

= 2

n = 7 : � = (5; 2); g

�

= 9

� = (4; 3); g

�

= 5

� = (4; 2; 1); g

�

= 7

n = 8 : � = (5; 2; 1); g

�

= 16

n = 10 : � = (8; 2); g

�

= 27

For the rest of the section we assume:

� is a partition of n into distinct parts, of length m > 2.

First we state some elementary results about bar lengths.

Lemma 2.4 Let a; b be any two di�erent bar lengths in �.

Then

a+ b � �

1

+ n

resp. equivalently:

n� �

1

� 2n� a� b :

Proof. Suppose a > b. We have a � b

1

= �

1

+ �

2

and b � b

2

= �

1

+ �

3

.

Now

�

1

+ n = (�

1

+ �

2

) + (�

1

+ �

3

) + (�

4

+ � � �+ �

m

) � b

1

+ b

2

� a+ b

�

In addition to our previous assumption on �, we also assume now:

g

�

is a prime power.

Proposition 2.5 Let n � 8. If q is a prime for which n��

1

< q � n, then

q; 2q; : : : ;

�

n

q

�

q

are all frb's of �.
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Proof. Put w =

�

n

q

�

, so n = wq+ r, with 0 � r < q. Note that q � 5, since

otherwise n� �

1

� 2, contradicting m > 2.

We have

n� �

1

= �

2

+ : : :+ �

m

< q

so that bars of length divisible by q are all frb's. Now

�

1

> n� q = (w � 1)q + r � (w � 1)q :

If a mixed bar has length �

1

+ �

i

divisible by q, then

q j �

1

+ �

i

> �

1

� (w � 1)q

whence �

1

+ �

i

= wq. In this case, the result follows from [8], (4.3).

We now assume that only unmixed bars have length divisible by q. The

unmixed frb's are in the set

f1; 2; : : : ; �

1

g n f�

1

� �

i

j i = 2; : : : ;mg

If for some 1 � w

1

� w� 1, w

1

q is not an frb, then we obtain �

1

��

i

= w

1

q

for some i > 1.

Then

q > �

i

= �

1

� w

1

q > (w � 1� w

1

)q � 0

yielding w

1

= w � 1.

Thus only (w � 1)q and wq may not be frb's. If one or both of them is not

an frb, then g

�

is a q-power. If only one of them is not an frb, then

g

�

j ((w � 1)q)

q

or g

�

j (wq)

q

and hence g

�

� n, a contradiction in view of Proposition 2.2. If both are

not frb's, then

g

�

j ((w � 1)qwq)

q

� qn :

If w � 3, then q �

n

3

, and hence g

�

�

n

2

3

. But this contradicts Proposi-

tion 2.2 since for n � 15,

n

2

3

�

1

2

(n� 1)(n� 4).

In the remaining case w = 2 we have g

�

j q

2

�

n

2

4

, and this again contradicts

Proposition 2.2.

Hence also both (w � 1)q and wq are frb's, as claimed. �

Using Proposition 2.5 with primes q close to n, the classi�cation result is

easily checked for n � 28; note that by Lemma 2.1 all two-part partitions

are dealt with, and one has to consider only a few very special partitions.

So we assume from now on also that n > 28.

Lemma 2.6 If q is a prime with

n

2

< q � n, then q is an frb of �.
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Proof. As n > 28, we may choose di�erent primes p

1

; p

2

with

3

4

n < p

1

; p

2

�

n (see [2]). Then � has to contain bars of length p

1

and p

2

since otherwise

g

�

= p

i

� n, a contradiction because of Proposition 2.2.

By Lemma 2.4

�

1

� p

1

+ p

2

� n >

n

2

so that n� �

1

<

n

2

. If q >

n

2

, then q > n� �

1

. Now apply Proposition 2.5.

�

We now have the exact analogue of the crucial result in [1]:

Proposition 2.7 Suppose we have sequences of integers s

1

< s

2

< � � � <

s

r

� n, t

1

< t

2

< � � � < t

r

� n satisfying

(i) s

i

< t

i

for all i;

(ii) s

1

and t

1

are primes >

n

2

;

(iii) For 1 � i � r � 1, s

i+1

and t

i+1

contain prime factors exceeding

2n� s

i

� t

i

.

Then s

1

; : : : ; s

r

; t

1

; : : : ; t

r

are all frb's of �.

