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Bigness of the tautological line bundle

and degeneracy loci in families of abelian

varieties

Ziyang Gao

Abstract

This note is a compte-rendu of my talks at the conference “Degeneracy of Algebraic
Points” in Spring 2023 at the SLMath (previously known as the MSRI) and at the
ICCM 2023. It aims to give a quick summary on the degeneracy loci in families
of abelian varieties defined and studied in [Gao20a], which plays a crucial role in
the recent solutions of Mazur’s Conjecture B, the Uniform Mordell–Lang Conjec-
ture, and the Relative Manin–Mumford Conjecture. This note is divided into three
parts: motivation (why do we study the degeneracy loci), the definition (what the
degeneracy loci are), and some applications (how the degeneracy loci are applied).
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1 Motivation and bigness of the tautological line
bundle

1.1 Background

Let C be a smooth projective geometrically irreducible curve defined over a number
field K. In 1983, Faltings proved the famous Mordell conjecture.

Theorem 1.1 ([Fal83]) If the genus of the curve C is at least 2, then C(K) is
a finite set.

Recently, the following rather uniform bound on #C(K) was obtained by
Dimitrov–Gao–Habegger, which gives an affirmative answer to Mazur’s Conjec-
ture B [Maz00].
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Theorem 1.2 ([DGH21]) Assume g ≥ 2. Then there exists a constant c =
c(g, [K : Q]) > 0 such that

#C(K) ≤ c1+rankJ(K).

In fact, [DGH21] proves more: the constant c depends only on g when the curve
has large height (in terms of g). Later on, Kühne [Küh21] proved the same bound
for curves of small height. Combining these two results, Theorem 1.2 can be
improved such that c depends only on g. But we remark that #C(K) must depend
on [K : Q], and in the improved bound rankJ(K) still depends on K. We do not
further recall the historical development of Mazur’s Conjecture B in this note but
refer to the survey [Gao21b].

In the proof of Theorem 1.2 and in Kühne’s result mentioned above, a crucial
notion of non-degenerate subvarieties in families of abelian varieties, introduced
by Habegger [Hab13a] and extensively studied by Gao [Gao20a]. Degeneracy loci
were defined in [Gao20a] in the purpose of studying non-degenerate subvarieties
and beyond.

1.2 Basic setup

In this subsection, we set up the basic notation. Let Ag be the moduli space of
principally polarized abelian varieties of dimension g with level-4-structure. Then
each point s ∈ Ag(C) parametrizes a principally polarized abelian variety (As, λs).
Let π : Ag → Ag be the universal abelian variety, i.e. π−1(s) ∼= As for each
s ∈ Ag(C). By [Pin89, Chap. 10], there exists a symmetric line bundle Lg, called
the tautological line bundle on Ag with the following properties:

(i) Lg|π−1(s) gives the polarization λs on As, for each s ∈ Ag(C);
(ii) Lg becomes trivial when restricted to the 0-section of π.

In a more recent work of Yuan–Zhang [YZ21, §6.1], it is proved that Lg extends

to an adelic line bundle L̃g, which we call the tautological adelic line bundle. The
authors also defined ampleness, nefness, and bigness for adelic line bundles in the
same paper.

At this stage, we are ready to define non-degenerate subvarieties of Ag.

1.3 Betti map and Betti form

This subsection can be skipped first. However, it is helpful to understand the definition
and basic properties of non-degenerate subvarieties. Moreover, non-degenerate subvari-
eties were first defined using the Betti map [GH19, DGH21], and then using the Betti
form [DGH21, Prop. 2.3.(iii)], and now there is a new way using the adelic line bundle
[YZ21] which will be presented in the next subsection. And in studying non-degenerate
subvarieties, one needs to shift back and forth among all these definitions.

