
Chapter 3

Roth’s Theorem

3.1 Historical background (Liouville, Thue, Siegel, Gelfond, Dyson,

Roth)

3.1.1 From Liouville to Thue

In Chapter 1, we proved the following Liouville’s inequality on approximating algebraic numbers
by rational numbers. The following statement is a reformulated version of Corollary 1.2.13.

Theorem 3.1.1 (Liouville). Let ↵ 2 R be an algebraic number of degree d > 1 over Q. Then
there exists a constant c(↵) > 0 such that for all rational numbers p/q (q � 1), we have

����↵�
p

q

���� �
c(↵)

qd
. (3.1.1)

In Chapter 1, we used the Fundamental Inequality (Proposition 1.2.10) to deduce this bound.
In this chapter, we give another proof. This new proof sets up a prototype for various improve-
ments on approximations of algebraic numbers by rational numbers, and will eventually lead to
the deep Roth’s Theorem and even more.

Proof. We will divide the proof into several steps.
Step I: Construct an auxiliary polynomial Let f(x) 2 Z[x] be the minimal polynomial of ↵
over Q with relatively prime integral coe�cients. In particular, f is irreducible over Q and has
degree d.
Step II: Non-vanishing at the rational point If p/q 2 Q, then we have f(p/q) 6= 0.

Step III: Lower bound (Liouville) By Step II, we then have |f(p/q)| � 1/qd since deg f = d.

Step IV: Upper bound As f(↵) = 0 and f is the minimal polynomial of ↵, we can write

f(x) = (x� ↵)g(x) with g(↵) 6= 0. Thus

����f
✓
p

q

◆���� =
����↵�

p

q

���� ·
����g
✓
p

q

◆���� .

Notice that g has d � 1 roots, and ✏ := min� |� � ↵| > 0 and � := max� |� � ↵| > 0 with �
running over all the roots of g. If |p/q� ↵| < ✏, then g(p/q) 6= 0. Moreover, for any root � of g,
we have |p/q � �|  |� � ↵| + |p/q � ↵|  2�. Hence 0 6= |g(p/q)| =

Q
� |p/q � �|  (2�)d�1 if

|p/q � ↵| < ✏. Notice that ✏ and � are both determined by ↵.
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48 CHAPTER 3. ROTH’S THEOREM

Step V: Comparison of the two bounds The lower bound and the upper bound yield the fol-

lowing alternative: Either |↵� p/q| � ✏ � ✏/qd, or

����↵�
p

q

���� �
1

qd
1

(2�)d�1
.

Thus it su�ces to take c(↵) = min{✏, 1/(2�)d�1
} > 0.

Before moving on, let us see an application. By this theorem of Liouville, one can see that
1+ 1

102!
+ 1

103!
+ 1

104!
+ · · · is a transcendental number since it has good rational approximations.

Improvements of Liouville’s approximation above require sharpening the exponent on the
right hand side of (3.1.1). The first improvement was obtained by Thue, replacing d by d

2 +1+✏.

Theorem 3.1.2 (Thue). Let ↵ 2 R be an algebraic number of degree d � 3 over Q and let
✏ > 0. Then there are only finitely many rational numbers p/q (with p, q coprime and q � 1)
such that ����↵�

p

q

���� 
1

q
d
2+1+✏

. (3.1.2)

Later on, Siegel improved this approximation by sharpening the exponent d
2 + 1 + ✏ to

2
p
d+ ✏, which was further improved to

p
2d+ ✏ by Gelfond and Dyson. The culminant of this

approximation result is Roth’s Theorem, replacing the exponent d
2 +1+ ✏ above by 2+ ✏. Later

on, a more general formulation of Roth’s Theorem, concerning not only one but finitely many
places, was obtained by Ridout over Q and by Lang over an arbitrary number field.

The proofs of these improvements follow the guideline set up above. In Liouville’s work, the
auxiliary polynomial from Step I comes for free and the polynomial has 1 variable. In general,
we need to construct a polynomial such that the lower bound from Step III and the upper
bound from Step IV repel each other.[1] This construction of the auxiliary polynomial is often
by application of a suitable version of Siegel’s Lemma discussed in Chapter 2. Thue and Siegel
worked with polynomials in 2 variables. Roth obtained the drastic improvement by constructing
a polynomial in m variables. However, the non-vanishing of this auxiliary polynomial at a
“special” point from Step II is a crucial point of the construction and it is a major di�culty
for the generalization of the approach. Solving this problem requires suitable zero estimates
and even the more general multiplicity estimates, which themselves are an important topic of
Diophantine Geometry.

Before moving on, let us see an example on how Thue’s Theorem above can be applied to
Diophantine equations. Stronger results on the finiteness of integer points on (certain) smooth
a�ne curves can be obtained by applying Siegel’s and Roth’s Theorems.

Theorem 3.1.3. Let F (x, y) 2 Z[x, y] be a homogeneous polynomial of degree d with at least 3
non-proportional linear factors over C. Then for every non-zero m 2 Z, the equation F (x, y) =
m has only finitely many integer solutions.

Proof. We prove this by contradiction. First assume that F is irreducible over Q. Consider the
decomposition over C

F

✓
x

y
, 1

◆
= ad

✓
x

y
� ↵1

◆
· · ·

✓
x

y
� ↵d

◆
.

[1]We will see more precise meaning of this in later sections; a notion of “index” will be used.
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Then F (x, y) = m becomes

ad

✓
x

y
� ↵1

◆
· · ·

✓
x

y
� ↵d

◆
=

m

yd
.

If it has infinitely many integer solutions (xn, yn), then |yn| ! 1 and hence m/ydn ! 0. Thus
up to passing to a subsequence, we may and do assume that xn/yn ! ↵j for some j. Notice
that |xn/yn � ↵i| > ✏ for some ✏ depending only on F for all i 6= j. Thus we obtain infinitely
many integral solutions to |↵j � p/q|  Cq�d for some constant C > 0. This contradicts Thue’s
Theorem above since d � 3.

