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INTRODUCTION

Let F' be a field, and ¥, be the symmetric group on n letters. In this paper
we address the following question: given two irreducible F'3,-modules D; and
Dy of dimensions greater than 1, can it happen that Dy ® D5 is irreducible?
The answer is known to be ‘no’ if char F = 0 [12] (see also [2] for some gener-
alizations). So we assume from now on that F' has a positive characteristic p.

The following conjecture was made in [4]:

Conjecture. Let D; and Dy be two irreducible F'¥,,-module of dimensions
> 1. Then Dy ® D5 is irreducible if and only if p = 2, n = 2 4 4] for some
positive integer /, one of the modules corresponds to the partition (2/42, 2]) and
the other corresponds to a partition of the form (n —2j — 1,25 +1), 0 <j <.

Moreover, in the exeptional cases one has

D22 o p(n=2i-1,2+1) o0 [(20+1-5,21=j,j+1,5)

The main result of this paper is the following theorem which establishes a

big part of the conjecture.

Main Theorem. Let D* and D* be two irreducible FX,-modules of dimen-

sions > 1. Assume that D* ® D" is irreducible. Then p = 2, n is even, and
if

A=A >X > >N >0) and p= (1 >p2 > > ps >0)
then My =Xg =--- =X, (mod 2) or 1 = pg =+ = ps (mod 2) (or both).
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The result is relevant to the problem of describing maximal subgroups in
finite groups of Lie type, cf. [1, 8]. We note that for the representations of
groups of Lie type in defining characteristic the irreducible tensor products
are not unusual, in view of Steinberg’s tensor product theorem. On the other
hand, the case of groups of Lie type in a non-defining characteristic (including
characteristic 0) has been considered recently by Magaard and Tiep [11]. They
have shown that in most cases there are no irreducible tensor products.

In the case of the alternating groups we note that even in characteristic 0
there are (infinitely many) examples of (non-trivial) irreducible tensor products
for alternating groups; however all of them are described [2].

Finally we note that the case p = 2 seems to be very interesting because it is

really exceptional. For example, it was observed in [4] that in this case one has

DWHLY g p+22) & pRIHL2L) ,1q  pTY) g p64) & pA3.2.1)

(see section 1 for notation). We refer the reader to [4] for further results on

tensor products in characteristic 2 and the relations with the symplectic group.

1. PRELIMINARY RESULTS

If G is a group, Dq,...,D; are irreducible and Vi,...,V,, are arbitrary
FG-modules then we write M = Dy|...|Dy if M is a uniserial FG-module
with composition factors Dq,..., Dy counted from bottom to top, and M ~
Vi|...|Vim if M has a filtration with factors Vi,...,V,, counted from bottom
to top. We denote by 1 = 14 the trivial FG-module. If M is any F'G-module,
the space Endp(M) is an FG-module in a natural way, and Endpg(M) is the
space of G-invariants of Endp(M). We denote by M* the dual module to M.

We refer the reader to [5, 6, 7] for the standard facts and notation of the
representation theory of ¥,. In particular, D is the irreducible F¥,-module
corresponding to a p-regular partition A of n. Given any partition y of n, one
associates to it the Young subgroup X,,, the Specht module S*, the permutation
module M#, and the Young module Y#. For example, M* = (lgﬂ)TE”. The

Young modules can be characterized as the indecomposable summands of the
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permutation modules M*. The modules D*, M*, and Y* are known to be
self-dual.

We will need some information on the submodule structure of the permuta-
tion modules ML) and M("=22)_ The proof of the next three lemmas is

obtained by applying [5, 17.17, 24.15] and the ‘Nakayama Conjecture’ [7, 6.1.21,
2.7.41].

Lemma 1.1. The module M 1Y is isomorphic to D" 1D @1 if n £ 0
(mod p), and M1 = 1| D-1LD|1 ~ 1|(SC-LD)* otherwise.

Lemma 1.2. Letp > 2 and n > 4.