In the course of studying the relative Manin–Mumford conjecture, Masser and
Zannier introduced the following Betti map; we refer to §3.2 for their work. We give
a short explanation here and refer to [Gao20a, §3] for a precise definition. For any
s ∈ Ag(C), there exists an open neighborhood ∆ ⊆ (Ag)an of s with a real-analytic map

b∆ : Ag|∆ = π−1(∆)→ T2g, (1.1)
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where T2g is the real torus of dimension 2g. Up to shrinking ∆ we may assume that it
is simply-connected. Then one can define a basis ω1(s), . . . , ω2g(s) of the period lattice
of each fiber s ∈ ∆ as holomorphic functions of s. Now each fiber Ag|s = π−1(s) can be
identified with the complex torus Cg/Zω1(s)⊕· · ·⊕Zω2g(s), and each point x ∈ Ag|s(C)
can be expressed as the class of

∑2g
i=1 bi(x)ωi(s) for real numbers b1(x), . . . , b2g(x). Then

b∆(x) is defined to be the class of the 2g-tuple (b1(x), . . . , b2g(x)) ∈ R2g modulo Z2g.
Let X be an irreducible subvariety of Ag, and let x ∈ Xsm(C). The Betti rank of

X at x, denoted by rank(X,x), is defined to be the R–rank of the tangent of b∆ at x, for
any ∆ contains π(x). It is not hard to show that the Betti rank does not depend on the
choice of ∆. The following upper bound is trivially true: For each x ∈ Xsm(C), we have

rank(X,x) ≤ 2 min{g,dimX}. (1.2)

Another useful tool is the Betti form ω on Ag, which is a semi-positive (1, 1)-form;
see for example [Mok91, pp. 374]. Its cohomology class [ω] represents c1(Lg).

Proposition 1.3 Let X be an irreducible subvariety of Ag. The followings are equiva-
lent:

(i) There exists a point x ∈ Xsm(C) such that rank(X,x) = 2 dimX;
(ii) ω|∧ dimX

X 6≡ 0;

(iii) L̃g|X is big as an adelic line bundle.

The equivalence of (i) and (ii) is by [DGH21, Prop. 2.2.(iii)], and the equivalence of (ii)
and (iii) is established in [YZ21, §6.2.2].

1.4 Non-degenerate subvarieties and bigness of the adelic
tautological line bundle

Let X be an irreducible subvariety of Ag.

Definition 1.4 The subvariety X is said to be non-degenerate if L̃g|X is big as
an adelic line bundle.

We make the following remark before moving on. If X is projective, then L̃g|X =
Lg|X , and in this case X is non-degenerate if and and only if Lg|X is a big line
bundle. In particular, if X is contained in one fiber of Ag → Ag, then X is
non-degenerate.

Notice that any X with dimX > g must be degenerate. This follows imme-
diately from (1.2) and Proposition 1.3 (more precisely, the equivalence of (i) and
(iii)). Inspired by this observation, we make the following definition.

Definition 1.5 The subvariety X is called naively degenerate if dimX > g.

At this stage, a natural question to ask is whether all degenerate subvarieties
of Ag are naively degenerate. The answer is no, and an example is given by
[Gao20a, Eg. 8.2]. Nevertheless, the following theorem asserts that all degenerate
subvarieties are built up from naive ones. To ease notation, denote by S := π(X) ⊆
Ag and A := Ag ×Ag

S.

Theorem 1.6 ([Gao20a, Thm. 1.1 with t = 0]) Assume ZX is Zariski dense
in A. Then the followings are equivalent:
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(i) X is degenerate, i.e. L̃g|X is not big;
(ii) there exists a quotient abelian scheme B of A → S, of relative dimension

g′ < g, such that

dimX − dim(ι ◦ p)(X) > g − g′ (1.3)

where p : A → B is the quotient and ι is the modular map

A
p // //

��

B ι //

��

Ag′

��
S

= // S // Ag′ .

An equivalent formulation of (1.3) is: a generic fiber of (ι ◦ p)|X is naively degen-
erate in the abelian scheme ker p over S.

The assumption ZX being Zariski dense in A is a mild condition and often
we can reduce to this case without loss of generality. It can be checked over the
geometric generic fiber of A → S. Indeed, let η be the generic point of S and fix
an algebraic closure of the function field of S. Write Xη for the geometric generic
fiber of π|X . Then Xη is non-empty if and only if π|X : X → S is dominant. In
particular, Aη is an abelian variety over an algebraically closed field containing
the possible reducible Xη. Then ZX is Zariski dense in A if and only if Xη is
non-empty and not contained in a finite union of proper algebraic subgroups of
Aη.

Theorem 1.6 is used to construct non-degenerate subvarieties in abelian
schemes. Two such constructions will be given at the end of §3.1 and are the
ones which are used to prove Mazur’s Conjecture B (Theorem 1.2) and beyond
and the full Uniform Mordell–Lang Conjecture [GGK21].