Next we pass to the general case. Let F1, . . . , Fr be the distinct non-constant irreducible
polynomials in Z[x, y] dividing F . By a linear change of coordinates, we may and do assume that
the polynomial y does not divide F . Assume F (x, y) = m has infinitely many integer solutions.
By the Pigeonhole Principle, there exist divisors m1, . . . ,mr of m with the following property:
the system F1(x, y) = m1, . . . , Fr(x, y) = mr has infinitely integer solutions (xn, yn). As in the
previous case, up to passing to a subsequence we may and do assume that xn/yn converges to
a root of Fj(x, 1) for each j 2 {1, . . . , r}. But the Fj ’s have distinct roots since each Fj is the
minimal polynomial of each one of its roots. So r = 1. By the assumption that F has at least
3 non-proportional linear factors over C, we then have degF1 � 3. Thus the conclusion follows
from the irreducible case applied to F1(x, y) = m1.

3.1.2 Statement of Roth’s Theorem

The original version of Roth’s Theorem, which we will prove in this chapter, is as follows.

Theorem 3.1.4 (Roth’s Theorem). Let ↵ 2 R be an algebraic number and let ✏ > 0. Then
there are only finitely many rational numbers p/q (with p, q coprime and q � 1) such that

����↵�
p

q

���� 
1

q2+✏
. (3.1.3)

A more general version by Lang is as follows. The statement uses the multiplicative height
H.

Theorem 3.1.5. Let K be a number field and let S ✓ MK a finite subset. For each v 2 S, take
↵v 2 Kv which is K-algebraic, i.e. ↵v 2 Kv is a root of a polynomial with coe�cients in K.
Then for each ✏ > 0, there are only finitely many � 2 K such that

Y

v2S

min{1, |↵v � �|v}  H(�)�(2+✏). (3.1.4)

Implication of Theorem 3.1.4 by Theorem 3.1.5. Take K = Q and S = {1}. Then (3.1.4)
implies that there are only finitely many rational numbers p/q such that min{1, |↵ � p/q|} 

H(p/q)�(2+✏). Recall that H(p/q) � 1. So if min{1, |↵ � p/q|}  H(p/q)�(2+✏), then |↵ �

p/q|  1. Therefore, there are only finitely many rational numbers p/q (with p, q coprime and
q � 1) such that |↵ � p/q|  max{|p|, q}�(2+✏) = min{|p|�(2+✏), q�(2+✏)

}  q�(2+✏). This proves
Theorem 3.1.4.
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3.2 Index and preparation of the construction of the auxiliary

polynomial

In the Thue–Siegel method and Roth’s proof of his big theorem, it is important to construct
a polynomial of rapid decreasing degrees, for the purpose of making the lower bound and the
upper bound repel each other. Then, in order to say that the polynomial vanishes at high order,
we need a suitable notion of index.

Let F be a field. Let P 2 F [x1, . . . , xm] be a polynomial in m variables. Let d =
(d1, . . . , dm) be an m-uple (warning: the dj ’s may not be the partial degrees of P ). Denote
by x = (x1, . . . , xm).

To ease notation, we introduce the following abbreviation. For two m-uples n = (n1, . . . , nm)
and µ = (µ1, . . . , µm) of non-negative integers, set

✓
n

µ

◆
=

mY

j=1

✓
nj

µj

◆

and

@µ =
1

µ1! · · ·µm!

✓
@

@x1

◆µ1

· · ·

✓
@

@xm

◆µm

.

Then

@µx
n =

✓
n

µ

◆
x
n�µ.

The following lemma is useful. It will be proved in the Exercise class.

Lemma 3.2.1. h(@µP )  h(P ) + (degP ) log 2 where degP is the sum the partial degrees of P .

Now let us define the index.

Definition 3.2.2. For a point ↵ = (↵1, . . . ,↵m), the index of P at ↵ with respect to d is
defined to be

ind(P ;d;↵) := min
µ

⇢
µ1

d1
+ · · ·+

µm

dm
: @µP (↵) 6= 0

�
. (3.2.1)

Lemma 3.2.3. The following properties hold true.

(i) ind(P +Q;d;↵) � min{ind(P ;d;↵), ind(Q;d;↵)};

(ii) ind(PQ;d;↵) = ind(P ;d;↵) + ind(Q;d;↵);

(iii) ind(@µP ;d;↵) � ind(P ;d;↵)� µ1
d1

� · · ·�
µm
dm

.

Proof. For (i): Assume that ind(P +Q;d;↵) is achieved at some µ = (µ1, . . . , µm), then @µ(P +
Q)(↵) 6= 0. So @µP (↵) + @µQ(↵) 6= 0, and therefore either @µP (↵) 6= 0 or @µQ(↵) 6= 0. By
definition of the index, we then have: either

P µj

dj
� ind(P ;d;↵) or

P µj

dj
� ind(Q;d;↵). Thus

ind(P +Q; r;↵) =
P µj

dj
� min{ind(P ;d;↵), ind(Q;d;↵)}.

For (ii): Assume that ind(PQ;d;↵) is achieved at some µ = (µ1, . . . , µm). We have
@µ(PQ) =

P
µ1+µ2=µCµ1,µ2(@µ1P )(@µ2Q) for some positive integers Cµ1,µ2 .

[2] Thus there
exists µ1 and µ2 such that µ1 + µ2 = µ, @µ1P (↵) 6= 0 and @µ2Q(↵) 6= 0. Thus the defi-
nition of index yields

P
j
µ1,j

dj
� ind(P ;d;↵) and

P
j
µ2,j

dj
� ind(Q;d;↵). So ind(PQ;d;↵) =

P
j
µ1,j+µ2,j

dj
� ind(P ;d;↵) + ind(Q;d;↵).

[2]In fact, it can be checked that each Cµ1,µ2 is equal to 1.
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To get the other direction, let us look at the set of µ1’s such that

@µ1P (↵) 6= 0 and ind(P ;d;↵) =
X

j

µ1,j

dj
.

Consider the smallest such m-uple, ordered by the lexicographic order, which we call ⌫1. Simi-
larly take ⌫2 for Q. Set ⌫ = ⌫1 + ⌫2. Then

@⌫(PQ)(↵) = C⌫1,⌫2@⌫1P (↵) · @⌫2Q(↵)

because all the other terms vanish! Thus ind(PQ;d;↵) 
P

j
⌫j
dj

=
P

j
⌫1,j+⌫2,j

dj
= ind(P ;d;↵)+

ind(Q;d;↵). Hence we are done by the previous paragraph.
For (iii): Assume that ind(@µP ;d;↵) is achieved at some ⌫ = (⌫1, . . . , ⌫m). Then @⌫(@µP )(↵) 6=

0, and hence @⌫+µP (↵) 6= 0. So
P

j
⌫j+µj

dj
� ind(P ;d;↵). Hence ind(@µP ;d;↵) =

P
j
⌫j
dj

�

ind(P ;d;↵)�
P

j
µj

dj
.