(i) If n # 1,2 (mod p) then M(=22) = y(n=22) gy pr(n=11) yhere
y(n—22) o g(n-22) ~ p(n-2,2)
(ii) If n =1 (mod p) then M(—22) =y (=22 g D(n—1.1) ypere
Y(n-2.2) — 1|p(-22)[1 ~ 1|(S(-22))*,
(iii) Ifn =2 (mod p) then M(=22) 2 Y("=22) @1 where
y(n=22) — pln=1.1)| pn=22)| pn—1.1) , pln=1.1)|(§n-2.2))x,
We will only need the corresponding results in the case p = 2 when n is odd:

Lemma 1.3. Let p =2 and n > 4 be odd.

(i) If n=1 (mod 4) then M(»~22) =y (=22) g D=L1) yhere
Y(n—2,2) — 1|D(n—2,2)|1 ~ 1|(s(n—2,2))*.

(ii) If n =3 (mod 4) then M™"=22) =2 y(=22) g pf(n=1L1) yhere Y (?=22) =
D(n_QaQ)‘

Lemma 1.4. Let n > 4, and assume that n is odd if p = 2. Then MO=LY g
a quotient of M("—22),

Proof. This follows from Lemmas 1.1, 1.2 and 1.3. U
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Unfortunately the result of Lemma 1.4 is not true when p = 2 and n is even.

We write ¥,,_5 o for the Young subgroup Yn-22) = Xp—2xX9. The following

two results from [10] will be crucial.

Theorem 1.5. [10] Let p > 2 and n > 4. Assume that V is an FX,-module
such that the alternating group A, < 3, does not act trivially on V. Then

dim EndFEn_1 (V\LFEnfl) < dim EndFEn—2,2 (V\LFZ

n72,2)

Let p = 2. If n = 21 is even we write S for the irreducible module D{(+14=1)
and if n = 20 + 1 is odd we write S for DUTLD, We call S the spinor represen-

tation of X,,.

Theorem 1.6. [10] Let p =2, n > 4, and D be a non-trivial irreducible F3,,-

module. Then
dimEndpy, , (Dlpy, ,) < dim Endpgn%a(DLan%J)
unless n is odd and D =2 S is the spinor module.

Corollary 1.7. Letn > 4, and D be an irreducible F¥3, module with dim D >
1. Then

dim Homps, (M"22)  Endp(D)) > dim Homps, (M ™YY Endp(D)).
unless n is odd and D =2 S is the spinor module.

Proof. The corollary follows immediately from Theorems 1.5, 1.6 and the iso-

morphism

HOIIIFE” (MV, EndF(D)) = Endpgu (Dinu),

which comes from the Frobenius reciprocity. O

2. MAIN RESULT

The following technical result turns out to be the key.
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Lemma 2.1. Let n > 4 and D be a simple FX,-module with dimD > 1. If
p = 2, assume additionally that n is odd and D 2 S. Then either the dual Spechit
module (S™=22)* or the Young module Y"=22) (or both) is a submodule of
Endg (D).

Proof. Assume first that p > 2, n # 1,2 (mod p) or p =2, n =3 (mod 4). By
Lemmas 1.2(i) and 1.3(ii), we have M("=22) = pf(n=1.1) @ p(»=22)  Moreover,
Yy (=22) 2= (§(n=2.2)yx = D(»=22) and the result follows from Corollary 1.7.

Now let p > 2 and n = 1 (mod p). By Lemma 1.4 and Corollary 1.7, there
must exist a homomorphism 6 : M(»~22) — Endp(D) which does not factor
through the surjection M (=22 — ML) If § is an injection then Y ("~22)
is a submodule of Endp (D). Otherwise, in view of Lemma 1.2(ii), the kernel of
the restriction 6 | Y(»=22) is 1, but Y(»~22) /1 == (§(n=2.2))*,

Finally, the cases p > 2, n = 2 (mod p) and p = 2, n = 1 (mod 4) are
considered similarly to the case n = 1 (mod p) using Lemmas 1.2(iii), 1.3(i)

and Corollary 1.7. O

The following result covers a major part of the Main Theorem.