2 Definition of degeneracy loci

2.1 Weakly special subvarieties

Let A be an abelian variety defined over C, and let Y ⊆ A be an irreducible
subvariety. We say that Y is weakly special if Y is a coset of A, i.e. the translate
of an abelian subvariety by a point.

We wish to generalize this definition to families of abelian varieties.
Let π : A → S be an abelian scheme defined over C. Let C be the maximal

isotrivial abelian subscheme, i.e. the maximal abelian subscheme such that C×SS′
becomes a trivial product C × S′ (with C an abelian variety defined over C) for
some finite covering S′ → S. By an iso-constant of A/S, we mean ρ({c} × S′) for
some c ∈ C, where ρ : A×S S′ → A is the natural projection.

Let Y ⊆ A by an irreducible subvariety. Assume that π|Y is dominant; this
assumption can be achieved by shrinking the base S. We say that Y is weakly
special if the following condition holds true: there exists a finite covering S′ → S
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such that Y = ρ(Y ′), where ρ : A′ := A×SS′ → A is the natural projection, where
Y ′ is the translate of an abelian subscheme of A′/S′ by a torsion section and then
by an iso-constant section.

We remark that this is not the same definition as weakly special subvarieties
of Ag by Pink [Pin05a, Defn. 4.1.(b)]. Nevertheless these two definitions are closed
related by [Gao17a, Prop. 3.3]; see also [Gao20a, Prop. 5.3].

2.2 Definition and properties

Let X be an irreducible subvariety of Ag.

Definition 2.1 For each t ∈ Z, define

Xdeg(t) :=
⋃

Y⊆X irreducible, dimY >0
dimY >dim〈Y 〉ws−dimπ(Y )−t

Y.

Here 〈Y 〉ws is the smallest weakly special subvariety of Ag×Ag
π(Y )→ π(Y ) which

contains Y .

Observe that Xdeg(0) ⊆ Xdeg(1) immediately by definition.

Remark 2.2 Assume that π(X) is a point, so that X is contained in an abelian
variety A. Then the condition dimY > dim〈Y 〉ws−dimπ(Y )− t becomes dimY >
dim〈Y 〉ws − t, because dimπ(Y ) = 0 for any Y ⊆ X.

When t = 0, then dimY > dim〈Y 〉ws cannot hold true for any Y because
Y ⊆ 〈Y 〉ws. So in this case Xdeg(0) = ∅. The same is true for any t ≤ 0.

When t = 1, then dimY > dim〈Y 〉ws − 1 forces Y = 〈Y 〉ws because Y ⊆
〈Y 〉ws. So Xdeg(1) is the union of all positive dimensional cosets of A which are
contained in X. It is then the Ueno locus (or Kawamata locus) of X.

Theorem 2.3 ([Gao20a, Thm. 1.8] and [Gao21a, Prop. 4.2.4]) The subset
Xdeg(t) is Zariski closed in X for every t ∈ Z. Moreover, if X is defined over an
algebraically closed field K ⊆ C, so is Xdeg(t).

The following theorem characterizes when the t-th degeneracy locus in large.
Denote by S := π(X) ⊆ Ag and A := Ag ×Ag

S.

Theorem 2.4 ([Gao20a, Thm. 8.1] for t ≤ 1 and [GH23a, Prop. 4.3] for general t)
Assume that ZX is Zariski dense in A. Then the followings are equivalent:

(i) Xdeg(t) = X;
(ii) there exists a quotient abelian scheme B of A → S, of relative dimension

g′ < g, such that

dimX − dim(ι ◦ p)(X) > g − g′ − t, (2.1)

where p : A → B is the quotient and ι is the modular map

A
p // //

��

B ι //

��

Ag′

��
S

= // S // Ag′ .
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Notice that (ii) of Theorem 2.4 in the case t = 0 is the same as (ii) of Theorem 1.6.
This is not a coincidence. In fact, Theorem 1.6 is proved as a combination of
Theorem 2.4 and Proposition 3.1 below.

3 Applications

In this section, we give some applications of Xdeg(t), notably when t is 0 and 1.
We also briefly explain some other cases.

3.1 Case t = 0

As an application of the mixed Ax–Schanuel theorem for Ag [Gao20b], it is proved
[Gao20a, Prop. 6.1] that:

Proposition 3.1 Let X be an irreducible subvariety of Ag. Then X is degenerate
if and only if Xdeg(0) = X.