Our purpose is to find a polynomial of large index and of small height. The result is as
follows. Set, for each t > 0,

Vm(t) := {x 2 Rm : x1 + · · ·+ xm  t, 0  xj  1},

and Vm(t) to be the volume of Vm(t) with respect to the usual Lebesgue measure on Rm.

Lemma 3.2.4. Let ↵ 2 R be an algebraic number, and set ↵ = (↵, . . . ,↵) 2 Rm. Let r = [Q(↵) :
Q]. Let t > 0 be such that rVm(t) < 1. Then, for all su�ciently large integers d1, . . . , dm, there
exists a polynomial P 2 Q[x1, . . . , xm] of partial degrees at most d1, . . . , dm such that:

(i) ind(P ;d;↵) � t;

(ii) as dj ! 1 for all j 2 {1, . . . ,m}, we have

h(P ) 
rVm(t)

1� rVm(t)

mX

j=1

(h(↵) + log 2 + o(1))dj .

Proof. The key ingredient to prove this lemma is by applying Siegel’s Lemma (and it su�ces
to apply the basic relative version, Lemma 2.1.3). Let us explain what the parameters and the
linear system from Siegel’s Lemma are in the current situation.

Write P (x) =
P

pJxJ for the polynomial. Then any P with ind(P ;d;↵) � t lies in the set
of P satisfying

@IP (↵) = 0 for all
i1
d1

+ · · ·+
im
dm

< t (3.2.2)

with I = (i1, . . . , im). Notice that we may assume ik  dk for each k 2 {1, . . .m} because
otherwise the partial derivative will be identically 0. Now all the equations from (3.2.2) define
a linear system A in the coe�cients pJ of P which we wish to solve in Q.

Each entry in this linear systemA is of the form
�J
I

�
↵J�I , and thusH(A)  2d1+···+dmH(↵)d1+···+dm .

The number N of unknowns is N = (d1 + 1) · · · (dm + 1). Notice that N ⇠ d1 · · · dm as
dj ! 1 for all j 2 {1, . . . ,m}.

The number M of equations is M = #(� \ Vm(t)) for the lattice � = 1
d1
Z ⇥ · · ·

1
dm

Z. We
claim that M ⇠ Vm(t)d1 · · · dm as dj ! 1 for all j 2 {1, . . . ,m}. Indeed, Vm(t)d1 · · · dm  M
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because we can associate to each lattice point in � the parallelopiped [i1/d1, (i1 +1)/d1]⇥ · · ·⇥

[im/dm, (im + 1)/dm]. On the other hand, for each (i1/d1, . . . , im/dm) 2 � \ Vm(t), we have

i1 + 1

d1
+ · · ·+

im + 1

dm
 t+

1

d1
+ · · ·+

1

dm
and ij + 1  dj + 1.

Thus if we rescale Vm(t) by the factor 1 + max{1, t�1
}(1/d1 + · · · + 1/dm), then the rescaled

domain contains all the parallelopipeds associated to the points in � \ Vm(t). In summary, we
have

Vm(t)d1 · · · dm  M  Vm(t)

✓
1 + max{1, t�1

}

✓
1

d1
+ · · ·+

1

dm

◆◆m

d1 · · · dm.

Thus M ⇠ Vm(t)d1 · · · dm as dj ! 1 for all j 2 {1, . . . ,m}.
Now we are ready to apply Siegel’s Lemma. As dj ! 1 for all j 2 {1, . . . ,m}, we have

N ⇠ d1 · · · dm > rM because rVm(t) < 1. Thus by Lemma 2.1.3 and the comment below
(which relates the right hand side of the height bound to the height of the matrix by using the
Fundamental Inequality Proposition 1.2.10), there is a non-zero solution to the linear system
defined by (3.2.2), and hence a non-zero polynomial P satisfying hypothesis (i), such that (for
some constant C depending only on ↵)

h(P ) 
rVm(t)d1 · · · dm

d1 · · · dm � rVm(t)d1 · · · dm
log(Cd1 · · · dmH(A))


rVm(t)

1� rVm(t)

0

@
mX

j=1

log dj + (h(↵) + log 2)
mX

j=1

dj + logC

1

A

as dj ! 1 for all j 2 {1, . . . ,m}. Hence we are done.

Next we give an estimate of the volume in question.

Lemma 3.2.5. If 0  ✏  1/2, then

Vm

✓✓
1

2
� ✏

◆
m

◆
 e�6m✏2 .

Proof. Set �(x) =

(
1 if x < 0

0 if x � 0
. Then �(x) < e��x for every � > 0. Thus for each � > 0, we have

Vm

✓✓
1

2
� ✏

◆
m

◆
=

Z 1
2

�
1
2

· · ·

Z 1
2

�
1
2

�(x1 + · · ·+ xm +m✏)dx1 · · · dxm



Z 1
2

�
1
2

· · ·

Z 1
2

�
1
2

e��(m✏+
P

xj)dx1 · · · dxm

=

 Z 1
2

�
1
2

e��(✏+x)dx

!m

= e�mU(�),

where U(�) = ✏�� log sinh(�/2)
�/2 .[3] But sinh(u)/u = 1+u2/3!+u4/5!+ · · ·  1+u2/6+(u2/6)2/2!+ · · · =

eu
2/6. So we can conclude by setting � = 12✏.

[3]sinh(u) = eu�e�u

2 .
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3.3 Proof of Roth’s Theorem assuming zero estimates

In this section, we prove Roth’s Theorem (Theorem 3.1.4) assuming zero estimates. The result
for zero estimates which we will cite is Roth’s Lemma.

We start by restating Roth’s Theorem.

Theorem 3.3.1 (Roth’s Theorem). Let ↵ 2 R be an algebraic number and let ✏ > 0. Then
there are only finitely many rational numbers p/q (with p, q coprime and q � 1) such that

����↵�
p

q

���� 
1

q2+✏
. (3.3.1)

We will divide the proof into several step, outlined as for Theorem 3.1.1.

