
Chapter 2

Siegel Lemma

2.1 Basic version

We start with the very basic version of Siegel’s Lemma.

Lemma 2.1.1. Let aij 2 Z with i = 1, . . . ,M and j = 1, . . . , N . Assume that aij are not all 0
and |aij |  B for all i and j.

If N > M , then the homogeneous linear system

a11x1 + a12x2 + · · ·+ a1NxN = 0

a21x1 + a22x2 + · · ·+ a2NxN = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

aM1x1 + aM2x2 + · · ·+ aMNxN = 0

has a non-zero solution (x1, . . . , xN ) 2 ZN with

max
j

|xj |  b(NB)
M

N�M c.

In practice, it is more convenient to denote by A = (aij)1iM, 1jN which is a non-zero
M ⇥ N -matrix with entries in Z. The upshot of this lemma is that the linear system Ax = 0
has a small non-zero solution provided that N > M . Here small means that the height of this
non-zero solution is bounded in terms of N , M and h(A).[1] It should be understood that M is
the number of equations and N �M is the dimension of the space of solutions.

Proof. We may and do assume that no row of A is identically 0. Thus M � 1. For a positive
integer k, consider the set

T := {x 2 ZN : 0  xj  k, j = 1, . . . , N}.

Then #T = (k + 1)N .
Next, for each i 2 {1, . . . ,M}, denote by S+

i the sum of the positive entries in the i-th row
of A, and by S�

i the sum of the negative entries. Then

For x 2 T and y := Ax, we have kS�

i  yi  kS+
i for each i. (2.1.1)

Next, set
T 0 := {y 2 ZN : kS�

i  yi  kS+
i for each i}.

[1]Here h(A) is defined to be the height of [aij ]i,j viewed as a point in PMN�1(Q).
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26 CHAPTER 2. SIEGEL LEMMA

Then for Bi := maxj |aij |, we have S+
i � S�

i  NBi and we can conclude that #T 0
QM

i=1(NkBi + 1).

Now take k := b
QM

i=1(NBi)1/(N�M)
c. Then NkBi + 1 < NBi(k + 1) because N � M > 1,

and hence
MY

i=1

(NkBi + 1) <
MY

i=1

NBi(k + 1) = (k + 1)M
MY

i=1

NBi.

On the other hand,
QM

i=1(NBi)1/(N�M)
 k + 1. So

MY

i=1

(NkBi + 1) < (k + 1)M (k + 1)N�M = (k + 1)N = #T.

We have seen that #T 0 is bounded above by the left hand side. So #T 0 < #T . By the Pigeonhole
Principle and (2.1.1), there exist two di↵erent points x0,x00

2 T such that Ax0 = Ax00.
Now x := x0

�x00 is a non-zero solution of the linear system in question such that maxj |xj | 

k = b
QM

i=1(NBi)1/(N�M)
c  b(NB)M/(N�M)

c.

This basic version self-improves to a version for number fields.

Lemma 2.1.2. Let K ✓ C be a number field of degree d, and let | · | be the usual absolute value
on C. Let M,N 2 Z with 0 < M < N . Then there exist positive integers C1 and C2 such that
the following property holds true: For any non-zero M ⇥ N -matrix A with entries amn 2 OK ,
there exists x 2 O

N
K \ {0} with Ax = 0 and

H(x)  C1(C2NB)
M

N�M ,

where B := max�,m,n |�(amn)| with � running over all the embeddings K ,! C.

The constants C1 and C2 depend only K (and hence d), M and N , but they are independent
of the choice of the matrix A.[2] By the Fundamental Inequality (Proposition 1.2.10), B can be

bounded by H(A) with A viewed as a point (amn)m,n 2 QMN
.

Proof. Let !1, . . . ,!d be a Z-basis of OK . The entries of A may be written as

amn =
dX

j=1

a(j)mn!j , a(j)mn 2 Z. (2.1.2)

For each x = (x1, . . . , xN ) 2 O
N
K , using xn =

Pd
k=1 x

(k)
n !k we get

(Ax)m =
NX

n=1

dX

j,k=1

a(j)mn!j!kx
(k)
n =

dX

l=1

NX

n=1

dX

j,k=1

a(j)mnb
(l)
jkx

(k)
n !l,

where !j!k =
Pd

l=1 b
(l)
jk!l. Set A0 to be the (Md)⇥ (Nd)-matrix

A0 :=

0

@
dX

j=1

a(j)mnb
(l)
jk

1

A

[2]In fact by the proof, one can see that C2 depends only on K.
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with rows indexed by (m, l) and columns indexed by (n, k). Write y 2 ZNd for the vector (x(k)n ).
Apply the basic version of Siegel’s Lemma, Lemma 2.1.1, to A0. Then we obtain a non-zero

integer solution y with A0y = 0 such that

H(y) 

✓
Nd2 max

m,n,j
|a(j)mn|max

j,k,l
|b(l)jk |

◆ M
N�M

.

As xn =
Pd

k=1 x
(k)
n !k for each n, we then obtain a constant C1 such that H(x)  C1H(y).

Next we wish to bound maxj |a
(j)
mn| in terms of max�,m,n |�(amn)|. Let � run over the d =

[K : Q] di↵erent embeddings K ,! C. Apply each � to (2.1.2). It is known from Algebraic
Number Theory that the d ⇥ d-matrix (�(!j))�,j is invertible.[3] So we obtain a constant C 0

2

such that
max

j
|a(j)mn|  C 0

2max
�

|�(amn)|.