Thus Theorem 1.6 follows from Theorem 2.4 with t = 0.
This is also in conformity with our discussions in the case where X is con-

tained in one fixed abelian variety A (equivalently, in a fiber of Ag → Ag). On the
one hand, we have seen below Definition 1.4 that such X is always non-degenerate.
On the other hand, we have shown that Xdeg(0) = ∅ in Remark 2.2, so in view of
Proposition 3.1 such X is always non-degenerate.

Now let us explain the crucial construction for the proof of Mazur’s Conjec-
ture B (Theorem 1.2). Let Mg be the moduli space of pointed curves of genus
g with level-4-structure, then each point s ∈ Mg(C) parametrizes an irreducible
smooth projective genus Cs of genus g and a point Ps ∈ Cs(C). There exists a
universal curve Cg →Mg, i.e. the fiber over s is the curve Cs.

Let Jg := Jac(Cg/Mg). Then there is a natural Mg-immersion Cg → Jg,
which over each s ∈ Mg(C) is the Abel–Jacobi embedding of Cs into Jac(Cs) via

Ps. For each integer M ≥ 1, let C
[M ]
g be the M -th fibered power of Cg →Mg. By

abuse of notation, we also use C
[M ]
g to denote the image of

C[M ]
g ⊆ J[M ]

g → AgM , (3.1)

where the second morphism is the modular map. Theorem 1.6 yields the following
construction.

Theorem 3.2 ([Gao20a, Thm. 1.2’, Cor. A.4 and Rem. A.5]) Assume g ≥
2. For each irreducible S in the Torelli locus in Ag, the subvariety C

[M ]
g ×Ag S of

AgM is non-degenerate if M ≥ 3g−2. Moreover, C
[M ]
g is non-degenerate if M ≥ 4.

It is this construction which was used in [DGH21] and [Küh21].

Another construction derived from Theorem 1.6 is [GGK21, Prop. 3.4] about
the Hilbert scheme and the universal family. The non-degenerate subvariety thus
obtained plays a crucial role in the solution of the full Uniform Mordell–Lang
Conjecture by Gao–Ge–Kühne.
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Theorem 3.3 ([GGK21]) Let g ≥ 1 and l ≥ 1 be two integers. Then there
exists a constant c = c(g, l) with the following property. For any abelian variety
A of dimension g defined over C, any irreducible subvariety X ⊆ A of degree
≤ l, and any finite rank subgroup Γ < A(C), there exists ≤ n := c1+rkΓ points
x1, . . . , xn ∈ A(C) and abelian subvarieties B1, . . . , Bn such that xi + Bi ⊆ X for
each i ∈ {1, . . . , n} and

X(C) ∩ Γ =

n⋃
i=1

(xi +Bi)(C) ∩ Γ.

This theorem is a uniform quantitative version of the Mordell–Lang conjecture
proved by Faltings [Fal91], and his proof follows the approach of the (second) proof
of the Mordell conjecture by Vojta [Voj91]. This uniform version was conjectured
by David–Philippons [DP07].

We finish this subsection with the following remark. Yuan [Yua21] gave a
second proof to Theorem 1.2 and the more general Uniform Mordell–Lang Con-
jecture for curves embedded into their Jacobians [DGH21, Küh21] (see [Gao21b]
for the precise statement). It shares some similarities with but does not use the
construction of Theorem 3.2; instead it relies on previous work of Zhang, Cinkir,
and de Jong [Zha93, Zha10, Cin11, dJ18] for lower bounds on the self-intersection
numbers of the admissible canonical bundles of curves over global fields, apart from
the adelic line bundles by Yuan–Zhang [YZ21]. However, little is known in this
direction for subvarieties of higher dimension, and it seems very hard to generalize
Yuan’s proof to obtain the full Uniform Mordell–Lang Conjecture (Theorem 3.3).

3.2 Case t = 1

The following Relative Manin–Mumford Conjecture was recently proved, and a key
new ingredient compared with previous works is the application of Xdeg(1).

Let A → S be an abelian scheme of relative dimension g defined over Q, and
let X ⊆ A be an irreducible subvariety. Use Ator to denote the set of fiberwise
torsion points, i.e.

Ator =
{
x ∈ A(Q) : [N ]x is in the zero section for some N ∈ Z \ {0}

}
.