3.3.0 Step 0: Choosing independent solutions.

Assume the conclusion is wrong. Then there exists ↵ 2 R an algebraic number with infinitely
many rational approximations p/q to ↵ satisfying (3.3.1). Then, for any positive integer m and
any large constants L and M , we can find m such rational approximations pj/qj to ↵ (with
qj � 1) such that

log q1 > L and log qj+1 > M log qj

for each j 2 {1, . . . ,m� 1}. Namely, we consider large solutions which satisfy a Gap Principle.
Such a sequence will be called (L,M)-independent.
Fix ✏0 2 (0, 1/6).

3.3.1 Step 1: Construction of an auxiliary polynomial.

Let D be a large real number which we will fix later on. For each j 2 {1, . . . ,m}, set

dj := bD/ log qjc.

In this step, we wish to construct a polynomial P (x) 2 Z[x] = Z[x1, . . . , xm] of partial degrees
d1, . . . , dm, vanishing to a (weighted) high order at ↵ = (↵, . . . ,↵). More precisely, we will
apply Lemma 3.2.4[4] to construct a polynomial P of large index at ↵ with respect to d. More
precisely, Lemma 3.2.5 implies Vm((1/2� ✏0)m)  e�6m✏02 . If we choose

m >
log 2[Q(↵) : Q]

6✏02
, (3.3.2)

then [Q(↵) : Q]Vm(t)  1/2. Thus Lemma 3.2.4 yields a polynomial P of partial degrees at
most d1, . . . , dm such that:

(i) ind(P ;d;↵) � (1/2� ✏0)m, or equivalently for any µ = (µ1, . . . , µm) with

µ1

d1
+ · · ·+

µm

dm
<

✓
1

2
� ✏0

◆
m

satisfies @µP (↵) = 0;

(ii) As dj ! 1 for all j 2 {1, . . . ,m}, we have

h(P ) 
mX

j=1

(h(↵) + log 2 + o(1))dj  C(d1 + · · ·+ dm) (3.3.3)

with C a suitable constant depending only on ↵ and m.
[4]Which itself is a suitable application of Siegel’s Lemma.
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3.3.2 Step 2: Non-vanishing at the rational points.

This is the most di�cult step. Before Roth’s work, one could only do for m = 1 and m = 2.
Roth proved, for this step, the following lemma as a consequence of Roth’s Lemma. It is in
this step that we need the parameter M ; see (3.4.2). Notice also that all the conditions for the
parameters (m, L, M and D) are summarized in the hypotheses of this lemma.

Lemma 3.3.2. Suppose p1/q1, . . . , pm/qm are (L,M)-independent with

m > log(2[Q(↵) : Q])/(6✏02) and L � (C + 4)m✏0�2m�1
and M � 2✏0�2m�1

.

Then for every su�ciently large D, there exists a polynomial Q 2 Z[x1, . . . , xm] with partial
degrees at most dj = bD/ log qjc such that

(i) ind(Q;d;↵) �
�
1
2 � 3✏0

�
m;

(ii) Q(p1/q1, . . . , pm/qm) 6= 0;

(iii) h(Q)  C1mD/L for a constant C1 depending only on ↵ and m.

In fact, this Q is a suitable derivative of the P constructed from Step 1.

3.3.3 Step 3: Lower bound (Liouville).

Since Q(p1/q1, . . . , pm/qm) 6= 0 and Q has partial degrees at most d1, . . . , dm, we have the
obvious bound (Liouville bound)

log |Q(p1/q1, . . . , pm/qm)| � log q�d1
1 · · · q�dm

m = �(d1 log q1 + . . .+ dm log qm).

The choice dj = bD/ log qjc implies D � log qj  dj log qj  D. Thus

log |Q(p1/q1, . . . , pm/qm)| � �mD.

3.3.4 Step 4: Upper bound.

Consider the Taylor expansion of Q at (↵, . . . ,↵). Since ind(Q;d;↵) �
�
1
2 � 3✏0

�
m, we get

Q(p1/q1, . . . , pm/qm) =
X

@µQ(↵)(p1/q1 � ↵)µ1 · · · (pm/qm � ↵)µm (3.3.4)

with µ = (µ1, . . . , µm) running over all possibilities with
P

j µj/dj � (1/2 � 3✏0)m. Then the

assumption |↵� pj/qj |  q�(2+✏)
j implies

log (|p1/q1 � ↵|µ1 · · · |pm/qm � ↵|µm) 
X

j

µj

dj
log q

�(2+✏)dj
j

 (max
j

log q
�(2+✏)dj
j )

X

j

µj

dj

 (2 + ✏)(1/2� 3✏0)mmax
j

{�dj log qj}

= �(2 + ✏)(1/2� 3✏0)mmin
j

dj log qj

 �(2 + ✏)(1/2� 3✏0)m(D � log qm).
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Now let us estimate log |@µQ(↵)|. We use Lemma 3.2.1 and Proposition 1.3.2 to get

h(@µQ(↵))  h(Q) + (log 2)
X

j

dj + h(↵)
X

j

dj + (m+
X

j

dj + 1) log 2

 C1
mD

L
+ (h(↵) + log 4)

X
dj + (m+ 1) log 2.

The Fundamental Inequality, Proposition 1.2.10, yields log |@µQ(↵)|  h(@µQ(↵)). As dj =
bD/ log qjc  D/ log qj  D/ log q1 < D/L (recall that log qj � log q1 > L), we have

log |@µQ(↵)|  (C1 + h(↵) + log 4)
mD

L
+ (m+ 1) log 2.

Notice that the number of terms in the expression of Q(p1/q1, . . . , pm/qm) from (3.3.4) is poly-
nomial in d1, . . . , dm, and hence the contribution of this number to log |Q(p1/q1, . . . , pm/qm)| is
o(d1 + · · ·+ dm) = o(mD/L). Thus

log |Q(p1/q1, . . . , pm/qm)|  C 0
mD

L
+ (m+ 1) log 2� (2 + ✏)(

1

2
� 3✏0)m(D � log qm)

for a suitable constant C 0 depending only on ↵ and m.