Proof. Induction on i to show that s

i

and t

i

are frb's for �; use Lemma 2.6,

Lemma 2.4 and Proposition 2.5. �

We get an algorithm from Proposition 2.7 which shows that b

1

is large and

thus � is \almost" a two-part partition: start with two large primes s

1

< t

1

close to n. Then 2n � s

1

� t

1

is small. Choose if possible two integers s

2

and t

2

with s

2

< t

2

, s

1

< s

2

� n, t

1

< t

2

� n each having a prime divisor

exceeding 2n� s

1

� t

1

. Then 2n� s

2

� t

2

< 2n� s

1

� t

1

. Choose if possible

two integers s

3

and t

3

with s

3

< t

3

, s

2

< s

3

� n, t

2

< t

3

� n each having a

prime divisor exceeding 2n� s

2

� t

2

and so on. If this process reaches s

r

; t

r

,

then t

r

� b

1

= �

1

+ �

2

by Proposition 2.7.

From [1] we quote a result that shows that for large n the algorithm always

terminates close to n. First we need some notation.

Suppose that n � 3 is a positive integer. Consider two �nite increasing

sequences of integers fA

i

g and fB

i

g which satisfy the following properties:

(i) A

1

< B

1

� n are two \large" primes not exceeding n.

(ii) For every i, we have that

A

i

< B

i

� n:
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(iii) If B

i

< n, then A

i+1

< B

i+1

are integers not exceeding n each with a

prime factor exceeding 2n�A

i

�B

i

.

Then denote by A(n) (resp. B(n)) the largest integer in such a sequence

fA

i

g (resp. fB

i

g).

Theorem 2.8 [1] If n > 3:06 � 10

8

, then there is a pair of sequences fA

i

g

and fB

i

g as above for which

n�B(n) � 225:

Corollary 2.9 Let � be a partition of n into distinct parts with largest bar

length b

1

. If g

�

is a prime power and n > 3:06 � 10

8

, then n� b

1

� 225.

3 Degree polynomials

Let � = (�

1

; : : : ; �

m

) be a partition of k into distinct parts. For n > k+�

1

,

set � = (n�k; �

1

; : : : ; �

m

). Denote by �̂ = (d

1

; : : : ; d

k

) the shift-symmetric

partition of 2k associated to �, possibly extended by zero parts.

With this notation we have

Theorem 3.1 The number of standard shifted tableaux of shape � is given

by

g

�

=

1

B(�)

k

Y

i=1

(n� d

i

� k + i) :

Thus, viewing the degree as a function g

�

(n) of n, this is a polynomial of

degree k in n.

Before we embark on the proof, we illustrate this by an example.

Example. Let k = 5, � = (4; 1). Thus �̂ = (5; 3; 1; 1; 0) and B(�) =

5 � 4 � 2 � 1 � 1. Choose n > 9, so � = �(n) = (n � 5; 4; 1) is a partition of n

into distinct parts. Then

g

�

=

1

40

n(n� 2)(n� 3)(n� 6)(n� 9) :

Proof of Theorem 3.1. We have already mentioned before that the bar

lengths in a partition are the hook lengths in the upper half of its associated

shift-symmetric partition; let

^

� be the shift-symmetric partition associated

with �, then we have for i < j:

(�) h

ij

(

^

�) = b

i j�i

(�)
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The partition �̂ has largest part �

1

+1 and length �

1

. Let � be obtained by

adding a largest part n�k to �̂. If X is the set of �rst column hook lengths

for �̂, then Y = X [ fn� k+ �

1

g is the set of �rst column hook lengths for

�. Obviously, � is just

^

� with the �rst column removed. Therefore the set

H of �rst row hook lengths of � is

H = fh

1j

(

^

�) j j � 2g

Using (�) we obtain

H = fb

1 j�1

(�) j j � 2g

the set of �rst row bar lengths of �. Denote the product of the numbers in

H by B

1

. Then

(��) B(�) = B

1

B(�) :

In the following, we use the notation and some results from [8] resp. [7].

We extend the �-set Y for � to a �-set Z for � of cardinality k + 1. Thus

Z = Y

+((k+1)�(�

1

+1))

= Y

+(k��

1

)

:

Since Y = X[fn�k+�

1

g, we have Z = X

+(k��

1

)

[fng. Set

^

X = X

+(k��

1

)

.

Since Z is a �-set for �, we obtain

H = f1; 2; : : : ; ng n fn� d j d 2

^

Xg

and thus

B

1

=

n!

Q

d2

^

X

(n� d)

As

^

X = fd

i

+ k � i j i = 1; : : : ; kg, now (��) implies

B(�) = B(�)

n!

