
IRREDUCIBLE TENSOR PRODUCTS OVER ALTERNATING GROUPS

CHRISTINE BESSENRODT AND ALEXANDER S. KLESHCHEV

Abstract. We classify irreducible tensor products of modular representations of the alter-

nating group over an algebraically closed �eld of characteristic p > 5.

Introduction

Let F be an algebraically closed �eld of characteristic p � 0, and A

n

be the alternating

group on n letters. In this paper we study tensor decomposable irreducible FA

n

-modules, i.e.

irreducible modules E which can be written as E

�

=

E

1


E

2

for non-trivial FA

n

-modules E

1

and E

2

. We refer the reader to [28, 2, 14, 3, 15] for results on the similar problem for the

symmetric group �

n

. For example, the following theorem is part of [3, Main Theorem].

Theorem A. Let D

1

and D

2

be F�

n

-modules of dimensions greater than one. Then D

1


D

2

is reducible unless p = 2 and n is even.

Of course, the same result will follow for FA

n

-modules E

1

and E

2

, which lift to the sym-

metric group �

n

. However, some FA

n

-modules do not lift, and we need further investigation

to complete the problem.

To describe our main result we �rst explain how the irreducible FA

n

-modules can be

parametrised. We start from the symmetric group, referring the reader to [16] for the standard

facts on its representation theory. In particular, to every p-regular partition � of n one can

associate the irreducible F�

n

-module D

�

. Assume that p > 2 and denote by sgn the 1-

dimensional sign representation of �

n

. Then D

�


 sgn is irreducible so there should exist a

p-regular partition �

M

with

D

�


 sgn

�

=

D

�

M

: (1)

The bijection � 7! �

M

on the set of p-regular partitions is called the Mullineux bijection. This

bijection can be described explicitly using a combinatorial algorithm suggested by Mullineux,

see [22, 13, 4, 27].

Moreover, it follows easily from Cli�ord theory (see e.g. [12]) that the restriction D

�

#

A

n

is irreducible if and only if D

�


 sgn 6

�

=

D

�

. If this is the case, we denote this irreducible

restriction by E

�

. Of course, E

�

�

=

E

�

M

. On the other hand, if D

�


 sgn

�

=

D

�

, then the

restriction D

�

#

A

n

splits as a direct sum E

�

+

�E

�

�

of two irreducible FA

n

-modules. Finally,

fE

�

j � 6= �

M

g [ fE

�

+

; E

�

�

j � = �

M

g

is a complete set of irreducible FA

n

-modules, and distinct modules L and M from this set

are isomorphic if and only if L

�

=

E

�

, M

�

=

E

�

M

for some p-regular partition � with � 6= �

M

.

If � = �

M

we say that � is Mullineux-�xed.

Gathering together equal parts of � we can represent it in the form � = (l

a

1

1

; l

a

2

2

; : : : ; l

a

k

k

)

where l

1

> l

2

> � � � > l

k

> 0 and all a

i

> 0. Then the partition � is called a Jantzen-Seitz

partition (or JS-partition for short) if it is p-regular and p divides l

i

� l

i+1

+a

i

+a

i+1

for all i

with 1 � i < k. These partitions are important because the restriction D

�

#

�

n�1

is irreducible

if and only if � is a JS-partition, cf. [19, 20, 11].
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The number a

1

+ a

2

+ � � � + a

k

is denoted h(�) and called the height of �.

Now we can state our main result, which describes tensor decomposable FA

n

-modules in

characteristic p > 5. The case p = 0 has been treated in [2] (see also [28]), but the cases

p = 2; 3 and 5 remain open.

Main Theorem. Let p > 5 and E

1

; E

2

be FA

n

-modules of dimensions greater than one.

Then E

1


 E

2

is reducible with the only exception of E

(n�1;1)


 E

�

�

where p6 jn and � is a

JS-partition with p6 jh(�). In the exceptional case we have E

(n�1;1)


 E

�

�

�

=

E

�

, where the

Young diagram of � is obtained from that of � by removing the top removable node and adding

the bottom addable one.

Example. (i) Let p = 7. Then E

(28;1)


E

(15;3;2

5

;1)

�

�

=

E

(14;3;2

5

;1

2

)

.

(ii) To emphasize that the situation is really exceptional for small p, we note using [18,

p. 2] that E

(3;2)

+


 E

(3;2)

�

�

=

E

(4;1)

for p = 2, and E

(4;1

2

)

+


 E

(4;1

2

)

�

�

=

E

(4;2)

for p = 3. But we

believe that the main theorem should still hold for p = 5, and, with few exceptions, for p = 3.

We refer the reader to [14] and [15] for some exceptional phenomena in characteristic 2.