Thus we can conclude by taking C2 := C 0
2d

2maxj,k,l |b
(l)
jk |.

Next, we also have the following relative version of Siegel’s Lemma.

Lemma 2.1.3 (Relative version of Siegel’s Lemma, basic version). Let K be a number field of
degree d. Then there exists a positive number C such that the following property holds true For
any M,N 2 Z with 0 < dM < N and any non-zero M ⇥ N -matrix A with entries amn 2 OK ,
there exists x 2 ZN

\ {0} with Ax = 0 and

H(x)  b(CNB)
dM

N�dM c

where B := max�,m,n |�(amn)| with � running over all the embeddings K ,! C.
Again, by the Fundamental Inequality (Proposition 1.2.10), B can be bounded by H(A) with

A viewed as a point (amn)m,n 2 QMN
. We emphasize that the constant C depends only on the

field K.

Proof. Let !1, . . . ,!d be a Z-basis of OK . For the entries of A = (amn), we have

amn =
dX

j=1

a(j)mn!j (2.1.3)

for uniquely determined a(j)mn 2 Z. Consider the M ⇥ N -matrix A(j) = (a(j)mn) for each j 2

{1, . . . , d}. Then for x 2 QN , the equation Ax = 0 is equivalent to the system of equations
A(j)x = 0 for all j = 1, . . . , d. This new system has dM equations and N unknowns. Write A0

for the dM ⇥N -matrix

0

B@
A(1)

...
A(d)

1

CA. Since dM < N , we can apply Lemma 2.1.1 to find a non-zero

solution x = (x1, . . . , xN ) 2 ZN with

max
i

|xi|  b(N max
m,n,j

|a(j)mn|)
dM

N�dM c.

It remains to compare maxm,n,j |a
(j)
mn| and max�,m,n |�(amn)|. We use the same argument as for

Lemma 2.1.2. Let � run over the d = [K : Q] di↵erent embeddings K ,! C. Apply each � to
(2.1.3). It is known from Algebraic Number Theory that deg(�(!j))2�,j = Disc(K/Q) 6= 0. So

we obtain a constant C such that maxj |a
(j)
mn|  Cmax� |�(amn)|. Hence we are done.

[3]deg(�(!j))
2
�,j = Disc(K/Q) 6= 0.
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2.2 Faltings’s version of Siegel’s Lemma

In his famous paper Diophantine approximation on abelian varieties (Annals of Math.
133:549–576, 1991), Faltings proved a fancier Siegel’s Lemma. It plays a fundamental role for
his proof of the Mordell–Lang Conjecture. In this section, we discuss about this.

2.2.1 Background and statement

Recall the following basic version of Siegel’s Lemma, Lemma 2.1.1.

Lemma 2.2.1. Let A = (aij) be an M ⇥ N -matrix with entries in Z. Set B = maxi,j |aij |. If
N > M , then Ker(A) contains a non-zero vector x = (x1, . . . , xN ) 2 ZN such that

max
j

|xj |  (NB)
M

N�M .

Let us digest this lemma in the following way. The matrix A defines a linear map ↵ : RN
!

RM such that ↵(ZN ) ✓ ZM , i.e ↵ maps the lattice ZN into the lattice ZM . If N > M , then we
are able to find a non-trivial lattice point of small norm in Ker(↵). As we said before, N �M
should be understood to be dimKer(A) (although in the current formulation they may not be
the same).

Faltings’s fancier version looks not for only one, but for an arbitrary number of linearly
independent lattice points in Ker(↵). To say that these lattice points are of small norm, we use
the successive minima. Moreover, it is more natural to work with arbitrary normed real vector
spaces.

Let (V, k · k) be a finite dimensional normed real vector space, and let ⇤ be a lattice (a
discrete subgroup of V which spans V ). Denote by B(V ) the unit ball {x 2 V : kxk  1} in V .

Definition 2.2.2. The n-th successive minimum of (V, k · k,⇤) is

�n(V, k · k,⇤) : = inf{t > 0 : ⇤ contains n linearly independent vectors of norm  t}

= inf{t > 0 : tB(V ) contains n linearly-independent vectors of ⇤}.

Next for two normed real vector spaces (V, k · kV ) and (W, k · kW ), the norm of a linear map
↵ : V ! W is defined to be

k↵k := sup

⇢
k↵(x)kW
kxkV

: x 6= 0

�
. (2.2.1)

We are ready to state Faltings’s version of Siegel’s Lemma.

Theorem 2.2.3. Let (V, k · kV ) and (W, k · kW ) be two finite dimensional normed real vector
spaces, let ⇤V be a lattice in V and ⇤W be a lattice in W .

Let ↵ : V ! W be a linear map with ↵(⇤V ) ✓ ⇤W . Assume furthermore that there exists a
real number C � 2 such that

(i) k↵k  C,

(ii) ⇤V is generated by elements of norm  C,

(iii) every non-zero element of ⇤V and of ⇤W has norm � C�1.
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Then for U := Ker(↵) with the induced norm k ·kU (the restriction of k ·kV on U) and the lattice
⇤U := ⇤V \ U , we have

�n+1(U, k · kU ,⇤U ) 
⇣
C3 dimV

· (dimV )!
⌘1/(dimU�n)

for each 0  n  dimU � 1.

Notice that the hypotheses (i)–(iii) can always be achieved by enlarging C.
The basic version of Siegel’s Lemma (Lemma 2.2.1), up to changing the constant, follows

from Theorem 2.2.3 with n = 0.