3.3.5 Step 5: Comparison of the two bounds.

Now the two bounds from Step 3 and Step 4 together imply

mD � (2 + ✏)

✓
1

2
� 3✏0

◆
m(D � log qm)� C 0

mD

L
� (m+ 1) log 2.

Dividing both sides by mD, we get

1 � (2 + ✏)

✓
1

2
� 3✏0

◆✓
1�

log qm
D

◆
�

C 0

L
�

(m+ 1) log 2

mD
.

Recall that qm is fixed. Now let ✏0 ! 0, D ! 1 and L ! 1. Then we get 1 � 1 + ✏/2. This is
a contradiction. Hence we are done.

Remark 3.3.3. In this proof, we gave an explicit bound for dj = bD/ log qjc, i.e. D � log qj 

dj log qj  D. But in fact, for q1  · · ·  qm and qm fixed, we have limD!1

dj
D/ log qj

= 1.

Hence for D large enough, dj and D/ log qj are very close to each other and in later estimates,
it su�ces to use D/ log qj. We will write dj ⇠ D/ log qj for D large enough for this.

3.4 Zero estimates: Roth’s Lemma

In this section, we state Roth’s Lemma, use it to prove Lemma 3.3.2 (Step 2 of the proof of
Roth’s Theorem), and prove Roth’s Lemma.

Lemma 3.4.1 (Roth’s Lemma). Let P 2 Q[x1, . . . , xm], not identically zero, of partial degrees
at most d1, . . . , dm and dj � 1. Let ⇠ = (⇠1, . . . , ⇠m) 2 Qm

and let 0 < � 
1
2 . Assume that

(i) the weights d1, . . . , dm are rapidly decreasing, i.e.

dj+1/dj  �;
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(ii) the point (⇠1, . . . , ⇠m) has components with large height, i.e.

min
j

djh(⇠j) � ��1(h(P ) + 4md1).

Then we have
ind(P ;d; ⇠)  2m�1/2m�1

. (3.4.1)

3.4.1 Proof of Lemma 3.3.2 by Roth’s Lemma

We will apply Roth’s Lemma to the polynomial P constructed in §3.3.1 (Step 1 of the proof of
Roth’s Theorem) and ⇠ = (p1/q1, . . . , pm/qm). Let us explain the parameters.

Fix � = ✏02
m�1

2 (0, 1/2] (recall our choice ✏0 2 (0, 1/6) in Step 0 of the proof of Roth’s
Theorem).

Recall our choices dj = bD/ log qjc ⇠ D/ log qj for D large enough and log qj+1 � M log qj .
Thus hypothesis (i) of Roth’s Lemma is verified if we set

M � 2��1 and D large enough. (3.4.2)

Next, using djh(pj/qj) � dj log qj ⇠ D, dm  · · ·  d1  D/ log q1 < D/L and the height bound
on P given by (3.3.3), we see that hypothesis (ii) of Roth’s Lemma is verified if we set

D � ��1(C + 4)m
D

L

with C the constant depending only on ↵ and m from (3.3.3).
Now we choose M and D as in (3.4.2) and L � ��1(C + 4)m. Then we can apply Roth’s

Lemma to P and ⇠ = (p1/q1, . . . , pm/qm) to get ind(P ;d; ⇠)  2m�1/2m�1
= 2m✏0. So there

exists µ such that @µP (⇠) 6= 0 and
Pm

j=1
µj

dj
 2m✏0.

We claim that Q := @µP is what we desire. Let us check the conclusions for Lemma 3.3.2.
Part (ii) is done. For part (i), it su�ces to apply Lemma 3.2.3.(iii), the construction ind(P ;d;↵) �
(1/2� ✏0)m for P and

Pm
j=1

µj

dj
 2m✏0. For (iii), we use Lemma 3.2.1 and the height bound on

P (3.3.3) to get

h(Q) = h(@µP )  h(P ) + (log 2)
X

dj  C1

X
dj

where C depends only on ↵ and m, when all dj ! 1. Again by using dj log qj ⇠ D and
log qj � log q1 > L, we can conclude.

3.4.2 Proof of Roth’s Lemma

We prove Roth’s Lemma by induction on m. Notice that for the base step m = 1, we in fact
prove a stronger bound.

For the base step m = 1, we will prove the better bound

ind(P ; d1; ⇠1)  �. (3.4.3)

By definition of the index, we have that (x1 � ⇠1)ind(P ;d1;⇠1)d1 divides P . Thus we can apply
Theorem 1.3.4 to get

h(P ) � �d1 log 2 + ind(P ; d1; ⇠1)d1 · h(x1 � ⇠1) � �d1 log 2 + ind(P ; d1; ⇠1)d1 · h(⇠1).

Thus
ind(P ; d1; ⇠1)  (h(P ) + d1 log 2)/d1h(⇠1)  �.
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So we are done for the base step. Notice that hypothesis (ii) for m = 1 can be weakened to be
d1h(⇠1) � ��1(h(P ) + log 2 · d1).

Now we do the induction step. Assume that Roth’s Lemma is proved for 1, . . . ,m � 1. We
wish to prove it for m.

We will use the Wronskian criterion for linear independence.

Proposition 3.4.2. Let '1, . . . ,'n be polynomials in Q[x1, . . . , xm]. Then '1, . . . ,'n are lin-
early independent over Q if and only if some generalized Wronskian

Wµ1,...,µn(x1, . . . , xm) := det

0

BB@

@µ1'1 @µ1'2 · · · @µ1'n

@µ2'1 @µ2'2 · · · @µ2'n

· · · · · ·

@µn'1 @µn'2 · · · @µn'n

1

CCA ,

with |µi| = µ(i)
1 + µ(i)

2 + · · ·+ µ(i)
m  i� 1, is not identically zero.

We will finish the proof of Roth’s Lemma assuming Proposition 3.4.2. To perform the
splitting of the Wronskian, we write the polynomial P 2 Q[x1, . . . , xm] in the form

P =
sX

j=0

fj(x1, . . . , xm�1)gj(xm)

with s  dm and where the fj ’s (similarly the gj ’s) are linearly independent polynomials over
Q.

Set
U(x1, . . . , xm1) := det(@µifj)i,j=0,...,s

with µi = (µ(i)
1 , µ(i)

2 , . . . , µ(i)
m�1) such that |µi|  s  dm, and

V (xm) := det(@⌫gj)⌫,j=0,...,s.

