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Introduction

Let F be a �eld, and �

n

be the symmetric group on n letters. In this paper

we address the following question: given two irreducible F�

n

-modules D

1

and

D

2

of dimensions greater than 1, can it happen that D

1


 D

2

is irreducible?

The answer is known to be `no' if charF = 0 [12] (see also [2] for some gener-

alizations). So we assume from now on that F has a positive characteristic p.

The following conjecture was made in [4]:

Conjecture. Let D

1

and D

2

be two irreducible F�

n

-module of dimensions

> 1. Then D

1


 D

2

is irreducible if and only if p = 2, n = 2 + 4l for some

positive integer l, one of the modules corresponds to the partition (2l+2; 2l) and

the other corresponds to a partition of the form (n� 2j � 1; 2j +1); 0 � j < l.

Moreover, in the exeptional cases one has

D

(2l+2;2l)


D

(n�2j�1;2j+1)

�

=

D

(2l+1�j;2l�j;j+1;j)

:

The main result of this paper is the following theorem which establishes a

big part of the conjecture.

Main Theorem. Let D

�

and D

�

be two irreducible F�

n

-modules of dimen-

sions > 1. Assume that D

�


 D

�

is irreducible. Then p = 2, n is even, and

if

� = (�

1

> �

2

> � � � > �

r

> 0) and � = (�

1

> �

2

> � � � > �

s

> 0)

then �

1

� �

2

� � � � � �

r

(mod 2) or �

1

� �

2

� � � � � �

s

(mod 2) (or both).
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The result is relevant to the problem of describing maximal subgroups in

�nite groups of Lie type, cf. [1, 8]. We note that for the representations of

groups of Lie type in de�ning characteristic the irreducible tensor products

are not unusual, in view of Steinberg's tensor product theorem. On the other

hand, the case of groups of Lie type in a non-de�ning characteristic (including

characteristic 0) has been considered recently by Magaard and Tiep [11]. They

have shown that in most cases there are no irreducible tensor products.

In the case of the alternating groups we note that even in characteristic 0

there are (in�nitely many) examples of (non-trivial) irreducible tensor products

for alternating groups; however all of them are described [2].

Finally we note that the case p = 2 seems to be very interesting because it is

really exceptional. For example, it was observed in [4] that in this case one has

D

(4l+1;1)


D

(2l+2;2l)

�

=

D

(2l+1;2l;1)

and D

(7;3)


D

(6;4)

�

=

D

(4;3;2;1)

(see section 1 for notation). We refer the reader to [4] for further results on

tensor products in characteristic 2 and the relations with the symplectic group.

1. Preliminary results

If G is a group, D

1

; : : : ;D

k

are irreducible and V

1

; : : : ; V

m

are arbitrary

FG-modules then we write M = D

1

j : : : jD

k

if M is a uniserial FG-module

with composition factors D

1

; : : : ;D

k

counted from bottom to top, and M �

V

1

j : : : jV

m

if M has a �ltration with factors V

1

; : : : ; V

m

counted from bottom

to top. We denote by 1 = 1

G

the trivial FG-module. If M is any FG-module,

the space End

F

(M) is an FG-module in a natural way, and End

FG

(M) is the

space of G-invariants of End

F

(M). We denote by M

�

the dual module to M .

We refer the reader to [5, 6, 7] for the standard facts and notation of the

representation theory of �

n

. In particular, D

�

is the irreducible F�

n

-module

corresponding to a p-regular partition � of n. Given any partition � of n, one

associates to it the Young subgroup �

�

, the Specht module S

�

, the permutation

module M

�

, and the Young module Y

�

. For example, M

�

= (1

�

�

)"

�

n

. The

Young modules can be characterized as the indecomposable summands of the
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permutation modules M

�

. The modules D

�

, M

�

, and Y

�

are known to be

self-dual.

We will need some information on the submodule structure of the permuta-

tion modules M

(n�1;1)

and M

(n�2;2)

. The proof of the next three lemmas is

obtained by applying [5, 17.17, 24.15] and the `Nakayama Conjecture' [7, 6.1.21,

2.7.41].

Lemma 1.1. The module M

(n�1;1)

is isomorphic to D

(n�1;1)

� 1 if n 6� 0

(mod p), and M

(n�1;1)

= 1jD

(n�1;1)

j1 � 1j(S

(n�1;1)

)

�

otherwise.