The proof of the Main Theorem is given in section 3. Note that in view of Theorem A, we

only need to consider tensor products of the form E

�


E

�

�

and E

�

�


E

�

�

.

1. Preliminaries

Throughout the paper we assume that charF = p > 2.

Let G be a group. We write 1

G

for the trivial FG-module. If M is an FG-module and

D

1

; : : : ;D

k

are irreducible FG-modules then the notation M = D

1

j : : : jD

k

means that M is

a uniserial FG-module with composition factors D

1

; : : : ;D

k

counted from bottom to top.

We record two well-known general facts (for the �rst one see the explanations in [5, 5.1]).

Lemma 1.1. Let G be a group, M be an FG-module and H � G be a normal subgroup of

index [G : H] prime to p. Then soc(M#

H

)

�

=

soc(M)#

H

.

Lemma 1.2. Let X; Y; Z be FG-modules. Assume that Z � X�Y and that Z has a simple

socle. Then X or Y (or both) contains an isomorphic copy of Z as a submodule.

Proof. Let f : Z ! X � Y be an embedding, and �

X

, �

Y

be projections of X � Y to X,

Y , respectively. Then �

X

� f or �

Y

� f must be an injection, since otherwise both maps

annihilate the simple socle of Z, which is impossible as �

X

� f + �

Y

� f = f is injective.

Let � 2 �

n

n A

n

. Then A

n

! A

n

; g 7! �g�

�1

is an (outer) automorphism of A

n

. If M is

an FA

n

-module we can use this automorphism to twist the action of A

n

on M : Let

g �m := �g�

�1

m; g 2 A

n

; m 2M: (2)

This de�nes a new FA

n

-module denoted by

�

M . The following lemma and corollary follow

from Cli�ord theory and the de�nitions:

Lemma 1.3. Let � be a p-regular partition of n with � = �

M

. Then

�

E

�

�

�

=

E

�

�

.

Corollary 1.4. Let � be a p-regular partition of n with � = �

M

. Then we have isomorphisms

of FA

n

-modules:

�

Hom

F

(E

�

�

; E

�

�

)

�

=

Hom

F

(E

�

�

; E

�

�

);

�

Hom

F

(E

�

�

; E

�

�

)

�

=

Hom

F

(E

�

�

; E

�

�

):

Now we show that partitions � with few parts are usually not Mullineux-�xed.

Lemma 1.5. [24, 1.9] Let n � 5, and � be a partition of n.

(i) If h(�) � 2 then h(�

M

) 6= h(�). In particular, � 6= �

M

.
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(ii) If p > 3 and h(�) = 3 then �

M

6= �, except for the cases where p > 5 and � is one of

the following (3; 1

2

), (3; 2; 1), (3

2

; 2), (3

3

).

(iii) If p > 5 and h(�) = 4 then �

M

6= �, except for the cases where p > 7 and � is one of

the following: (4; 1

3

), (4; 2; 1

2

), (4; 3; 2; 1), (4; 3

2

; 1), (4

2

; 2

2

), (4

2

; 3; 2), (4

3

; 3), (4

4

).

In the next two lemmas we investigate when `rectangular' and `near rectangular' partitions

are Mullineux-�xed:

Lemma 1.6. Let a < p and � = (l

a

). Then �

M

= � if and only if l = a and p > 2l � 1.

Proof. Note that � is a p-core if and only if l+a�1 < p. In this case �

M

= �

t

, the transpose

partition, see e.g. [6, 4.1] or [8, 2.1], and so � = �

M

means l = a. If � is not a p-core then

the height of �

M

is p� a 6= a = h(�), so � 6= �

M

, see e.g. [8, 2.4].

Lemma 1.7. Let a

1

; a

2

< p and � = ((l + 1)

a

1

; l

a

2

). Then �

M

= � if and only if � = (2; 1)

and p > 3.

Proof. The proof is similar to that of Lemma 1.6. If � is a p-core, we must have � = �

t

by

[6, 4.1] or [8, 2.1], which is only possible if � = (2; 1) and p > 3. Now, we may assume that

� is not a p-core. If h(�) � p� 1, the result follows for example from [1, 2.2]. Otherwise the

height of �

M

is p� h(�) 6= h(�), so � 6= �

M

.