Theorem 2.2. Let D*, D" be two irreducible F¥,-modules of dimensions > 1.

If p =2, assume additionally that n is odd. Then D* ® D" is not irreducible.

Proof. For n < 3 the result is trivial since irreducible modules have dimension
at most 2. Assume that n > 4.

If p =2 and n is odd then no tensor product of the spinor module S with
a non-trivial irreducible module is irreducible by [4, 3.1]. So from now on we
assume that DA DH 2 S.

It is enough to prove that the space
Endpys, (D* ® D*) = Hompy, (Endp(D?), Endp(D*))

has dimension greater than 1.
For any irreducible F'¥,,-module D, the module Endp (D) is selfdual, with

1y, appearing exactly once in its socle and head.
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Assume first that p > 2, n # 1,2 (mod p) or p =2, n =3 (mod 4). Then it
follows from Lemma 2.1 that 15, ® D("=22) appears in the socle of Endp (D),
as in this case we have Y (=22 = (§(n=2.2)yx =~ D(n=22) hy Lemmas 1.2 and
1.3 (and we have assumed that D* % S). As Endp(D?) is self-dual, the same
argument also shows that 1y, @ D" 22) appears in the head of Endp(D*).
Thus,

dim Hompys, (Endp(D?), Endp(D*)) > 1.

Set Ny := S22 and N, := Y(»=22)| By Lemma 2.1, either N or N is
a submodule of Endr(D#). By duality, either N; or Ny = Ny is a quotient
module of Endy(D?).

Now assume that p > 2 and n = 2 (mod p). By Lemma 1.2(iii), the trivial
module 1y, is not a composition factor of N;, i = 1,2. So a module of the
form 1y, @ N; is a quotient module of Endr(D?), and a module of the form

1y, ® N7 is a submodule of Endr(D*). However,
dimHompy, (1x, & N;, 1y, & N;) > 1,

for any i, 7, which again implies dim Hompy, (Endg(D?), Endp(D*)) > 1.
Next, assume that p > 2, n = 1 (mod p) or p = 2, n = 1 (mod 4). By
Lemmas 1.2(ii) and 1.3(i), the trivial module 1y, is not a submodule of N}. So
if Ny is not a submodule of Endp(D#) then 1x;, @ Ny is. Dually, if Ny is not a
quotient module of Endz(D?) then 1y, @ Ny is. Now, the result follows from
the fact that dim Hompsy, (X,Y) > 1 where X is Ny or 1y, ® N1, and Y is Ny
or 1y, @ NY. O

To consider the remaining cases of the Main Theorem we need the following

Proposition 2.3. Let D* and D* be two irreducible F¥,-modules such that
the restrictions D/\inn,l and D*|py, | are not irreducible. Then D*® D* is

not irreducible.

Proof. First note that dimEndps, , (D gy, ) > 1, since D py, | is re-

ducible and self-dual. The same is true for D#. As

Homps, (M"Y, Endp(D)) 2 Endps,_, (Dlpx, ),
6



we conclude that
dim Homps,, (M ™YY Endp(D)) > 1 for D = D* or D*. (1)

We know that Endp(D) is a self-dual module, and 1y, appears in its socle
and head. By Lemma 1.1 and (1), we have that either M(™~11) or (S(n=1:1))*
is a submodule of Endp (D), and that either M"=1Y or S*=1L1) is a quotient

of Endp(D?). Now, as in the proof of Theorem 2.2, we may conclude that

dim Endpy, (D* ® D*) = dimHompy, (Endp (D), Endp(D*)) > 1.

Let p=2 and

A=A > > > A >0)

be a 2-regular partition. By [9, Theorem D] (or by [3]), the restriction D]y
is irreducible if and only if Ay = Ay = --- = A\, (mod 2). Now, the Main

Theorem follows from Theorem 2.2 and Proposition 2.3.
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