2.2.2 Proof of Theorem 2.2.3

The proof of Theorem 2.2.3 uses Minkowski’s Second Theorem.
Let (V, k · kV ,�V ) be a finite dimensional normed real vector space with a lattice. Set

dV := dimV . For simplicity, denote by

V/⇤V := {v 2 V : v =
dVX

j=1

�jvj , 0  �j < 1}

where {v1, . . . , vdV } is a basis of ⇤V . Notice that V/⇤V depends on the choice of the basis.
We can endow V with a Lebesgue measure µV as follows. Fix an isomorphism  : V '

RdV and use µ to denote the standard Lebesgue measure on RdV . Then set for any Lebesgue
measurable A ✓ RdV

µV ( 
�1(A)) = µ(A). (2.2.2)

Up to a constant, there is only one Lebesgue measure on V . Thus the quantity

Vol(V ) = Vol(V, k · kV ,⇤V ) :=
µV (B(V ))

µV (V/⇤V )
(2.2.3)

does not depend on the choice of µV ; it clearly does not depend on the choice of the basis of ⇤V

in the definition of V/⇤V .

Theorem 2.2.4 (Minkowski’s Second Theorem). With the notation above, we have

2dV

dV !


dVY

n=1

�n(V, k · kV ,⇤V ) ·Vol(V )  2dV .

Here we used the fact that the unit ball B(V ) is convex and symmetric (i.e. B(V ) = �B(V )).

To apply Minkowski’s Second Theorem to prove Theorem 2.2.3, we need one last preparation
on the quotient norm. More precisely, on V/U , we consider the norm

kvkV/U := inf{kv + ukV : u 2 U}

for each v 2 V . Having this norm, we can define the unit ball B(V/U). Moreover, ↵(⇤V ) is
a lattice in ↵(V ), which can then be viewed as a lattice in V/U by the natural isomorphism
V/U ' ↵(V ). So we can define Vol(V/U) := Vol(V/U, k ·kV/U ,↵(⇤V )). Recall the notation from
Theorem 2.2.3; we naturally have the quantity Vol(U) := Vol(U, k · kU ,⇤U ).

Lemma 2.2.5. Vol(V )  2dimUVol(U)Vol(V/U).
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Proof of Theorem 2.2.3 assuming Lemma 2.2.5. We will identify V/U ' ↵(V ) in the proof.
Take w 2 ↵(⇤V ) \ {0}. Write w = ↵(v) for some v 2 ⇤V . Then

kwkV/U = inf
u2U

kv + ukV �
k↵(v)kW

k↵k
� C�2;

here the last inequality follows from hypotheses (i) and (iii). In particular, this implies that
�1(V/U, k · kV/U ,↵(⇤V )) � C�2.

Write dV := dimV and dU := dimU . Minkowski’s Second Theorem (applied to V/U) yields
�1(V/U, k · kV/U ,↵(⇤V ))dimV/U

· Vol(V/U)  2dimV/U . Thus from the paragraph above, we get

Vol(V/U)  (2C2)dV �dU .
Next, by hypothesis (ii), we have �dV (V, k ·kV ,⇤V )  C. Thus Minkowski’s Second Theorem

(applied to V ) yields Vol(V ) � 2dV C�dV /dV !.
Apply Lemma 2.2.5 and the volume estimates above. Then we get

Vol(U)�1
 C3dv�2dU · dV !. (2.2.4)

We apply another time Minkowski’s Second Theorem (to U). For each 0  n  dU � 1, we
then get �1(U, k · kU ,⇤U )n · �n+1(U, k · kU ,⇤U )dU�n

·Vol(U)  2dU . But �1(U, k · kU ,⇤U ) � C�1

by hypothesis (iii). So we obtain

�n+1(U, k · kU ,⇤U ) 
⇣
2dUVol(U)�1Cn

⌘1/(dU�n)



⇣
2dUCn+3dv�2dU · dV !

⌘1/(dU�n)
by (2.2.4)



⇣
C3dV · dV !

⌘1/(dU�n)
.

Hence we are done.

Proof of Lemma 2.2.5. Write dU := dimU and dV := dimV .
Let µV and µU be the Lebesgue measures on V and U , respectively. On V/U we have a unique

Lebesgue measure µV/U determined as follows: For any µV -measurable subset E ✓ V , we have

µV (E) =

Z

V/U
fE(v)dµV/U (v)

where fE(v) := µU ({u 2 U : u+ v 2 E}); here fE(v) is independent of the representative v because µU

is translation invariant.
We compute fB(V )(v) for v 2 V/U . If v 62 B(V/U), then kvkV > 1. So v 62 B(V ) for v + u for all

u 2 U . Thus fB(V )(v) = 0 in this case. If v 2 B(V/U), then v + u 2 B(V ) for some u 2 U . Thus
kukU  ku+ vkV + kvkV  2. So fB(V )(v)  µU (2B(U)) = 2dU · µU (B(U)) in this case. In either case,
we have

µV (B(V ))  2dU · µU (B(U)) · µV/U (B(V/U)) . (2.2.5)

Next we turn to fV/⇤V
(v). Let {u1, . . . , udU } be a basis of ⇤U = ⇤V \ U and expand it to a ba-

sis {u1, . . . , udU , v1, . . . , vdV �dU } of ⇤V . Then {v1, . . . , vdV �dU } is a basis of ↵(⇤V ). For each v 2

(V/U)/↵(⇤V ), we have

fV/⇤V
(v) = µU ({u 2 U : u+ v 2 V/⇤V }) = µU (U/⇤U ).