As in [16], we denote by S

�

the Specht module over the symmetric group �

n

corresponding

to a partition �. By construction, S

�

is a submodule of the permutation module M

�

. The

module M

�

is known to be self-dual, so (S

�

)

�

is naturally a quotient module of M

�

. We are

especially interested in two row partitions. For such a partition (n� k; k) denote by Y

(n�k;k)

the block component of M

(n�k;k)

containing the Specht module S

(n�k;k)

�M

(n�k;k)

. We will

use the description of the blocks of the symmetric group known as `Nakayama's conjecture',

see for example [17, 2.7.41, 6.1.21]. Now we describe the submodule structure of Y

(n�k;k)

:

Lemma 1.8. [8, 3.3] Let k � 0, p > k and n � 2k. If there exists l such that 0 � l < k and

n � k + l � 1 (mod p) then

S

(n�k;k)

= D

(n�l;l)

jD

(n�k;k)

;

Y

(n�k;k)

= D

(n�l;l)

jD

(n�k;k)

jD

(n�l;l)

; and

Y

(n�k;k)

=D

(n�l;l)

�

=

(S

(n�k;k)

)

�

:

Otherwise Y

(n�k;k)

= S

(n�k;k)

�

=

(S

(n�k;k)

)

�

�

=

D

(n�k;k)

.

Lemma 1.8 immediately implies the following

Corollary 1.9. Let k � 0, p > k and n � 2k. If there exists l such that 0 � l < k and

n � k + l � 1 (mod p) then

dimEnd

F�

n

(Y

(n�k;k)

) = 2;

dimHom

F�

n

(S

(n�k;k)

; Y

(n�k;k)

) = 1;

dimHom

F�

n

(Y

(n�k;k)

; (S

(n�k;k)

)

�

) = 1;

dimHom

F�

n

(S

(n�k;k)

; (S

(n�k;k)

)

�

) = 1:

Otherwise, all four homomorphism spaces above are 1-dimensional.

Corollary 1.10. The socles of Y

(n�k;k)

#

A

n

and (S

(n�k;k)

#

A

n

)

�

are simple.

Proof. This follows from Lemmas 1.8, 1.1 and 1.5(i).

Sometimes we will denote Y

(n�k;k)

by X

k

1

and (S

(n�k;k)

)

�

by X

k

2

. The next result will be

used to prove that certain homomorphism spaces are large enough.
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Lemma 1.11. Let k = k

1

> k

2

> � � � > k

r

� 0 be integers, p > k, n � 2k, and M;N be

F�

n

-modules. Assume that for some i

j

; i

0

j

2 f1; 2g the modules (X

k

j

i

j

)

�

are quotients of M

and the modules X

k

j

i

0

j

are submodules of N , j = 1; 2; : : : ; r. Then dimHom

F�

n

(M;N) � r.

Proof. For r = 1 the claim follows immediately from Corollary 1.9. Assume r = 2 and

n � k

1

+ k

2

� 1 (mod p). Then Lemma 1.8 implies (X

k

2

i

2

)

�

�

=

D

(n�k

2

;k

2

)

; and (X

k

1

i

1

)

�

�

=

S := D

(n�k

2

;k

2

)

jD

(n�k

1

;k

1

)

or (X

k

1

i

1

)

�

�

=

Y := D

(n�k

2

;k

2

)

jD

(n�k

1

;k

1

)

jD

(n�k

2

;k

2

)

: If (X

k

1

i

1

)

�

= S

then (X

k

1

i

1

)

�

and (X

k

2

i

2

)

�

have di�erent simple heads, so (X

k

1

i

1

)

�

� (X

k

2

i

2

)

�

is a quotient of M .

Otherwise, (X

k

1

i

1

)

�

�

=

Y is a quotient of M . Similarly, either X

k

1

i

0

1

�X

k

2

i

0

2

or Y is a submodule

of N . By Corollary 1.9 again, we conclude that dimHom

F�

n

(M;N) � 2.

Now observe that for any 1 � s < t � r such that n 6� k

s

+ k

t

� 1 (mod p) the modules

X

k

s

i

s

and X

k

t

i

t

are in di�erent blocks by virtue of Nakayama's conjecture. So the general case

follows from the argument in the special cases considered above.

Corollary 1.12. Let k = k

1

> k

2

> � � � > k

r

� 0 be integers, p > k, n � 2k, and M;N be

FA

n

-modules. Assume that for some i

j

; i

0

j

2 f1; 2g the modules (X

k

j

i

j

#

A

n

)

�

are quotients of M

and the modules X

k

j

i

0

j

#

A

n

are submodules of N , j = 1; 2; : : : ; r. Then dimHom

FA

n

(M;N) � r.

Proof. Repeat the proof of Lemma 1.11 using Lemma 1.5 and Corollary 1.10.

The following two results verify some assumptions of Lemma 1.11 for the F�

n

-module

End

F

(D

�

).

Theorem 1.13. [24, 2.3, 2.4] Let p > k > 1, n � 2k, and � be a p-regular partition of n

satisfying h(�); h(�

M

) � k. Then Y

(n�k;k)

or (S

(n�k;k)

)

�

(or both) is a submodule of the

self-dual module End

F

(D

�

).