Lemma 1.2. Let p > 2 and n � 4:

(i) If n 6� 1; 2 (mod p) then M

(n�2;2)

�

=

Y

(n�2;2)

�M

(n�1;1)

where

Y

(n�2;2)

�

=

S

(n�2;2)

�

=

D

(n�2;2)

:

(ii) If n � 1 (mod p) then M

(n�2;2)

�

=

Y

(n�2;2)

�D

(n�1;1)

where

Y

(n�2;2)

= 1jD

(n�2;2)

j1 � 1j(S

(n�2;2)

)

�

:

(iii) If n � 2 (mod p) then M

(n�2;2)

�

=

Y

(n�2;2)

� 1 where

Y

(n�2;2)

= D

(n�1;1)

jD

(n�2;2)

jD

(n�1;1)

� D

(n�1;1)

j(S

(n�2;2)

)

�

:

We will only need the corresponding results in the case p = 2 when n is odd:

Lemma 1.3. Let p = 2 and n � 4 be odd.

(i) If n � 1 (mod 4) then M

(n�2;2)

�

=

Y

(n�2;2)

�D

(n�1;1)

where

Y

(n�2;2)

= 1jD

(n�2;2)

j1 � 1j(S

(n�2;2)

)

�

:

(ii) If n � 3 (mod 4) then M

(n�2;2)

�

=

Y

(n�2;2)

�M

(n�1;1)

where Y

(n�2;2)

�

=

D

(n�2;2)

:

Lemma 1.4. Let n � 4, and assume that n is odd if p = 2. Then M

(n�1;1)

is

a quotient of M

(n�2;2)

.

Proof. This follows from Lemmas 1.1, 1.2 and 1.3.
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Unfortunately the result of Lemma 1.4 is not true when p = 2 and n is even.

We write �

n�2;2

for the Young subgroup �

(n�2;2)

�

=

�

n�2

��

2

. The following

two results from [10] will be crucial.

Theorem 1.5. [10] Let p > 2 and n � 4. Assume that V is an F�

n

-module

such that the alternating group A

n

< �

n

does not act trivially on V . Then

dimEnd

F�

n�1

(V #

F�

n�1

) < dimEnd

F�

n�2;2

(V #

F�

n�2;2

)

Let p = 2. If n = 2l is even we write S for the irreducible module D

(l+1;l�1)

and if n = 2l+ 1 is odd we write S for D

(l+1;l)

. We call S the spinor represen-

tation of �

n

.

Theorem 1.6. [10] Let p = 2, n � 4, and D be a non-trivial irreducible F�

n

-

module. Then

dimEnd

F�

n�1

(D#

F�

n�1

) < dimEnd

F�

n�2;2

(D#

F�

n�2;2

)

unless n is odd and D

�

=

S is the spinor module.

Corollary 1.7. Let n � 4, and D be an irreducible F�

n

module with dimD >

1. Then

dimHom

F�

n

(M

(n�2;2)

;End

F

(D)) > dimHom

F�

n

(M

(n�1;1)

;End

F

(D)):

unless n is odd and D

�

=

S is the spinor module.

Proof. The corollary follows immediately from Theorems 1.5, 1.6 and the iso-

morphism

Hom

F�

n

(M

�

;End

F

(D))

�

=

End

F�

�

(D#

F�

�

);

which comes from the Frobenius reciprocity.

2. Main result

The following technical result turns out to be the key.
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Lemma 2.1. Let n � 4 and D be a simple F�

n

-module with dimD > 1. If

p = 2, assume additionally that n is odd and D 6

�

=

S. Then either the dual Specht

module (S

(n�2;2)

)

�

or the Young module Y

(n�2;2)

(or both) is a submodule of

End

F

(D).

Proof. Assume �rst that p > 2, n 6� 1; 2 (mod p) or p = 2, n � 3 (mod 4). By

Lemmas 1.2(i) and 1.3(ii), we have M

(n�2;2)

�

=

M

(n�1;1)

�D

(n�2;2)

. Moreover,

Y

(n�2;2)

�

=

(S

(n�2;2)

)

�

�

=

D

(n�2;2)

, and the result follows from Corollary 1.7.

Now let p > 2 and n � 1 (mod p). By Lemma 1.4 and Corollary 1.7, there

must exist a homomorphism � : M

(n�2;2)

! End

F

(D) which does not factor

through the surjection M

(n�2;2)

! M

(n�1;1)

. If � is an injection then Y

(n�2;2)

is a submodule of End

F

(D). Otherwise, in view of Lemma 1.2(ii), the kernel of

the restriction � j Y

(n�2;2)

is 1, but Y

(n�2;2)

=1

�

=

(S

(n�2;2)

)

�

.

Finally, the cases p > 2, n � 2 (mod p) and p = 2, n � 1 (mod 4) are

considered similarly to the case n � 1 (mod p) using Lemmas 1.2(iii), 1.3(i)

and Corollary 1.7.

The following result covers a major part of the Main Theorem.

Theorem 2.2. Let D

�

; D

�

be two irreducible F�

n

-modules of dimensions > 1.