Otherwise fV/⇤V
(v) = 0. So

µV (V/⇤V ) = µU (U/⇤U ) · µV/U ((V/U)/↵(⇤V )) . (2.2.6)

Now the conclusion follows from the definition of the volumes Vol(V ) = µV (B(V ))/µV (V/⇤V ) etc.
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2.3 Arakelov height of matrices

While the basic versions of Siegel’s Lemma are su�cient for many applications, we state and
prove a generalized version. Its proof, which is by the Geometry of Numbers and in particular
uses the adelic version of Minkowski’s second main theorem, is of particular importance.

Theorem 2.3.1. Let A be an M ⇥ N -matrix of rank M with entries in a number field K of
degree d. Then the K-vector space of solutions of Ax = 0 has a basis x1, . . . ,xN�M , contained
in O

N
K , such that

N�MY

l=1

H(xl)  |DK/Q|
N�M

2d HAr(A),

where DK/Q is the discriminant of K over Q.

There are several things to be explained for this statement. First, H(x) = exp(h(x)) is
the multiplicative homogeneous height with x considered as a point in PN�1(K); thus we may
assume x 2 O

N
K because we can replace any solution by a non-zero scalar multiple and this does

not change its height. Second, we need to define the Arakelov height HAr(A) of the matrix A;
this is what we will do in this section.

Moreover, there is also a relative version for this generalized version. See Theorem 2.4.3.

2.3.1 Arakelov height on PN

Recall the Weil height which we defined before. For a point x = [x0 : · · · : xN ] 2 PN (K), we
have

[K : Q]h(x) =
X

v2M0
K

logmax
j

kxjkv+
X

v|1

logmax
j

kxjkv =
X

v2M0
K

logmax
j

kxjkv+
X

v|1

[Kv : R] logmax
j

|xj |v.

There are other choices for the height function on PN (Q). In Arakelov theory, a more nat-
ural choice is to replace the L1-norm maxj |xj |v at the archimedean place by the L2-norm⇣PN

j=0 |xj |
2
v

⌘1/2
. In other words, we define:

Definition 2.3.2. For x = [x0 : · · · : xN ] 2 PN (Q) with each xj 2 K, define

hAr(x) :=
1

[K : Q]

0

B@
X

v2M0
K

logmax
j

kxjkv +
X

v|1

[Kv : R] log

0

@
NX

j=0

|xj |
2
v

1

A
1/2
1

CA .

One can check that hAr(x) is independent of the choice of the homogeneous coordinates (by
the Product Formula) and of the choice of the number field K.

To ease notation, we introduce the following definition.

Definition 2.3.3. For x = [x0 : . . . : xN ] 2 PN (K) and v 2 MK , set

Hv(x) :=

8
<

:
maxj kxjkv = maxj |xj |

[Kv :Qp]
v if v is non-archimedean,

⇣PN
j=0 |xj |

2
v

⌘1/2·[Kv :R]
if v is archimedean.
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With this definition, the following holds true. For x = [x0 : · · · : xN ] 2 PN (Q) with each
xj 2 K, we have

hAr(x) =
1

[K : Q]

X

v2MK

logHv(x). (2.3.1)

The following lemma will be proved in the Exercise class.

Lemma 2.3.4. On PN (Q), the height functions h and hAr di↵er from a bounded function.

Thus in view of the Height Machine, hAr is in the class represented by hPN ,O(1).

2.3.2 Height of matrices

We start by defining a height function on the Grassmannians. Let W be an M -dimensional

subspace of QN
. Then ^

MW is a 1-dimensional subspace of ^MQN
' Q(NM)

. Thus we may view

W as a point PW of the projective space P(^MQN
).

Definition 2.3.5. The Arakelov height of W is defined to be hAr(W ) := hAr(PW ). We also
define the multiplicative Arakelov height HAr(W ) := exp(hAr(PW )).

Now we are ready to define the Arakelov height of a matrix A.

Definition 2.3.6. Let A be an N ⇥M -matrix with entries in Q.

(i) Assume rkA = M . Then hAr(A) is defined as hAr(W ), where W is the subspace of QN

spanned by the columns of A.[4]

(ii) Assume rkA = N . Then hAr(A) := hAr(At) with At the transpose of A.

We also define the multiplicative Arakelov height HAr(A) := exp(hAr(PW )).

In general, A may not have the full rank. We then consider the subspace spanned by the
columns or by the rows. This will lead to hcolAr and hrowAr . We omit the definitions here but the
idea will show up in the discussion of the generalized Siegel’s Lemma in the next section.

We start with the following lemma, which makes the two parts of Definition 2.3.6 more
“symmetric”.

Lemma 2.3.7. Let A be an N ⇥M -matrix with entries in Q. Assume rkA = N . Then hAr(A)

equals the Arakelov height of the subspace of QM
spanned by the rows of A.

Proof. Consider the transpose At of A. It can be easily seen that At is an M ⇥ N -matrix of rank N ,

and hence defines an injective linear map QN
! QM

, which by abuse of notation we still denote by At.

Part (i) of Definition 2.3.6 (applied to At) says that hAr(At) equals hAr(W ) with W ✓ QM
the subspace

spanned by the columns of At. Notice that W = Im(At).

The matrix A defines a linear map A : (QM
)⇤ ! (QN

)⇤ which is the dual of At. Consider the

subspace Ker(A) of (QM
)⇤. Its annihilator Ker(A)? in ((QM

)⇤)⇤ = QM
then equals Im(At) = W by

Linear Algebra. It is known that Ker(A)? is spanned by the rows of A, and so is W . Hence we are done
because hAr(A) = hAr(At) = hAr(W ).