By Proposition 3.4.2, we may choose such U and V that they are both not identically 0. Set

W (x1, . . . , xm) := det(@µi,⌫P ) = U(x1, . . . , xm1)V (xm).

We wish to apply the induction hypothesis to U and V . Thus we need to analyse the their
degrees and heights.

For degrees, it is easy to see that the partial degrees of U are at most (s+1)d1, . . . , (s+1)dm�1,
and deg V  (s+ 1)dm.

Since dj+1/dj  �  1/2 by hypothesis (i), we have d1 + . . .+ dm  2d1.
For heights, Theorem 1.3.4 yields h(W ) � h(U) + h(V ) � (s + 1)(d1 + · · · + dm) log 2 �

h(U) + h(V )� (s+ 1)(2 log 2)d1 � h(U) + h(V )� (s+ 1)d1. We claim that

h(W )  (s+ 1)(h(P ) + 3d1). (3.4.4)

Indeed, by expansion, the determinant W is a sum of (s + 1)! terms, each of which is the
product of s + 1 polynomials of the form @µi,⌫P for some µi and ⌫. Thus by the proof of
Proposition 1.3.12, Theorem 1.3.4 and Lemma 3.2.1, we have[5]

h(W )  (s+ 1) (h(P ) + (d1 + . . .+ dm) log 2) + (d1 + . . .+ dm) log 2 + log(s+ 1)!.

[5]One cannot directly apply Proposition 1.3.12 here. Instead, one goes into its proof, which is essentially the
proof of Proposition 1.2.8. Notice that all the kx

(k)
j kv’s at the end of that proof has the same upper bound in

terms of P (because they are all derivatives of P ), so in the long inequalities at the of that proof there is not need
to take the sum

P
1kr.
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Hence we can establish (3.4.4) because d1+ . . .+ dm  2d1 and log(s+1)!  (s+1) log(s+1) 
(s+ 1) log(dm + 1)  (s+ 1)dm  (s+ 1)d1/2.

From the previous paragraph, we can conclude h(U)  (s + 1)(h(P ) + 4d1) and h(V ) 

(s + 1)(h(P ) + 4d1), because both heights are non-negative by definition. Now hypothesis (ii)
of Roth’s Lemma implies

min
j

(s+1)djh(⇠j) � ��1(h(U)+4(m�1)(s+1)d1) and (s+1)dmh(⇠m) � ��1(h(V )+4(s+1)dm).

So we can apply the induction hypothesis to U , ((s+ 1)d1, . . . , (s+ 1)dm�1) and (⇠1, . . . , ⇠m�1)
(resp. to V , (s+ 1)dm and ⇠m) to get

ind(U ; (d1, . . . , dm�1); (⇠1, . . . , ⇠m�1))  2(m�1)(s+1)�1/2m�2

and ind(V ; dm; ⇠m)  (s+1)�. (3.4.5)

Here for V , we have used the better bound obtained in the base step m = 1. Therefore

ind(W ;d; ⇠) = ind(U ; (d1, . . . , dm�1); (⇠1, . . . , ⇠m�1)) + ind(V ; dm; ⇠m)  2(m� 1)(s+ 1)�1/2m�2
+ (s+ 1)�. (3.4.6)

It remains to relate the index of P with the index of W . To ease notation, we use ind(·) to
denote ind(·;d; ⇠). For each µi and ⌫, Lemma 3.2.3.(iii) yields

ind(@µi,⌫P ) � ind(P )�
m�1X

j=1

µ(i)
j

dj
�

⌫

dm

� ind(P )�
dm
dm�1

�
⌫

dm
since µ(i)

1 + . . .+ µ(i)
m�1  i� 1  s  dm

� ind(P )�
⌫

dm
� �.

This bound can be automatically improved since the index is always non-negative. So

ind(@µi,⌫P ) � max

⇢
ind(P )�

⌫

dm
, 0

�
� �.

Again, we expand the determinant W . We can write W explicitly in the following way: W =P
⇡

Qs
i=0 @µi,⇡(i)P with ⇡ running over all permutation of the set {0, . . . , s}. Thus we can apply

parts (i) and (ii) of Lemma 3.2.3 to get ind(W ) � min⇡
�Ps

i=0 ind(@µi,⇡(i)P )
�
. So we have

ind(W ) � min
⇡

sX

i=0

✓
max

⇢
ind(P )�

⇡(i)

dm
, 0

�
� �

◆

=
sX

i=0

✓
max

⇢
ind(P )�

i

dm
, 0

�
� �

◆

� (s+ 1)min

⇢
1

2
ind(P ),

1

2
ind(P )2

�
� (s+ 1)�

where the last step comes from s  dm and the elementary inequality
sX

i=0

max

⇢
t�

i

s
, 0

�
� (s+ 1)min

⇢
1

2
t,
1

2
t2
�
.

Combined with (3.4.6), this lower bound of ind(W ) yields

min{ind(P ), ind(P )2}  4(m� 1)�1/2m�2
+ 2�.

But ind(P )  m by definition. So we have

ind(P )2  m
⇣
4(m� 1)�1/2m�2

+ 2�
⌘
 4m2�1/2m�2

.

Hence we are done.
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3.4.3 Proof of Proposition 3.4.2

We start with (. Assume '1, . . . ,'n are linearly dependent over Q. Then all generalized
Wronskians vanish. Indeed, we have c1'1 + · · · + cn'n = 0 for some c1, . . . , cn 2 Q not all
zero. Applying the operators @µi to this relation, we obtain a linear system in the coe�cients
cj and its determinant mush vanish. This determinant is precisely the generalized Wronskian
Wµ1,...,µn(x1, . . . , xm).

Let us prove ). Assume '1, . . . ,'n are linearly independent over Q
We assume the following lemma, which is a particular case of the proposition but itself is a

classical result.

Lemma 3.4.3. Let f1, . . . , fn 2 Q[t] be n polynomials in 1 variable. Then f1, . . . , fn are linearly
independent over Q if and only if the Wronskian

W (t) := det

 ✓
d

dt

◆i�1

fj

!

1i,jn

is not identically zero.

We will reduce Proposition 3.4.2 to the situation of this lemma by using the Kronecker
substitution which we have seen in the proof of Gauß’s Lemma.