Q

k

i=1

(n� d

i

� k + i)

Since g

�

=

n!

B(�)

, the assertion now follows. �

As an application of this result we prove the classi�cation theorem in the

case where n� b

1

� 4, where as before b

1

= �

1

+�

2

is the largest bar length

in a partition � of n into distinct parts.

Proposition 3.2 Let � be a partition of n with n� b

1

� 4 and g

�

a prime

power greater than 1. Then � is one of the partitions given in Theorem 2.3.

Proof. We prove the result by a case-by-case analysis using Theorem 3.1.

Set c = n� b

1

.

Let � = (�

1

; : : : ; �

m

) as before, and assume g

�

= p

a

for a prime p and a 2 N.

If c = 0, then � is a 2-part partition and the assertion is true by Lemma 2.1.
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Set k = n � �

1

and � = (�

2

; : : : ; �

m

). Denote by �̂ = (d

1

; : : : ; d

k

) the

shift-symmetric partition of 2k associated to �, possibly extended by zero

parts.

For n � 15 it is easy to check the assertion directly, so we now assume that

n > 15.

If c = 1, then �̂ = (k; 3; 1

k�3

; 0) and hence by Theorem 3.1 we know:

p

a

�B(�) = p

a

� k � (k � 1) � (k � 3)!

= n � (n� 2) � � � (n� k + 2) � (n� k � 1) � (n� 2k + 1)

(�)

So

p

a

�

�

k

2

�

=

1

2

n �

�

n� 2

k � 3

�

� (n� k � 1) � (n� 2k + 1)

Again, we use the fact that any prime power in a binomial coe�cient

�

s

t

�

is

at most s [10] and thus we deduce:

p

a

�

1

2

n � (n� 2) � (n� k � 1) � (n� 2k + 1) :

Inserting this into (�) and cancelling, we obtain

(n� 3) � � � (n� k + 2) �

1

2

k � (k � 1) � (k � 3)! :

Since 2(k � 1) � n� 3 and

3

2

k � n� 4 (here we use n > 12), we obtain

(n� 5) � � � (n� k + 2) � 4 � � � (k � 3) :

But this implies n� 5 � k � 3 and hence the contradiction n � k + 2.

If c = 2, then �̂ = (k � 1; 4; 2; 1

k�5

; 0

2

) and hence

p

a

� B(�) = p

a

� k (k � 2) (k � 3) � (k � 5)! � 2

= n (n� 1) � (n� 3) � � � (n� k + 3) � (n� k + 1)�

�(n� k � 2) (n� 2k + 2)

So

p

a

� k �

�

k � 2

2

�

=

1

2

�

n

2

�

�

�

n� 3

k � 5

�

� (n� k + 1) � (n� k � 2) � (n� 2k + 2)

and hence, similarly as before,

(n� 1) � (n� 4) � � � (n� k + 3) � k � (k � 2) � (k � 3) � (k � 5)!

Using n� 1 � 2k and n� 4 � 12, we obtain

(n� 5) � � � (n� k + 3) � 5 � � � (k � 5) � (k � 3) � (k � 2)

11



which implies n� 5 � k � 2, and hence the contradiction n � k + 3.

Similar arguments also lead to a contradiction in the cases where c = 3

resp. c = 4 (here one has to consider two possibilities for � in each case), so

we have indeed no partition of n � 16 of shifted prime power degree with

1 � c � 4.

�

4 Classi�cation results

We start by proving our main result, Theorem 2.3, the combinatorial clas-

si�cation of partitions of prime power shifted degree stated in section 2.

Proof of Theorem 2.3.

We have already remarked before that for n up to 28 it is easily checked

using Maple that the result holds.

For n in the range from 29 to 9:25 � 10

8

it was already checked for the proof

of the classi�cation result in [1] that the following holds:

Given n, let p

1

; p

2

be the two largest primes below n. Then there is a prime

divisor q of n(n� 1)(n� 2)(n� 3)(n� 4) with p

1

+ p

2

+ q > 2n.

Hence we can apply the results in section 2 and obtain n� b

1

� 4.

Thus Proposition 3.2 yields the result in this case.

If n is larger than 3:06 � 10

8

we apply Theorem 2.8 resp. Corollary 2.9 to

obtain c = n� b

1

� 225. Because of Proposition 3.2 we may assume in this

case that c � 5 (and so k � 7), and we now have to show how to reach a

contradiction.