Proposition 2.3.8. Let W be an M -dimensional subspace of QN
and let W? be its annihilator

in the dual (QN
)⇤ ' QN

. Then hAr(W?) = hAr(W ).

[4]Notice that A defines a linear map A : RM ! RN . The subspace W is precisely the image of this map. The
assumption rkA = M is equivalent to the map A being injective.



2.3. ARAKELOV HEIGHT OF MATRICES 33

This proposition has the following immediate corollary.

Corollary 2.3.9. Let A be an N ⇥M -matrix with rkA = N and with entries in Q. Then the
Arakelov height of the space of solutions of Ax = 0 equals hAr(A).

Proof. We have hAr(A) = hAr(At) = hAr(Im(At)). But Im(At) = Ker(A)?. So hAr(A) =
hAr(Ker(A)?), which then equals hAr(Ker(A)) by Proposition 2.3.8. Hence we are done.

Proof of Proposition 2.3.8. Write V = QN
. Any element x 2 ^

MV defines a linear map  (x) : ^
N�M

V ! ^
NV , y 7! x ^ y, and thus an element '(x) 2 ^

NV ⌦ ^
N�M (V ⇤). In other words, we obtained a

map
' : ^

M V ! ^
NV ⌦ ^

N�M (V ⇤).

Then ' is an isomorphism and (better) each element of the canonical basis of ^MV is mapped to an
element of the canonical basis of ^NV ⌦ ^

N�M (V ⇤) up to a sign.
Notice that ^

NV is a line. So it is easy to check that for any non-zero x 2 ^
MW (which is a

line), the image of  (x) is ^
NV and the kernel of  (x) is the subspace of ^N�MV generated by the

elements of the form w ^ z with w 2 W and z 2 ^
N�M�1V . Thus '(^MW ) = ^

NV ⌦ ^
N�M (W?).

Hence the coordinates of ^MW in P(^MV ) are, up to a sign, equal to the coordinates of ^N�M (W?) in
P(^N�M (V ⇤)). This proves the proposition.

We finish this section by the following explicit formula for the definition of hAr(A). Let A
be an N ⇥M -matrix with entries in Q.

For simplicity we only consider the case rkA = M . Let I ✓ {1, . . . , N} with |I| = M . Denote
by AI the M ⇥ M -submatrix of A formed with the i-th rows, i 2 I, of A. Then the point in

P(^NQM
) corresponding to Im(A) is given by the coordinates det(AI), where I ranges over all

subsets of {1, . . . , N} of cardinality M .
Let K ✓ Q be a number field which contains all entries of A. For each v 2 MK , set

Hv(A) :=

(
maxI | det(AI)|

[Kv :Qp]
v = maxI k det(AI)kv if v is non-archimedean,

�P
I | det(AI)|2v

�1/2·[Kv :R] = | det(A⇤A)|1/2·[Kv :R]
v = k det(A⇤A)k1/2v if v is archimedean.

(2.3.2)

Here A⇤ = A
t
is the adjoint of A, and

P
I | det(AI)|2v = | det(A⇤A)|v at the archimedean places

by the Binet Formula.
Under this convention, we have

hAr(A) =
1

[K : Q]

X

v2MK

logHv(A). (2.3.3)

An immediate corollary of this explicit formula is:

Corollary 2.3.10. Let G be an invertible M ⇥M -matrix. Then hAr(AG) = hAr(A).

Another application of this explicit formula is:

Corollary 2.3.11. Let B and C be two complementary submatrices of A of type N ⇥M1 and
M ⇥M2 respectively. Then hAr(A)  hAr(B) + hAr(C).

Proof. We only give a sketch. It su�ces to prove Hv(A)  Hv(B)Hv(C) for each v 2 MK . If
v is non-archimedean, it follows from Laplace’s expansion. If v is archimedean, it follows from
Fischer’s inequality

det

✓
B⇤B B⇤C
C⇤B C⇤C

◆
 det(B⇤B) det(C⇤C).

Alternatively, this corollary is an immediate consequence of the important theorem of Schmidt
(independently of Struppeck–Vaaler) hAr(V + W ) + hAr(V \ W )  hAr(V ) + hAr(W ) for any

subspaces V , W of QM
.
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2.4 Generalized Siegel Lemma by Bombieri–Vaaler

The goal of this section is to have a deeper discussion of the generalized Siegel’s Lemma by
Bombieri–Vaaler (Theorem 2.3.1); in particular we give its proof. We repeat the statement here.

Theorem 2.4.1. Let A be an M ⇥ N -matrix of rank M with entries in a number field K of
degree d. Then the K-vector space of solutions of Ax = 0 has a basis x1, . . . ,xN�M , contained
in O

N
K , such that

N�MY

l=1

H(xl)  |DK/Q|
N�M

2d HAr(A),

where DK/Q is the discriminant of K over Q.

As said below Theorem 2.3.1, there is no deep information about the xi’s being contained
in O

N
K .
In practice, we may not always assume that A has maximal rank M . This can be obviated.

We hereby state a corollary of Theorem 2.4.1, which bounds the heights of the solutions by the
(multiplicative) Weil height instead of the Arakelov height.

Corollary 2.4.2. Let A be an M ⇥ N -matrix of rank R with entries in a number field K of
degree d. Then there exists a basis x1, . . . ,xN�R of the kernel Ker(A), contained in O

N
K , such

that
N�RY

l=1

H(xl)  |DK/Q|
N�R
2d

⇣p
NH(A)

⌘R
.