Proposition 1.14. Let p > 5, n � 8, and � = (m; k) be a two row partition with k � 2.

(i) If m 6� k � 2 (mod p) and m > k then Y

(n�3;3)

or (S

(n�3;3)

)

�

(or both) is a submodule

of End

F

(D

�

).

(ii) If m � k � 2 (mod p) or m = k then Y

(n�4;4)

or (S

(n�4;4)

)

�

(or both) is a submodule

of End

F

(D

�

).

Proof. This follows from [24, 2.4] and [8, 4.12].

In section 3 it will be convenient to assume that n is not too small, so we deal with small

cases here.

Lemma 1.15. Let p > 5.

(i) For n � 9 the only (non-trivial) irreducible tensor products are E

(8;1)


E

(3

3

)

�

�

=

E

(4;3;2)

.

(ii) For 10 � n � 16 there are no irreducible tensor products of the form E

�

�


E

�

�

.

Proof. (i) Follows for example from [9, 18], (ii) follows by dimensions using GAP.

2. Restriction and induction

In this section we deal with results on induction ind

�

n+1

�

n

and restriction res

�

n

�

n�1

. The list

of notions de�ned for example in [22], [7] and used here is as follows.

� = f(i; j) 2 N � N j j � �

i

g is the Young diagram of the partition � = (�

1

� �

2

� : : : )

(we do not distinguish between partitions and their Young diagrams);

(i; j) 2 N � N is called a node;

(i; �

i

) 2 � is called a removable node (of �) if �

i

> �

i+1

;

(i; �

i

+ 1) is called an addable node (for �) if i = 1 or i > 1 and �

i

< �

i�1

;

4



�

A

= � n fAg = (�

1

; : : : ; �

i�1

; �

i

� 1; �

i+1

; : : : ) is a partition of n� 1 obtained by removing

a removable node A = (i; �

i

) from �;

�

B

= � [ fBg = (�

1

; : : : ; �

i�1

; �

i

+ 1; �

i+1

; : : : ) is a partition of n+ 1 obtained by adding

an addable node B = (i; �

i

+ 1) to �;

resA = j � i (mod p) is the (p)-residue of a node A = (i; j).

A removable node A of � is called normal if for every addable node B above A with resB =

resA there exists a removable node C(B) strictly between A and B with resC(B) = resA,

and such that B 6= B

0

implies C(B) 6= C(B

0

). A removable node is called good if it is the

lowest among the normal nodes of a �xed residue. An addable node B is called conormal if

for every removable node A below B with resA = resB there exists an addable node C(A)

strictly between B and A with resC(A) = resB, and such that A 6= A

0

implies C(A) 6= C(A

0

).

An addable node is called cogood if it is the highest among the conormal nodes of a �xed

residue.

Theorem 2.1. Let D

�

be an irreducible F�

n

-module.

(i) [20, Theorem D],[21, 0.6]. The restriction D

�

#

�

n�1

is irreducible if and only if � is a

JS-partition, which is equivalent to the fact that the top node A of � is its only normal

node. In this case D

�

#

�

n�1

�

=

D

�

A

.

(ii) The socle of D

�

#

�

n�1

(resp. D

�

"

�

n+1

) is isomorphic to �D

�

A

(resp. �D

�

B

) where the

sum is over all good (resp. cogood) nodes A (resp. B) of �.

(iii) [7, Theorem E(ii)] The induced module D

�

"

�

n+1

is semisimple if and only if all conormal

nodes of � have di�erent residues. In this case we have D

�

"

�

n+1

�

=

�D

�

B

; where the

sum is over all conormal nodes B of �.

(iv) [7, Theorem E(iv)] For any addable node B such that �

B

is p-regular,

[D

�

"

�

n+1

: D

�

B

] =

�

d

B

if B is conormal for �,

0 otherwise

where d

B

denotes the number of conormal nodes C below B (counting B itself) such

that resC = resB.

(v) [7, Theorem E

0

(iv)] For any removable node A such that �

A

is p-regular,

[D

�

#

�

n�1

: D

�

A

] =

�

f

A

if A is normal for �,

0 otherwise

where f

A

denotes the number of normal nodes D above A (counting A itself) such that

resD = resA.

(vi) [7, Theorem E(v)] The dimension dimEnd

F�

n+1

(D

�

"

�

n+1

) is equal to the number of

conormal nodes for �.

The following relation between the Mullineux bijection and (co)good nodes is known (see

[22, x4] or [4, 4.12]):

Lemma 2.2. Let � be a p-regular partition, and A (resp. B) be a good (resp. cogood) node

for � of residue �. Then there exists a unique good (resp. cogood) node A

0

(resp. B

0

) for �

M

of residue �� such that (�

A

)

M

= (�

M

)

A

0

(resp. (�

B

)

M

= (�

M

)

B

0

).