As before, we let � = (�

1

; : : : ; �

m

), k = n � �

1

, � = (�

2

; : : : ; �

m

) and

�̂ = (d

1

; : : : ; d

k

) the shift-symmetric partition of 2k associated to �, possibly

extended by zero parts.

We assume g

�

= p

a

for a prime p and a 2 N.

First we want to estimate the number of di�erent parts in �̂. These arise

from parts of � di�ering at least by 2 and their reections in the shift-

symmetric diagram. Hence, if l 2 N is maximal with

P

l�l

i=0

(2i+ 1) = l

2

� k

then �̂ has at most 2l + 1 di�erent parts (including possibly a zero part).

But since equal parts in �̂ induce consecutive factors f

i

= n� d

i

� k + i in

the product

k

Y

i=1

(n� d

i

� k + i) = g

�

B(�) = p

a

B(�)

(see Theorem 3.1), at least

�

k�2l�1

2

�

factors f

i

are not divisible by p. As the

12



minimal factor in the product is f

1

= n� d

1

� k + 1, this implies

B(�) �

[

k�2l�1

2

]

Y

i=1

(n� d

1

� k + i) :

From the proof of Theorem 2.8 (see [1]) we know not only that c = n� b

1

=

n� (�

1

+ �

2

) � 225, but also that n� b

2

= n� (�

2

+ �

3

) � 450. Hence

k � (n� �

1

) + (n� (�

1

+ �

2

+ �

3

)) � 675 :

Thus, as d

1

� 1 = �

2

= (n� �

1

)� c = k � c and c � 5, we obtain

n� d

1

� k + 1 = n� 2k + c � n� 1345 :

Hence

B(�) � (n� 1345)

[

k�2l�1

2

]

:

But on the other hand B(�) � k!, and

k! � N

[

k�2l�1

2

]

= N

[

k�1

2

]

�

[

p

k

]

for 7 � k � 675 and N � 4 � 10

5

(as may easily be checked with Maple),

giving the desired contradiction. �

Remark. The arguments applied above are su�ciently e�cient to deal also

with larger bounds for n � b

1

. Thus, using a variant of Theorem 2.8 with

a larger bound for n�B(n) and a smaller lower bound for n would reduce

the necessary computer checking for \mid-sized" n considerably.

From the combinatorial classi�cation result we can now easily deduce the

corresponding classi�cation result for the spin characters of the double covers

of the symmetric groups:

Theorem 4.1 Let n � 4 and let � be a partition of n into distinct parts.

Then the spin character h�i of

~

S

n

is of p-power degree for a prime p if and

only if p = 2 and one of the following cases occurs:

(i) � = (n), i.e. the character is a basic spin character, and in this case

hni(1) = 2

[

n�1

2

]

.

(ii) n = 2 + 2

a

for some a 2 N, and � = (n � 1; 1), and in this case

hn� 1; 1i(1) = 2

a+2

a�1

.

(iii) The spin character belongs to the following list of exceptional cases:

h3; 2i(1) = 4

h3; 2; 1i(1) = 4

h5; 2; 1i(1) = 64

13



Proof. Assume that the spin character h�i is of prime power degree p

a

.

Since 2

[

n�l(�)

2

]

divides the degree of h�i, it is clear that p = 2. Hence g

�

must be a 2-power as well, and then the result follows immediately from

Theorem 2.3. �

Applying this, we also obtain the classi�cation result for the spin characters

of the double cover

~

A

n

of the alternating groups, con�rming the conjecture

stated in [5]:

Theorem 4.2 Let � be a partition of n into distinct parts. Then the spin

character hh�ii of

~

A

n

is of p-power degree for a prime p if and only if p = 2

and one of the following cases occurs:

(i) � = (n), i.e. the character is a basic spin character, and in this case

hhnii(1) = 2

[

n�2

2

]

.

(ii) n = 2 + 2

a

for some a 2 N, and � = (n � 1; 1), and in this case

hhn� 1; 1ii(1) = 2

a�1+2

a�1

.

(iii) The spin character belongs to the following list of exceptional cases:

hh3; 2ii(1) = 4

hh3; 2; 1ii(1) = 4

hh5; 2; 1ii(1) = 64

Proof. The degree of the spin character hh�ii of

~

A

n

is related to that of

the spin character h�i of

~

S

n

by:

hh�ii(1) =

�

h�i(1) if n� l(�) is odd

1

2

h�i(1) if n� l(�) is even

Hence the result follows immediately from the previous classi�cation theo-

rem. �
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