Here H(A) is the multiplicative Weil height of the point [aij ]i,j viewed as a point in PMN�1(K),
with aij the entries of A.

In particular, there is a non-zero solution x 2 O
N
K of Ax = 0 with

H(x)  |DK/Q|
1
2d

⇣p
NH(A)

⌘ R
N�R

.

2.4.1 Proof of Corollary 2.4.2 assuming Theorem 2.4.1

The “In particular” part follows clearly from the main part. So we will focus on proving the
main part.

As rkA = R, there is an R⇥N -submatrix A0 of A with rkA0 = R. Applying Theorem 2.4.1
to the matrix A0, we get a basis x1, . . . ,xN�R of Ker(A) such that

N�RY

l=1

H(xl)  |DK/Q|
N�R
2d HAr(A

0). (2.4.1)

On the other hand, if we denote by Am the m-th row of A, then Corollary 2.3.11 implies
that

HAr(A
0) 

Y

m

HAr(Am),

where m runs over the R rows of A0. Furthermore, the following inequality clearly holds true
by definition

HAr(Am) 
p

NH(A).

Now, the two inequalities above yield HAr(A0)  (
p
NH(A))R. So we can conclude by (2.4.1).
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2.4.2 Relative Version

As for Lemma 2.1.3 with respect to Lemma 2.1.1, we also have the following relative version of
this generalized form of Siegel’s Lemma.

Theorem 2.4.3. Let K be a number field of degree d and F/K be a finite extension with
[F : K] = r. Let A be an M ⇥N -matrix with entries in F .

Assume rM < N . Then there exists N � rM K-linearly independent vectors xl 2 O
N
K such

that Axl = 0 for each l 2 {1, . . . , N � rM} and

N�rMY

l=1

H(xl)  |DK/Q|
N�rM

2d

MY

i=1

HAr(Ai)
r,

where Ai is the i-th row of A.

The proof follows the guideline set up in Lemma 2.1.3.

Proof. Let !1, . . . ,!r be a basis of F/K. For the entries of A = (amn), we have

amn =
rX

j=1

a(j)mn!j

for uniquely determined a(j)mn 2 K. Let A(j) be the M ⇥ N -matrix with entries a(j)mn. Then
for x 2 KN , the equation Ax = 0 is equivalent to te system of equations A(j)x = 0 for all

j = 1, . . . , r. Write A0 for the rM ⇥N -matrix

0

B@
A(1)

...
A(r)

1

CA. Denote by R := rkA0.

It is attempting to apply Theorem 2.4.1 to A0. But we need to do one more step. Let
�1, . . . ,�r be the distinct embeddings of F into K over K. Let ⌦ be the rM ⇥ rM -matrix built
up by r2 blocks of M ⇥M -matrices ⌦ij = �i(!j)IM . By construction of A0, we have

A00 :=

0

B@
�1A
...

�rA

1

CA = ⌦A0.

From Algebraic Number Theory, it is known that DF/K = det(�i(!j))2. Thus ⌦ is invertible,
and its inverse is again formed by r2 blocks of multiples of IM . In particular, rkA00 = rkA0 = R
and Ker(A00) = Ker(A0).

There exists an R⇥N -submatrix A000 of A0 with rkA000 = R. Applying Theorem 2.4.1 to A000,
we get a basis x1, . . . ,xN�R of Ker(A000) = Ker(A0), contained in OK , such that

N�RY

l=1

H(xl)  |DK/Q|
N�R
2d HAr(A

000),

If we denote by Am the m-th row of A00, then Corollary 2.3.11 implies that

HAr(A
00) 

Y

m

HAr(A
00

m),
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where m runs over the R rows of A00. Thus if we rearrange our basis xl by increasing height, we
have

N�rMY

l=1

H(xl) 

 
N�RY

l=1

H(xl)

!N�rM
N�R

 |DK/Q|
N�rM

2d

 
Y

m

HAr(A
00

m)

!N�rM
N�R

. (2.4.2)

By definition of the Arakelov height, we haveHAr takes value in [1,1). Thus (
Q

mHAr(A00
m))

N�rM
N�R QrM

i=1HAr(A00

i ). Now the conclusion follows because HAr is invariant under each �i.

Below is reading material. It will not be covered in the main lectures or in the Exercise class.

2.4.3 Adelic version of Minkowski’s Second Theorem

The proof of Theorem 2.4.1 uses geometry of numbers over the adèles and Minkowski’s Second Theorem.
In this subsection, we introduce/recall these prerequisites.

Let K be a number field, v 2 MK and Kv be the completion of K with respect to v. It is known
that Kv is a locally compact group.

The ring of adèles of K is the subring

AK := {x = (xv) 2
Y

v2MK

Kv : xv 2 Rv up to finitely many v}.

of
Q

v2MK
Kv.

One should be careful with the topology on AK . It is not induced by the product topology onQ
v2MK

Kv! Rather, we consider for each finite subset S ✓ MK containing all archimedean places the
product

HS :=
Y

v2S

Kv ⇥

Y

v 62S

Rv.

The product topology makes each such HS into a locally compact topological group. The topology which
we put on AK is the unique topology such that the groups HS are open topological subgroups of AK . In
fact, this makes AK a locally compact topological ring.

It is known that the diagonal map K ! AK , x 7! (xv)v2MK , makes K into a discrete closed subgroup
of AK . Moreover AK/K is compact.