Proof. We prove the result for good nodes, the proof for the cogood ones being similar. By

Theorem 2.1(ii), the socle of D

�

M

#

�

n�1

is isomorphic to �D

(�

M

)

A

0

where the sum is over

the good nodes A

0

of �

M

. On the other hand, since D

�

M

�

=

D

�


 sgn the same socle is

isomorphic to �D

(�

A

)

M

where the sum is over the good nodes A of �. By [25], the number of

nodes in � of residue � is equal to the number of nodes in �

M

of residue ��, and the result

follows.
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We make further remarks on restriction, induction and related combinatorics. The next

lemma follows from the intertwining number theorem [10, 44.5], cf. [23, 4.1]:

Lemma 2.3. Let V be an F�

n

-module. Then

dimEnd

F�

n+1

(V "

�

n+1

) = dimEnd

F�

n

(V ) + dimEnd

F�

n�1

(V #

�

n�1

):

Lemma 2.4. Let D

�

be an irreducible F�

n

-module. Then

(i) D

�

"

�

n+1

is reducible;

(ii) D

�

"

�

n+1

has at least three composition factors unless D

�

#

�

n�1

is irreducible.

Proof. This follows from Lemma 2.3, using Schur's lemma and self-duality of irreducible

modules over symmetric groups.

The following fact is proved in [24] using modular branching rules:

Proposition 2.5. [24, 3.6] Let � = �

M

be a JS-partition. Then D

�

#

�

n�2

�

=

D

�

�D

�

M

for

some � 6= �

M

.

Corollary 2.6. Let � = �

M

be a JS-partition, and A be the top removable node of �. Then

dimEnd

F�

n

((D

�

#

�

n�1

)"

�

n

) = 3. In particular, �

A

has exactly three conormal nodes.

Proof. For the �rst claim apply Lemma 2.3 to the F�

n�1

-module V = D

�

#

�

n�1

using Propo-

sition 2.5. The second claim follows from the �rst and Theorem 2.1(i)(vi).

The next observation on conormal nodes follows immediately from the de�nitions.

Lemma 2.7. Let � be a p-regular partition of n. The two bottom addable nodes of � are

conormal.

Lemma 2.8. Let � be a JS-partition, and A be the top removable node of �. Then A is a

conormal addable node for the partition �

A

.

Proof. Let A = A

1

; A

2

; : : : ; A

l

(resp. B

1

; B

2

; : : : ; B

l+1

) be the removable (resp. addable)

nodes of � counted from top to bottom. By de�nition of JS-partitions we have resA

i

=

resB

i�1

for i = 2; 3; : : : l. Moreover, resA

1

6= resB

1

= resA

2

, as � is p-regular. Now the

result follows from the de�nition of conormal.

Now we prove our main result on conormal nodes of Mullineux-�xed JS-partitions.

Lemma 2.9. Let n > 3, � = �

M

be a Mullineux-�xed JS-partition, A be the top removable

node of �, and B,C be the two bottom addable nodes of �. Then resA = 0, resB = � resC,

and A;B;C are the only three conormal nodes for �

A

.

Proof. Assume for certainty that B is below C. By Theorem 2.1(i), A is the only normal and

hence the only good node of �. Since � = �

M

, Lemma 2.2 implies resA = 0. By Lemma 2.7,

B and C are conormal nodes for �. Moreover, it follows from Lemma 2.3 and Theorem 2.1(vi)

that B and C are the only two conormal nodes for �. If B and C have distinct residues then

they are cogood and resB = � resC by virtue of Lemma 2.2. Otherwise C is the only

cogood node of �, and this time Lemma 2.2 implies resC = 0. Thus resB = resC = 0, and

so resB = � resC anyway.

By Corollary 2.6 and Theorem 2.1(vi), �

A

has exactly three conormal nodes. Since A is

one of them by Lemma 2.8, it remains to prove that B and C are conormal addable nodes

for �

A

. Observe that if � has at least three removable nodes then B and C are the bottom

addable nodes of �

A

, and so they are conormal by Lemma 2.7. If � = (l

a

1

1

; l

a

2

2

) has exactly

two removable nodes then l

1

� l

2

> 1 by Lemma 1.7, in which case B and C are the bottom

addable nodes of �

A

, and we apply Lemma 2.7 again. Finally, the case where � has only one

removable node is treated using Lemma 1.6.

6



Finally, we prove a couple of very special combinatorial facts which will be used only once.

Lemma 2.10. There are no p-regular Mullineux-�xed partitions � which have exactly two

normal nodes A

1

and A

2

, such that A

2

is below A

1

, resA

1

= resA

2

, �

A

1

is not p-regular,

and �

A

2

is a JS-partition.