If p = 2, assume additionally that n is odd. Then D

�


D

�

is not irreducible.

Proof. For n � 3 the result is trivial since irreducible modules have dimension

at most 2. Assume that n � 4.

If p = 2 and n is odd then no tensor product of the spinor module S with

a non-trivial irreducible module is irreducible by [4, 3.1]. So from now on we

assume that D

�

;D

�

6

�

=

S.

It is enough to prove that the space

End

F�

n

(D

�


D

�

)

�

=

Hom

F�

n

(End

F

(D

�

);End

F

(D

�

))

has dimension greater than 1.

For any irreducible F�

n

-module D, the module End

F

(D) is selfdual, with

1

�

n

appearing exactly once in its socle and head.

5



Assume �rst that p > 2, n 6� 1; 2 (mod p) or p = 2, n � 3 (mod 4). Then it

follows from Lemma 2.1 that 1

�

n

�D

(n�2;2)

appears in the socle of End

F

(D

�

),

as in this case we have Y

(n�2;2)

�

=

(S

(n�2;2)

)

�

�

=

D

(n�2;2)

by Lemmas 1.2 and

1.3 (and we have assumed that D

�

6

�

=

S). As End

F

(D

�

) is self-dual, the same

argument also shows that 1

�

n

� D

(n�2;2)

appears in the head of End

F

(D

�

).

Thus,

dimHom

F�

n

(End

F

(D

�

);End

F

(D

�

)) > 1:

Set N

1

:= S

(n�2;2)

and N

2

:= Y

(n�2;2)

. By Lemma 2.1, either N

�

1

or N

2

is

a submodule of End

F

(D

�

). By duality, either N

1

or N

�

2

�

=

N

2

is a quotient

module of End

F

(D

�

).

Now assume that p > 2 and n � 2 (mod p). By Lemma 1.2(iii), the trivial

module 1

�

n

is not a composition factor of N

i

; i = 1; 2. So a module of the

form 1

�

n

� N

i

is a quotient module of End

F

(D

�

), and a module of the form

1

�

n

�N

�

j

is a submodule of End

F

(D

�

). However,

dimHom

F�

n

(1

�

n

�N

i

;1

�

n

�N

�

j

) > 1;

for any i; j, which again implies dimHom

F�

n

(End

F

(D

�

);End

F

(D

�

)) > 1:

Next, assume that p > 2, n � 1 (mod p) or p = 2, n � 1 (mod 4). By

Lemmas 1.2(ii) and 1.3(i), the trivial module 1

�

n

is not a submodule of N

�

1

. So

if N

2

is not a submodule of End

F

(D

�

) then 1

�

n

�N

�

1

is. Dually, if N

2

is not a

quotient module of End

F

(D

�

) then 1

�

n

�N

1

is. Now, the result follows from

the fact that dimHom

F�

n

(X;Y ) > 1 where X is N

2

or 1

�

n

�N

1

, and Y is N

2

or 1

�

n

�N

�

1

.

To consider the remaining cases of the Main Theorem we need the following

Proposition 2.3. Let D

�

and D

�

be two irreducible F�

n

-modules such that

the restrictions D

�

#

F�

n�1

and D

�

#

F�

n�1

are not irreducible. Then D

�


D

�

is

not irreducible.

Proof. First note that dimEnd

F�

n�1

(D

�

#

F�

n�1

) > 1, since D

�

#

F�

n�1

is re-

ducible and self-dual. The same is true for D

�

. As

Hom

F�

n

(M

(n�1;1)

;End

F

(D))

�

=

End

F�

n�1

(D#

F�

n�1

);
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we conclude that

dimHom

F�

n

(M

(n�1;1)

;End

F

(D)) > 1 for D = D

�

or D

�

: (1)

We know that End

F

(D) is a self-dual module, and 1

�

n

appears in its socle

and head. By Lemma 1.1 and (1), we have that either M

(n�1;1)

or (S

(n�1;1)

)

�

is a submodule of End

F

(D

�

), and that either M

(n�1;1)

or S

(n�1;1)

is a quotient

of End

F

(D

�

). Now, as in the proof of Theorem 2.2, we may conclude that

dimEnd

F�

n

(D

�


D

�

) = dimHom

F�

n

(End

F

(D

�

);End

F

(D

�

)) > 1:

Let p = 2 and

� = (�

1

> �

2

> � � � > �

r

> 0)

be a 2-regular partition. By [9, Theorem D] (or by [3]), the restriction D

�

#

�

n�1

is irreducible if and only if �

1

� �

2

� � � � � �

r

(mod 2). Now, the Main

Theorem follows from Theorem 2.2 and Proposition 2.3.
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