Let v|p 2 MQ. Then Kv is a locally compact group with Haar measure uniquely determined up to a
scalar. We normalize this Haar measure as follows:

(a) if v is non-archimedean, �v denotes the Haar measure on Kv normalized so that

�v(Rv) = |DKv/Qp
|
1/2
p

where Rv is the valuation ring of Kv and DKv/Qp
is the discriminant;

(b) if Kv = R, then �v is the usual Lebesgue measure;

(c) if Kv = C, then �v is twice the usual Lebesgue measure.

For each finite subset S ✓ MK containing all archimedean places, the product measure �S :=
Q

v2S �v ⇥Q
v 62S �v|Rv is then a Haar measure on the open topological subgruop HS of AK . The measures �S fit

together to give a Haar measure � on AK .[5]

Let N be a positive integer. For each (archimedean) v|1, let Sv be a non-empty convex, symmetric,
open subset of KN

v ; here “symmetric” means Sv = �Sv. For each (non-archimedean) v 2 M0
K , let Sv be

[5]With this in hand, we can shortly explain why we take the normalizations above. The Haar measure � on
AK induces a Haar measure �AK/K on the compact group AK/K, and the normalization above makes the volume
of AK/K to be 1.
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a Kv-lattice in KN
v , i.e. a non-empty compact open Rv-submodule of KN

v . Assume that Sv = RN
v for all

but finitely many v. Then the set

⇤ := {x 2 KN : x 2 Sv for all v 2 M0
K}

is a K-lattice in KN , i.e. a finitely generated OK-module which generates KN as a vector space.
Moreover, the image ⇤1 of ⇤ under the canonical embedding KN ,! E1 :=

Q
v|1 KN

v is an R-lattice in

E1.[6]

Definition 2.4.4. The n-th successive minimum of the non-empty convex symmetric open subset
S1 :=

Q
v|1 Sv of E1 with respect to the lattice ⇤1 is

�n := inf{t > 0 : tS1 contains n K-linearly independent vectors of ⇤1}.

Now we are ready to state (the adelic version of) Minkowski’s Second Theorem.

Theorem 2.4.5 (Minkowski’s Second Theorem, adelic form). The successive minima defined above sat-
isfy

(�1 · · ·�N )d
Y

v2MK

�v(Sv)  2dN .

Here, the product
Q

v2MK
�v(Sv) should be understood to be the volume of S with respect to the

Haar measure on AK defined by the �v’s at each v 2 MK .

2.4.4 Setup for the application of Minkowski’s Second Theorem

For the purpose of proving Siegel’s Lemma in the form of Theorem 2.4.1, we do the following preparation.
For the sets Sv: First, let QN

v be the unit cube in KN
v of volume 1 with respect to the Haar measure

�v. More explicitly, x = (x1, . . . , xN ) 2 QN
v if and only if

8
><

>:

maxn kxnkv < 1
2 if v is real

maxn kxnkv < 1
2⇡ if v is complex

maxn kxnkv  1 if v is non-archimedean.

Let A be an N ⇥M -matrix with entries in K such that rkA = M . Set

Sv := {y 2 KM
v : Ay 2 QN

v }. (2.4.3)

If v is archimedean, then Sv is a non-empty convex symmetric bounded open subset of KN
v ; indeed, under

the injective linear map x 7! Ax, the image of Sv is a linear slice of the cube QN
v . If v is non-archimedean,

then one can show that Sv is a Kv-lattice in KM
v and that Sv = RM

v for all but finitely many v; in fact
in this case we have the following more precise result.

Proposition 2.4.6. Let v 2 M0
K lying over the prime number p. Then Sv is a Kv-lattice in KM

v and
Sv = RM

v for all but finitely many v. Moreover, we have

�v(Sv) = |DKv/Qp
|
M/2
p

⇣
max

I
k det(AI)kv

⌘�1
,

where I runs over all subsets of {1, . . . , N} of cardinality M , and AI is the M ⇥M -matrix formed by the
i-th rows of A with i 2 I.

[6]This is the familiar notion of a lattice, namely ⇤1 is a discrete subgroup fo the R-vector space E1 and that
E1/⇤1 is compact.
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Proof. Choose a subset J ✓ {1, . . . , N} of cardinality M such that k det(AJ)kv = maxI k det(AI)kv.
Without loss of generality, we may assume J = {1, . . . ,M}. Then W := AA�1

J is of the form

W =

✓
IM
W 0

◆
.

For any subset I ✓ {1, . . . , N} of cardinality M , we have k det(WI)kv  1 by choice of J . In particular,
taking I = {1, . . . , l � 1, l + 1, . . . ,M,M + j} we get

kwM+j,lkv = k det(WI)kv  1.

Thus all entries of W are in the valuation ring Rv and this proves

AJSv = {y 2 KM
v : Wy 2 QN

v } = RM
v . (2.4.4)

This proves that Sv is a Kv-lattice in KM
v and that Sv = RM

v for all but finitely many v
It remains to compute �v(Sv). It is known that under the linear transformation y 7! A�1

J y on KM
v ,

the volume transforms by the factor k det(AJ)k�1
v . Thus

�v(Sv) = k det(AJ)k
�1
v �v(R

M
v ) = k det(AJ)k

�1
v |DKv/Qp

|
M/2
p

which is what we desire.

We also need to bound �v(Sv) from below for v archimedean. For this purpose, we have

Proposition 2.4.7. Let v 2 MK with v|1. Then

�v(Sv) � kdet(A⇤A)k�1/2
v

where A⇤ = A
t
is the adjoint of A.