Proof. By de�nition, the top removable node is always normal, so it must be A

1

. Since �

A

1

is not p-regular, we have � = (l

a

1

1

; l

a

2

2

; : : : ) where l

1

� l

2

= 1 and a

2

= p � 1. So the second

top removable node of � is normal, hence it must be A

2

. By Lemma 1.7, � must have at least

one more removable node, so let A

3

be the third removable node from the top. If B is the

node immediately above A

2

then B is a removable node of �

A

2

. If a

1

> 1 then B is normal,

which contradicts the fact that �

A

2

is JS. Finally, if a

1

= 1 then A

3

is normal for �

A

2

, which

again contradicts the fact that �

A

2

is JS.

Lemma 2.11. There are no p-regular Mullineux-�xed partitions � which have exactly two

normal nodes A

1

and A

2

such that resA

1

6= resA

2

, �

A

1

and �

A

2

are JS-partitions, and

(�

A

1

)

B

1

= (�

A

2

)

B

2

, where B

i

is the top removable node of �

A

i

.

Proof. Let A

1

be above A

2

, and let � = (l

a

1

1

; l

a

2

2

; : : : ; l

a

k

k

). Then A

1

is the top removable node

of � and of �

A

2

. So A

1

= B

2

and (�

A

2

)

B

2

= (�

A

2

)

A

1

. Now (�

A

1

)

B

1

= (�

A

2

)

B

2

implies that

A

2

= B

1

, which is only possible if a

1

= 1 and l

1

� l

2

= 1. By Lemma 1.7, we have k � 3 so we

can pick the third removable node from the top, A

3

, say. Since �

A

1

is a JS-partition, we have

resA

3

= resA

1

, hence A

3

is normal for �

A

2

, which is impossible as �

A

2

is a JS-partition.

3. Proof of the main theorem

`Split-non-split' case. Throughout this subsection � and � are p-regular partitions of n

satisfying � 6= �

M

, � 6= (n); (1

n

), � = �

M

. We are interested in tensor products of the form

E

�


E

�

�

. Note that in view of Lemma 1.3, E

�


E

�

+

is irreducible if and only if E

�


E

�

�

is

irreducible.

Lemma 3.1. The product E

�


E

�

�

is irreducible if and only if over �

n

we have D

�


D

�

�

=

D

�

� (D

�


 sgn) with D

�

6

�

=

D

�


 sgn. In this case, E

�


E

�

+

�

=

E

�


E

�

�

�

=

E

�

.

Proof. If E

�


E

�

�

is irreducible then (D

�


D

�

)#

A

n

�

=

(E

�


E

�

+

)� (E

�


E

�

�

) is semisimple,

and so D

�


D

�

is also semisimple, thanks to Lemma 1.1. Moreover, since D

�


sgn

�

=

D

�

, we

have D

�


D

�


 sgn

�

=

D

�


D

�

. So either the tensor product D

�


D

�

has one composition

factor D

�

with D

�


 sgn

�

=

D

�

or it has two composition factors D

�

and D

�


 sgn, with

D

�

6

�

=

D

�


 sgn. But the former option is impossible by Theorem A. The rest is clear.

Theorem 3.2. Let p > 5, n � 10, and E

�

6

�

=

1

A

n

; E

(n�1;1)

. Then E

�


E

�

�

is reducible.

Proof. If E

�


E

�

�

is irreducible then Lemma 3.1 implies

dimHom

F�

n

(End

F

(D

�

);End

F

(D

�

)) = dimEnd

F�

n

(D

�


D

�

) = 2:

We use Lemma 1.11 (and notation therein) to show that the �rst Hom-space above actually

has a larger dimension. Indeed, by Lemma 1.11, it su�ces to show that the following two

conditions are satis�ed:

(a) the modules (X

0

i

0

)

�

, (X

2

i

2

)

�

, and one of the modules (X

3

i

3

)

�

, (X

4

i

4

)

�

for some i

j

2 f1; 2g

are quotients of End

F

(D

�

), and

(b) the modules X

k

i

0

k

are submodules of End

F

(D

�

) for k = 0; 2; 3; 4 and some i

0

j

2 f1; 2g.

But (a) and (b) hold in view of Lemma 1.5(i),(ii), Theorem 1.13 and Proposition 1.14.
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Tensor products involving the natural module. Now we study products of the form

E

(n�1;1)


E

�

�

where � is a Mullineux-�xed partition.

Theorem 3.3. The product E

(n�1;1)


 E

�

�

is irreducible if and only if p6 jn and � is a JS-

partition with p6 jh(�). In this case E

(n�1;1)


E

�

�

�

=

E

�

B

A

�

=

E

�

C

A

, where A is the top removable

node of � and B, C are the two bottom addable nodes for �

A

.