Theorem 3.4 ([GH23b, Thm. 1.1]) Assume that ZX is Zariski dense in A.
If X ∩ Ator is Zariski dense in X, then dimX ≥ g.

This theorem, known as the Relative Manin–Mumford Conjecture, was inspired
by S. Zhang’s ICM talk [Zha98] and proposed by Pink [Pin05b, Conj. 6.2] and
Zannier [Zan12]. In the case dimX = 1 it was proved in a series of papers by
Corvaja, Masser and Zannier [MZ08, MZ12, MZ14, MZ15, CMZ18, MZ20]. See
also Stoll [Sto17] for an explicit case. When A is a fibered product of families
of elliptic curves, for surfaces some results are due to Habegger [Hab13b] and
Corvaja–Tsimerman–Zannier [CTZ23], and in general by Kühne [Küh23].
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Before moving on to explain the proof of Theorem 3.4, let us briefly ex-
plain how it implies the following Uniform Manin–Mumford Conjecture for curves
embedded into their Jacobians.

Corollary 3.5 Assume g ≥ 2. There exists a constant c(g) > 0 with the following
property. For each smooth projective curve C defined over C and each P ∈ C(C),
the size of the torsion packet of C containing P is at most c(g).

The torsion packet of C containing P is the set (C − P )(C) ∩ Jac(C)tor, where
C − P is the image of the Abel–Jacobi embedding of C into Jac(C) via P .

This Uniform Manin–Mumford Conjecture for curves embedded into their
Jacobian was proved by Kühne [Küh21], using his equidistribution theorem and
our construction Theorem 3.2. A second proof of was given by Yuan in [Yua21],
based on the theory of adelic line bundles over quasi-projective varieties of Yuan–
Zhang [YZ21]. Prior to Kühne’s proof of the full conjecture, DeMarco–Krieger–
Ye [DKY20] proved the case where g = 2 and C is bi-elliptic, using method of
arithmetic dynamical systems. .

The deduction of Corollary 3.5 from Theorem 3.4 [GH23b, §8] is not com-
plicated. Here is a brief sketch. First, Corollary 3.5 can be easily reduced with
C replaced by Q by a specialization argument of Masser [Mas89]. Next, we use

(3.1) with M = 5. A simple computation shows that dimC
[5]
g = 3g− 2 + 5 < 5g if

g ≥ 2. Hence by Theorem 3.4, the fiberwise torsion points are not Zariski dense in

C
[5]
g ; in other words, the Zariski closure Z of the fiberwise torsion points lying in

C
[5]
g is a proper subvariety of C

[5]
g . Thus using a lemma in flavor of zero estimates

[DGH21, Lem. 6.4], one can show that for a generic s ∈ Mg(Q), the number of
fiberwise torsion points on (Cg)s = Cs − Ps ⊆ Jac(Cs) is bounded above in terms
of degZs, which is uniformly bounded for s ∈ Mg(Q). In the end, we finish the
proof by a Noetherian induction on the base Mg.

Before moving on, we remark that the way to apply the degeneracy loci
in this problem is genuinely different from the previous applications. In study-
ing Uniform Mordell–Lang related questions, one always started by constructing a
non-degenerate subvariety to apply other tools such as height inequality or equidis-
tribution, and only Xdeg(0) is used. For Theorem 3.4 we are not allowed to do
such a construction. Instead, we study the degeneracy loci more carefully and use
both Xdeg(0) and Xdeg(1).

As a preparation, it is not hard to reduce the theorem to be case where
S ⊆ Ag and A = Ag ×Ag S. Then the proof of Theorem 3.4 has two parts and
Xdeg(1) is both parts. First, we prove the following proposition.

Proposition 3.6 Assume that ZX is Zariski dense in A. If X ∩ Ator is Zariski
dense in X, then Xdeg(1) = X.

The proof of Proposition 3.6 is divided into two cases: either X is degener-
ate or not. If X is degenerate, then X = Xdeg(0) by Proposition 3.1, and
hence Xdeg(1) = X because Xdeg(0) ⊆ Xdeg(1) by definition. If X is non-
degenerate, then we follow the Pila–Zannier strategy to prove Proposition 3.6. The
ingredient of this proof includes a quantified version of Masser’s result [Mas84]
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on Galois orbits of torsion points on abelian varieties due to David [Dav93] or
Gaudron and Rémond [Rém18, GR22], the height inequality of Dimitrov–Gao–
Habegger [DGH21, Thm. 1.6 and B.1], Habegger–Pila’s semi-invariant version
[HP16, Cor. 7.2] of the the Pila–Wilkie counting theorem, and Gao’s mixed Ax–
Schanuel theorem [Gao20b].