Fix an integer d which is large than the partial degrees of the 'j ’s. Set xj := td
j�1

for
j 2 {1, . . . , n}. Then '1, . . . ,'n are linearly independent over Q if and only if the polynomials

�j(t) := 'j(t, t
d, . . . , td

m�1
)

are linearly independent over Q. Thus the lemma above implies that the polynomial

W (t) = det

 ✓
d

dt

◆i�1

�j

!

1i,jn

is not identically 0. But

✓
d

dt

◆i�1

�j =
X

|µ|i�1

aµ,i(t; d,m)@µ'j(t, t
d, . . . , td

m�1
)

for some universal polynomials aµ,i(t; d,m) 2 Q[t]. Thus W (t) is a linear combination of gener-

alized Wronskians Wµ1,...,µn(t, t
d, . . . , td

m�1
) with |µi|  i � 1. Since W (t) is not identically 0,

some generalized Wronskian is not identically zero. Hence we are done.

Proof of Lemma 3.4.3. The direction ( is easy. Let us prove the direction ) by induction on n. The
base step n = 1 is clearly true.

Assume ) is proved for 1, . . . , n � 1. For n and the polynomials f1, . . . , fn, assume that W (t) is
identically 0. For each j 2 {1, . . . , n}, set Wj(t) to be the Wronskian of the n�1 polynomials by omitting

fj . Then by expanding the determinant W (t) by the last row, we get W (t) =
Pn

j=1 Wj

�
d
dt

�n�1
fj =

Pn
j=1 Wjf

(n�1)
j . Here we change the notation and denote by f (i)

j the i-th derivative of fj . Thus

W1f
(n�1)
1 + · · ·+Wnf

(n�1)
n ⌘ 0.



60 CHAPTER 3. ROTH’S THEOREM

We claim that W1f1 + · · ·+Wnfn ⌘ 0. Indeed, the left hand side is the determinant of the n⇥ n-matrix0

BB@

f1 f2 · · · fn
· · · · · ·

f (n�2)
1 f (n�2)

2 · · · f (n�2)
n

f1 f2 · · · fn

1

CCA, by the expansion along the last row. Similarly we have
P

j Wjf
(i)
j ⌘ 0

for each i 2 {1, . . . , n� 2}. Thus we obtain a system of n equalities of polynomials

W1f1 + · · ·+Wnfn ⌘ 0

W1f
0

1 + · · ·+Wnf
0

n ⌘ 0

· · ··

W1f
(n�1)
1 + · · ·+Wnf

(n�1)
n ⌘ 0

Di↵erentiating each of the first n�1 equality and subtracting the next following one, we get the following
new system

W 0

1f1 + · · ·+W 0

nfn ⌘ 0

W 0

1f
0

1 + · · ·+W 0

nf
0

n ⌘ 0

· · ··

W 0

1f
(n�1)
1 + · · ·+W 0

nf
(n�1)
n ⌘ 0

Next multiplying the i-th equality (i = 1, 2, . . . , n � 1) by the minor of Wn corresponding to f (i�1)
1 and

adding the equalities thus obtained together, we get

W 0

1Wn �W1W
0

n ⌘ 0.

If W1 ⌘ 0, then f2, . . . , fn are linearly dependent over Q by induction hypothesis, and so are f1, . . . , fn.
Suppose W1 6⌘ 0. Then we can divide both sides by W 2

1 (notice that W1 is a polynomial and hence has
only finitely many zeros) and get

d

dt

✓
Wn

W1

◆
⌘ 0.

Thus Wn ⌘ c1W1 for some constant c1 2 Q. Similarly we have Wn ⌘ cjWj for each j 2 {2, . . . , n� 1} or
the conclusion already holds true. Thus either the conclusion holds true, or

Wn(c1f1 + . . .+ cn�1fn�1 + fn) ⌘ 0.

Again either Wn ⌘ 0 (and hence the conclusion holds true), or c1f1+ . . .+ cn�1fn�1+ fn ⌘ 0 (and hence
the conclusion holds true)[6]. So in either case we are done for the induction step.

3.5 An alternative approach to the zero estimates: Dyson’s

Lemma

In this section, we explain an alternative approach to the zero estimates.
In the proof of Roth’s Theorem presented in previous sections of this chapter, we used Roth’s

Lemma (Lemma 3.4.1) to do the zero estimates and found a polynomial P having large index at
↵ = (↵, . . . ,↵) but small index at (p1/q1, . . . , pm/qm). Roth’s Lemma is arithmetic in nature:
the polynomial P has coe�cients in Q, we are interested in its order of vanishing at an algebraic
point, and a hypothesis (hypothesis (ii)) on the given data is about the heights.

An alternative approach to establish the small index of P (p1/q1, . . . , pm/qm), developed by
Esnault–Viehweg building upon previous work of Dyson, Bombieri and Viola, is the so-called

[6]Notice that the zeros of Wn are isolated if Wn 6⌘ 0.
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Dyson’s Lemma. It is a geometric approach (and hence works over any algebraically closed
field of characteristic 0) and the philosophy is as follows. Suppose that whichever P we have
constructed with large index at ↵ also has large index at (p1/q1, . . . , pm/qm). Then certain linear
conditions on the space of all polynomials of partial degree d1, . . . , dm fail to be independent.
Thus in order to get a contradiction, it su�ces to establish this independence.

To state Dyson’s Lemma, recall the notation Vm(t) := {x 2 Rm : x1 + · · · + xm  t, 0 

xj  1} and Vm(t) the volume of Vm(t) with respect to the usual Lebesgue measure on Rm.
We set Vm(t) = 0 for t < 0. The arithmetic meaning of Vm(t) was explained in the proof of
Lemma 3.2.4: In the linear system related to constructing a polynomial of index � t at a given
point (with respect to the partial degrees d1, . . . , dm), d1 · · · dmVm(t) is asymptotically the number
of equations.

Theorem 3.5.1 (Dyson’s Lemma). Let d = (d1, . . . , dm) be such that d1 � d2 � · · · dm � 1 are
positive integers.