Proof. By Lemma 3.1, E

(n�1;1)


E

�

�

is irreducible if and only if

D

(n�1;1)


D

�

�

=

D

�

�D

�

M

for some � 6= �

M

. To �nd when this happens, note that

M

(n�1;1)


D

�

�

=

(1

�

n�1

)"

�

n


D

�

�

=

(D

�

#

�

n�1

)"

�

n

:

Assume �rst that p6 jn. Then M

(n�1;1)

�

=

D

(n�1;1)

� 1

�

n

. So

(D

�

#

�

n�1

)"

�

n

�

=

D

�

� (D

(n�1;1)


D

�

):

Thus, we have to �nd when (D

�

#

�

n�1

)"

�

n

is a direct sum of three irreducible modules. By

Lemma 2.4, this can only happen if D

�

#

�

n�1

is irreducible. In view of Theorem 2.1(i), this

means that � is a JS-partition or, equivalently, the top removable node A of � is its only

normal node. So, in view of Corollary 2.6 and Theorem 2.1(iii), it remains to �nd when the

three conormal nodes of �

A

have di�erent residues. By Lemma 2.9 this happens if and only

the bottom addable node of � has residue di�erent from 0. But the residue of this node is

�h(�), which implies the required result.

Now assume that pjn. Then M

(n�1;1)

= 1

�

n

jD

(n�1;1)

j1

�

n

. So (D

�

#

�

n�1

)"

�

n

has a �ltra-

tion with layers D

�

, D

(n�1;1)


D

�

, D

�

. In particular, it has four composition factors, exactly

two of which are isomorphic to each other. Assume that D

(n�1;1)


D

�

�

=

D

�

�D

�

M

for some

� 6= �

M

. By Lemma 2.4(i), D

�

#

�

n�1

has at most two composition factors.

If D

�

#

�

n�1

= D

�

A

is irreducible then �

A

has three conormal nodes, see Lemma 2.9. If

these nodes have di�erent residues then (D

�

#

�

n�1

)"

�

n

has three composition factors, giving a

contradiction. So all three conormal nodes of � have the same residue 0, see Lemma 2.9 again.

The top of them, call it C, is cogood and so �

C

A

is p-regular and appears in (D

�

#

�

n�1

)"

�

n

with multiplicity 3, see Theorem 2.1(ii)(iv). This contradiction shows that D

�

#

�

n�1

can not

be irreducible.

Thus, D

�

#

�

n�1

has exactly two composition factors, say D

1

and D

2

. In view of Lemma 2.4,

the restrictions D

i

#

�

n�2

must be irreducible. If D

1

�

=

D

2

then by Theorem 2.1(i)(v), � must

have two normal nodes which satisfy the conditions of Lemma 2.10. Application of this

lemma leads us to a contradiction, so D

1

6

�

=

D

2

. In this case Theorem 2.1 implies that � has

exactly two normal nodes, say A

1

; A

2

, such that resA

1

6= resA

2

, D

�

#

�

n�1

�

=

D

�

A

1

�D

�

A

2

,

and we may assume that D

i

= D

�

A

i

. Observe also that

dimHom

F�

n

(D

�

; (D

�

#

�

n�1

)"

�

n

) = dimEnd

F�

n�1

(D

�

#

�

n�1

) = 2

This implies that

(D

�

#

�

n�1

)"

�

n

�

=

D

�

�D

�

�D

�

�D

�

M

;

whence dimEnd

F�

n

((D

�

#

�

n�1

)"

�

n

) = 6. Now by Lemma 2.3, dimEnd

F�

n�2

(D

�

#

�

n�2

) = 4.

This shows that the irreducible restrictions D

�

A

2

#

�

n�2

and D

�

A

1

#

�

n�2

must be isomorphic

to each other, which is impossible by Theorem 2.1 and Lemma 2.11.
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`Double-split case'. In this subsection � and � are Mullineux-�xed partitions of n. As our

arguments for any product of the form E

�

�


E

�

�

are similar we consider only E

�

+


E

�

+

.