Proof. The proof uses Vaaler’s cube-slicing theorem, which we state here without proof.

Vaaler’s cube-slicing theorem. Let N = n1+ · · ·+nr be a partition. Let QN := B⇢(n1)⇥ · · ·⇥B⇢(nr),

where each B⇢(nj) is the closed ball of volume 1 in Rnj centered at 0.[7] For a real N ⇥M -matrix B of
rank M , we have

det(BtB)�1/2
 Vol

�
{y 2 RM : By 2 QN}

�
. (2.4.5)

An easier way to understand this volume bound is as follows. Let L := Im(B) ✓ RN which is an M -
dimensional subspace. Then (2.4.5) is equivalent to 1  Vol(QN \ L), i.e. the volume of a slice through
the center of a product of balls of volume 1 is bounded below by 1.

Now we go back to the proof of Proposition 2.4.7. If Kv = R, then this is (2.4.5) for r = N and
n1 = · · · = nN = 1. Assume Kv = C. Write A = U +

p
�1V and y = u+

p
�1v for real U, V,u,v. Thus

KM
v ' R2M , y 7! (u,v). Similarly we have KN

v ' R2N . Now, the linear map y 7! Ay is given by the
real 2N ⇥ 2M -matrix

A0 =

✓
U �V
V U

◆

and

QN
v =

⇢
(u,v) 2 R2N : u2

j + v2j <
1

2⇡

�
.

By (2.4.5) for n1 = · · · = nN = 2, we then have

�v(Sv) � det(A0tA0)�1/2.

Since A 7! A0 is a ring homomorphism from the complex N ⇥M -matrices to the real 2N ⇥ 2M -matrices,
we have det(A0tA0) = det((A⇤A)0) = det(A⇤A)2. Hence we can conclude.

[7]So the radius of B⇢(nj) is ⇢(nj) = ⇡�1/2�(nj/2 + 1)1/nj .
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2.4.5 Proof of Theorem 2.4.1

With the preparation from last subsection, we prove Bombieri–Vaaler’s Siegel Lemma in this subsection.
We start with:

Proposition 2.4.8. Let A be an N ⇥M -matrix of rank M with entries in K. Then the image of A has
a basis x1, . . . ,xM with

MY

m=1

H(xm) 

✓
2

⇡

◆Ms
d

|DK/Q|
M
2dHAr(A)

where s is the number of complex places of K and d = [K : Q].

Proof. By Proposition 2.4.6 and Proposition 2.4.7, we have

Y

v2MK

�v(SV ) �
Y

v2M0
K

|DKv/Qp
|
M/2
p

0

@
Y

v2M0
K

max
I

k det(AI)kv ·
Y

v|1

k det(A⇤A)k1/2v

1

A
�1

.

By (2.3.3), this becomes

Y

v2MK

�v(SV ) �

0

@
Y

v2M0
K

|DKv/Qp
|
M/2
p

1

AHAr(A)�d.

It is known, from Algebraic Number Theory, that |DK/Q|p =
Q

v|p |DKv/Qp
|p for each prime number p.

Thus the Product Formula implies |DK/Q|�1 =
Q

v2M0
K
|DKv/Qp

|p. So the inequality above becomes

Y

v2MK

�v(SV ) � |DK/Q|
�M/2HAr(A)�d.

Thus, Minkowski’s Second Theorem, Theorem 2.4.5, yields

�1 · · ·�M  2M |DK/Q|
M/2dHAr(A). (2.4.6)

It remains to use the successive minima find the desired basis. For the specific sets Sv constructed in
(2.4.3), recall the K-lattice ⇤ = {x 2 KN : x 2 Sv for all v 2 M0

K} which is identified with its image
⇤1 under the canonical embedding KN ,! E1 =

Q
v|1 KN

v . Let y 2 KM be a lattice point in �S1 for
some � > 0 and let x = Ay. Then the definition of S1 =

Q
v|1 Sv yields maxn kxnkv < �/2 if v is real,

maxn kxnkv < �2/2⇡ if v is complex, and maxn kxnkv  1 if v 2 M0
K . Thus we have

H(Ay) <
�

2

✓
2

⇡

◆s/d

. (2.4.7)

By the definition of successive minima, there are linearly independent lattice points y1, . . . ,yM 2 KM

such that ym 2 �mS1 for each m 2 {1, . . . ,M}. Then we obtain the desired basis from (2.4.6) and
(2.4.7), with xm = Aym.

Proof of Theorem 2.4.1. For the M ⇥ N -matrix A of rank M , its transpose At is an N ⇥ M -matrix of
rank M . It is attempting to apply Proposition 2.4.8 directly to At, but we need to do more.

We wish to find a basis of Ker(A) of small height. To do this, we first of all take an arbitrary
basis y1, . . . ,yN�M of Ker(A), and let A0 :=

�
y1 · · · yM

�
. Then A0 is an N ⇥ (N �M)-matrix with

rank N � M , and Im(A0) = Ker(A). Recall that hAr(A) = hAr(Ker(A)) by Corollary 2.3.9. Hence
hAr(A0) = hAr(A).

Apply Proposition 2.4.8 to A0. Then we get a basis x1, . . . ,xN�M of Im(A0) = Ker(A) such that

N�MY

l=1

H(xl) 

✓
2

⇡

◆(N�M)s/d

|DK/Q|
N�M

2d HAr(A
0).

But 2/⇡ < 1. So we are done because HAr(A0) = HAr(A).
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