Let ⇣1 = (⇣(1)1 , . . . , ⇣(1)m ), . . . , ⇣r+1 = (⇣(r+1)
1 , . . . , ⇣(r+1)

m ) be r + 1 points in Cm such that

⇣(i)k 6= ⇣(j)k for all k 2 {1, . . . ,m} and all i 6= j.[7]

Let P 2 C[x1, . . . , xm] of partial degrees at most d1, . . . , dm, and denote by ti := ind(P ;d; ⇣i)
for all i 2 {1, . . . , r + 1}. Then we have

r+1X

i=1

Vm(ti) 
mY

j=1

0

@1 + (r0 � 2)
mX

l=j+1

dl
dj

1

A (3.5.1)

where r0 := max{r + 1, 2}.

The field C in the statement can be replaced by any algebraically closed field of characteristic
0.

We will not prove Theorem 3.5.1, but only see how Theorem 3.5.1 can be used to prove
Roth’s Theorem.

We need the following technical lemma.

Lemma 3.5.2. Let r � 2 be an integer and let ✏0 > 0. Then there exists an integer m0 =
m0(r, ✏0) � 2 with the following property. For all m � m0, there exist a real number ⌧ > 1 such
that

rVm(⌧) < 1 < rVm(⌧) + Vm(1) and (2 + ✏0)(⌧ � 1) > m. (3.5.2)

Proof. We prove the lemma by taking ⌧ such that

rVm(⌧) = 1�
1

2m!
.

Indeed, such a ⌧ exists, and the first inequality in (3.5.2) holds true because Vm(1) = 1/m!.
Let us prove (2 + ✏0)(⌧ � 1) > m. We start by trying to solve the inequality

s
log r � log

�
1� 1

2m!

�

6m
+

1

m
<

1

2
�

1

2 + ✏0
.

Since the left hand side tends to 0 as m ! 1, there exists an integer m0 � 2 such that this
inequality holds true for all m � m0. Let us show that (2+✏0)(⌧�1) > m for all these m. Recall

[7]Namely, if we look at the projection to the k-th component, then we still get r + 1 di↵erent points in C.
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Vm((1/2�⌘)m)  e�6m⌘2 by Lemma 3.2.5, for all 0  ⌘  1/2. Take ⌘ such that (1/2�⌘)m = ⌧ .
Then we have

⌘ 

s
log r � log

�
1� 1

2m!

�

6m
<

1

2
�

1

2 + ✏0
�

1

m
.

So
⌧ � 1

m
=

1

2
� ⌘ �

1

m
>

1

2 + ✏0
.

This yields (2 + ✏0)(⌧ � 1) > m. We are done.

Now let us sketch the proof of Roth’s Theorem by using Dyson’s Lemma instead of Roth’s
Lemma.

Proof of Theorem 3.3.1. Let ↵ 2 R and ✏ > 0 be as in Roth’s Theorem. Assume that there
are infinitely rational approximations. Then for each m, L and M , we can find rational ap-

proximations pj/qj (j 2 {1, . . . ,m} and qj � 1), i.e. |↵ � pj/qj |  q�(2+✏)
j , such that they are

(L,M)-independent, i.e. log q1 > L and log qj+1 > M log qj for each j. This is the same as
Step 0.

Now let us do Step 1, i.e. construct an auxiliary polynomial P of large index at ↵ and of
small height.

Set r = [Q(↵) : Q]. Write ↵1 = ↵, ↵2, . . . ,↵r for the Galois conjugates of ↵.
Let ✏0 > 0, m and ⌧ be from Lemma 3.5.2. Then

⌧ � 1 >
m

2 + ✏0
.

Take another parameter D, and set dj = bD/ log qjc for each j.
By Lemma 3.2.4 and the choice that rVm(⌧) < 1, there exists a polynomial P 2 Z[x1, . . . , xm]

of large index at ↵ and of small height. More precisely,

(i) ind(P ;d;↵) � ⌧ ;

(ii) As dj ! 1 for all j 2 {1, . . . ,m}, we have

h(P )  C · 2m!(d1 + · · ·+ dm) < C · 2m!
mD

L
(3.5.3)

with C a suitable constant depending only on ↵ and m.

Condition (i) is equivalent to: For each µ = (µ1, . . . , µm) with
P µj

dj
< ⌧ , we have @µP (↵) =

0. Since P has integer coe�cients, applying the Galois action yields @µP (↵j) = 0 for each
j 2 {1, . . . , r} and each such µ, where ↵j = (↵j , . . . ,↵j). Hence ind(P ;d;↵j) � ⌧ for all
j 2 {1, . . . , r}.

Now we use Dyson’s Lemma to accomplish Step 2 (non-vanishing at the rational point).
Choose the parameter M in the following way: by Lemma 3.5.2, we can find an M � 1 such

that

rVm(⌧) + Vm(1) >
mY

j=1

0

@1 + (r � 1)
mX

l=j+1

1

M l�j

1

A . (3.5.4)

Since log qj+1 > M log qj for all j and dj ⇠ D/ log qj for D large enough, the inequality above
can be translated into (for su�ciently large D)

rVm(⌧) + Vm(1) >
mY

j=1

0

@1 + (r � 1)
mX

l=j+1

dl
dj

1

A . (3.5.5)
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Apply Dyson’s Lemma (Theorem 3.5.1) to the points ↵1, . . . ,↵r, ⇠ := (p1/q1, . . . , pm/qm).
Then we get

rVm(⌧) + Vm(ind(P ;d; ⇠)) 
mY

j=1

0

@1 + (r � 1)
mX

l=j+1

dl
dj

1

A . (3.5.6)

Comparing (3.5.5) and (3.5.6), we get

ind(P ;d; ⇠) < 1.

Take µ be such that @µP (⇠) 6= 0 and that
P µj

dj
= ind(P ;d; ⇠) < 1. Set Q = @µP . Then

(i) ind(Q;d;↵) � ind(P ;d;↵)�
P µj

dj
> ⌧ � 1 > m

2+✏0 ;

(ii) Q(p1/q1, . . . , pm/qm) 6= 0;

(iii) h(Q)  C 0
· 2m!mD

L .

Here (i) uses Lemma 3.2.3.(iii), and (iii) uses Lemma 3.2.1.
Then one repeats the argument as in Step 3, 4 and 5 of §3.3 and eventually get

1 �
2 + ✏

2 + ✏0
�

C 0
· 2m!

L
�

(m+ 1) log 2

mD
.

This gives a contradiction by letting ✏0 ! 0, L ! 1 and D ! 1.
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