Lemma 3.4. Assume E

�

+


E

�

+

is irreducible. Then

dimHom

FA

n

(End

F

(E

�

+

);End

F

(E

�

+

)) = 1;

dimHom

FA

n

(End

F

(E

�

+

);Hom

F

(E

�

+

; E

�

�

)) � 1;

dimHom

FA

n

(Hom

F

(E

�

+

; E

�

�

);Hom

F

(E

�

�

; E

�

+

)) � 1;

dimHom

FA

n

(Hom

F

(E

�

+

; E

�

�

);Hom

F

(E

�

+

; E

�

+

)) � 1:

Proof. Note that

Hom

FA

n

(End

F

(E

�

+

);End

F

(E

�

+

))

�

=

Hom

FA

n

(E

�

+


E

�

+

; E

�

+


E

�

+

);

which is 1-dimensional by assumptions and Schur's lemma. Moreover,

Hom

FA

n

(End

F

(E

�

+

);Hom

F

(E

�

+

; E

�

�

))

�

=

Hom

FA

n

(E

�

+


E

�

+

; E

�

+


E

�

�

):

If the last space is at least 2-dimensional then the simple module E

�

+


 E

�

+

appears at least

twice in the socle of E

�

+


E

�

�

, which is impossible as dim(E

�

+


E

�

+

) = dim(E

�

+


E

�

�

). Next,

Hom

FA

n

(Hom

F

(E

�

+

; E

�

�

);Hom

F

(E

�

�

; E

�

+

))

�

=

Hom

FA

n

(E

�

�


E

�

�

; E

�

+


E

�

+

);

which is at most 1-dimensional as both modules E

�

+


 E

�

+

and E

�

�


 E

�

�

�

=

�

(E

�

+


 E

�

+

) are

irreducible by assumption. Finally,

Hom

FA

n

(Hom

F

(E

�

+

; E

�

�

);Hom

F

(E

�

+

; E

�

+

))

�

=

Hom

FA

n

(E

�

�


E

�

+

; E

�

+


E

�

+

);

which is at most 1-dimensional asE

�

+


E

�

+

is irreducible, and dimE

�

�


E

�

+

= dimE

�

+


E

�

+

.

Theorem 3.5. Let p > 5 and n > 16. Then E

�

+


E

�

+

is reducible.

Proof. Assume E

�

+


 E

�

+

is irreducible. As n > 16, we have h(�); h(�) � 5 by Lemma 1.5.

So by Theorem 1.13 and self-duality of End

F

(D

�

), the modules (X

k

j

k

)

�

are quotients of

End

F

(D

�

) and the modules X

k

j

0

k

are submodules of End

F

(D

�

) for k = 0; 2; 3; 4; 5, and some

j

k

; j

0

k

2 f1; 2g, see the notation of Lemma 1.11. So the modules (X

k

j

k

#

A

n

)

�

are quotients of

End

F

(D

�

)#

A

n

and the modules X

k

j

0

k

#

A

n

are submodules of End

F

(D

�

)#

A

n

. Note that

End

F

(D

�

)#

A

n

�

=

End

F

(E

�

+

)� End

F

(E

�

�

)�Hom

F

(E

�

+

; E

�

�

)�Hom

F

(E

�

�

; E

�

+

)

for � = � or �. Let us denote

M

1

(�) := End

F

(E

�

+

)� End

F

(E

�

�

); M

2

(�) := Hom

F

(E

�

+

; E

�

�

)�Hom

F

(E

�

�

; E

�

+

):

By Lemma 1.2, Corollary 1.10 and the remarks above, there are numbers r; s 2 f1; 2g and

m; l 2 f0; 2; 3; 4; 5g, m 6= l, such that (X

m

j

m

#

A

n

)

�

, (X

l

j

l

#

A

n

)

�

are quotients of M

r

(�) and

X

m

j

0

m

#

A

n

, X

l

j

0

l

#

A

n

are submodules of M

s

(�). We will show that this contradicts Lemma 3.4.

Indeed, consider for example the case r = 1; s = 2, the remaining three cases being similar.

First, we claim that X

m

j

0

m

#

A

n

and X

l

j

0

l

#

A

n

are submodules of Hom

F

(E

�

+

; E

�

�

). Indeed, by

Corollary 1.4,

M

2

(�) = Hom

F

(E

�

+

; E

�

�

)�Hom

F

(E

�

�

; E

�

+

)

�

=

Hom

F

(E

�

+

; E

�

�

)�

�

Hom

F

(E

�

+

; E

�

�

):

As X

k

j

0

k

#

A

n

�

=

�

(X

k

j

0

k

#

A

n

), we have X

k

j

0

k

#

A

n

is a submodule of Hom

F

(E

�

+

; E

�

�

) if and only if it is

a submodule of

�

Hom

F

(E

�

+

; E

�

�

). Now the claim follows from Lemma 1.2 and Corollary 1.10.

Similarly, (X

m

j

m

#

A

n

)

�

and (X

l

j

l

#

A

n

)

�

are quotients of End

F

(E

�

+

). So, by Corollary 1.12,

we have dimHom

FA

n

(End

F

(E

�

+

);Hom

F

(E

�

+

; E

�

�

)) � 2, giving the desired contradiction with

Lemma 3.4.
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