Next, we use the criterion Theorem 2.4 with t = 1 to deduce Theorem 3.4
from Proposition 3.6. The proof is by induction on g. If g = 0, then Theorem 3.4
trivially holds true. For arbitrary g, assume Proposition 3.6 holds true for our X
in question. Then we apply Theorem 2.4 with t = 1 to X, and obtain

A
p // //

��

B ι //

��

Ag′

��
S

= // S // Ag′ .

with g′ < g and
dimX ≥ dim(ι ◦ p)(X) + (g − g′). (3.2)

It is not hard to check that the fiberwise torsion points are still Zariski dense in
(ι ◦ p)(X). Then we can apply induction hypothesis to (ι ◦ p)(X) since g′ < g, and
obtain dim(ι ◦ p)(X) ≥ g′. So dimX ≥ g by (3.2), and we are done.

3.3 Case t = g − dimX ≤ 0

In this application, we assume dimX ≥ g, so the t in question is non-positive.
In this previous subsection, we sketched the key points to prove Theorem 3.4 with

C replaced by Q. We wish to do a specialization argument to pass from Q to C. Un-
like for Uniform Mordell–Lang, this specialization argument is highly non-trivial. In
[GH23b, §10], we solve this problem by a double induction,1 and a key point is to apply
Theorem 2.4 for t = g − dimX. In the end, we obtain a stronger result.

Theorem 3.7 ([GH23b, Thm. 1.3] and [Gao20a, Thm. 1.1 with l = g]) Assume
that ZX is Zariski dense in A. Then the followings are equivalent:

(i) X(C) ∩ Ator is Zariski dense in X;
(ii) rank(X,x) = 2g for some x ∈ Xsm(C);
(iii) for each quotient abelian subscheme B of A/S, we have dim(ι ◦ p)(X) ≥ g′ where

A
p // //

��

B ι //

��

Ag′

��
S

= // S // Ag′ .

The equivalence of (ii) and (iii) is [Gao20a, Thm. 1.1 with l = g].
The proof of (ii) implying (i) is not complicated and a proof can be found in [ACZ20,

Prop. 2.1.1]. Theorem 3.7 implies Theorem 3.4 immediately by (1.2).
Now let us explain how (i) implies (ii). The proof uses Theorem 3.4 and Xdeg(g −

dimX). This implication is in fact a step of the specialization argument for Theorem 3.4.

1A different argument for this specialization is given by [CTZ23, App. A].
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Let X be as in Theorem 3.7 such that X(C) ∩ Ator is Zariski dense in X. Thus
dimX ≥ g by Theorem 3.4. Assume rank(X,x) < 2g for all x ∈ Xsm(C) and we wish
to get a contradiction. [Gao20a, Prop. 6.1] implies then Xdeg(g − dimX) = X. So by
Theorem 2.4 with t = g − dimX, we obtain

A
p // //

��

B ι //

��

Ag′

��
S

= // S // Ag′ .

with g′ < g and dim(ι ◦ p)(X) < g′. On the other hand, it is not hard to check that the
fiberwise torsion points are still Zariski dense in (ι ◦ p)(X). Hence dim(ι ◦ p)(X) ≥ g′ by
Theorem 3.4. This is a contradiction, and we are done.
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2021.

[Gao21b] Z. Gao. Recent developments of the Uniform Mordell–Lang Conjecture.
arXiv: 2104.03431, 2021.

[GGK21] Z. Gao, T. Ge and L. Kühne. The Uniform Mordell–Lang Conjecture.
preprint, 2021.

[GH19] Z. Gao and P. Habegger. Heights in families of abelian varieties and the
geometric Bogomolov conjecture. Annals of Mathematics, 189:527–604, 2019.

[GH23a] Z. Gao and P. Habegger. Degeneracy Loci in the Universal Family of
Abelian Varieties. preprint, 2023.

[GH23b] Z. Gao and P. Habegger. The Relative Manin–Mumford Conjcture.
preprint, 2023.
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[Rém18] G. Rémond. Conjectures uniformes sur les variétés abéliennes. The Quar-
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