
Chapter 5

Height Machine

5.1 Construction and basic properties of the Height Machine

In this section, we define the height function on projective varieties and the height machine.
Let X be an irreducible projective variety defined over Q. Denote by RX(Q) the set of

functions X(Q) ! R, and by O(1) the subset of bounded functions.
The Height Machine associates to each line bundle L 2 Pic(X) a unique class of functions

RX(Q)/O(1), i.e. a map

hX : Pic(X) ! RX(Q)/O(1), L 7! hX,L. (5.1.1)

Let hX,L : X(Q) ! R a representative of the class hX,L; it is called a height function associated
with (X,L).

Construction 5.1.1. One can construct hX,L as follows. In each case below, hX,L depends on
some extra data and hence is not unique. However, it can be shown that any two choices di↵er
by a bounded functions on X(Q), and thus the class of hX,L is well-defined.

(i) If L is very ample, then the global sections of L give rise to a closed immersion ◆ : X ! Pn

for some n, such that ◆⇤O(1) ' L. Set hX,L = h � ◆, with h the Weil height on Pn from
Definition 1.2.1.

(ii) If L is ample, then L⌦m is very ample for some m � 1. Set hX,L = (1/m)hX,L⌦m.

(iii) For an arbitrary L, there exist ample line bundles L1 and L2 on X such that L ' L1⌦L⌦�1
2 ;

see Corollary 4.4.15. Set hX,L = hX,L1 � hX,L2.

Here is how we will arrange to show that the class of hX,L is well-defined in each one of the
cases above. For (i), it follows immediately from the following Lemma 5.1.2. For (ii) and (iii),
it will be proved in the course of proving Proposition 5.1.3.(ii).

Lemma 5.1.2. Assume � : X ! Pn and  : X ! Pm are two morphisms defined over Q such
that �⇤OPn(1) '  ⇤

OPm(1). Then as functions on X(Q) we have

hPn � �� hPm �  = O(1)

where hPn (resp. hPm) is the Weil height on Pn (resp. on Pm) from Definition 1.2.1.

This O(1) depends on X, � and  , but is independent on the point of X(Q).
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Proof of Lemma 5.1.2. Denote by L := �⇤OPn(1) '  ⇤
OPm(1) the line bundle on X. Choose a

basis {h0, . . . , hN} of H0(X,L). Then there are linear combinations

fi =
NX

j=0

aijhj ,0  i  n,

gk =
NX

j=0

bkjhj ,0  k  m,

with aij 2 Q and bkj 2 Q, such that

� = [f0 : · · · : fn] and  = [g0 : · · · : gm].

Set � := [h0 : · · · : hN ] : X ! PN ; then � is a closed immersion. The matrix (aij)0in, 0jN

gives rise to a linear map A : PN
! Pn, and the matrix (bkj)0km, 0jN gives rise to a linear

map B : PN
! Pm. Notice A � � = � and B � � =  . So both A and B are well-defined over

�(X). Hence we can apply Theorem 1.2.15 and obtain

h(�(x)) = h(A(�(x))) = h(�(x)) +O(1) and h( (x)) = h(B(�(x))) = h(�(x)) +O(1)

for all x 2 X(Q). Taking the di↵erence of these two equalities, we get the desired equality.

Here are some basic properties of the Height Machine. These properties, or more precisely
properties (i)–(iii), also uniquely determine (5.1.1).

Proposition 5.1.3. We have

(i) (Normalization) Let h be the Weil height from Definition 1.2.1. Then for all x 2 Pn(Q),
we have

hPn,O(1)(x) = h(x) +O(1).

(ii) (Additivity) Let L and M be two line bundles on X. Then for all x 2 X(Q), we have

hX,L⌦M (x) = hX,L(x) + hX,M (x) +O(1).

(iii) (Functoriality) Let � : X ! Y be a morphism of irreducible projective varieties and let L
be a line bundle on Y . Then for all x 2 X(Q), we have

hX,�⇤L(x) = hY,L(�(x)) +O(1).

(iv) (Positivity) If s 2 H0(X,L) is a global section, then for all x 2 (X \ div(s))(Q) we have

hX,L(x) � O(1).

(v) (Northcott property) Assume L is ample. Let K0 be a number field on which X is defined.
Then for any d � 1 and any constant B, the set

{x 2 X(K) : [K : K0]  d, hX,L(x)  B}

is a finite set.
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The O(1)’s that appear in the proposition depend on the varieties, line bundles, morphisms,
and the choices of the representatives in the classes of height functions. But they are independent
of the points on the varieties.

Proof of Proposition 5.1.3. Part (i) follows from the definition and the fact that x0, . . . , xn is a
basis of H0(Pn,O(1)). Notice that Lemma 5.1.2 is implicitly used.

Next we check (ii). We start with the case where both L and M are very ample. Then the
global sections of L (resp. ofM) give rise to a closed immersion �L : X ! Pn (resp.  : X ! Pm).
Composing with the Segre embedding Sn,m : Pn

⇥Pm
! PN (with N = (n+1)(m+1)�1) from

(1.2.5), we obtain
�L ⌦ �M : X ! PN , x 7! �L(x)⌦ �M (x).

Recall that S⇤
n,mOPN (1) ' O(1, 1) by Lemma 4.4.10. So (�L ⌦ �M )⇤OPN (1) ' L ⌦ M . So

hX,L⌦M (x) = hPN (�L(x)⌦�M (x)), which equals hPn(�L(x))+hPm(�M (x)) by Proposition 1.2.14.(i),
and hence equals hX,L(x) + hX,M (x) +O(1).

At this stage, we are ready to establish case (ii) of Construction 5.1.1. Suppose L is ample.
If m and n satisfy that L⌦m and L⌦n are very ample, then L⌦mn is very ample. Apply Propo-
sition 5.1.3.(ii) to L⌦m (n times), then we get hX,L⌦mn = nhX,L⌦m + O(1). Similarly (apply
Proposition 5.1.3.(ii) to L⌦n (m times)) we have hX,L⌦mn = mhX,L⌦n +O(1). Thus up to O(1),
we have 1

mhX,L⌦m = 1
nhX,L⌦n . Hence hX,L is well-defined up to O(1) if L is ample.

Now Proposition 5.1.3.(ii) for the case where both L and M are ample follows from the very
ample case and the definition of the height function in this case.

For arbitrary L and M , write L = L1 ⌦ L⌦�1
2 and M = M1 ⌦ M⌦�1

2 with L1, L2, M1

and M2 ample. Then L1 ⌦ M1 and L2 ⌦ M2 are ample line bundles on X, with L ⌦ M '

(L1 ⌦M1)⌦ (L2 ⌦M2)⌦�1. Thus up to O(1), we have

hX,L⌦M = hX,L1⌦M1 � hX,L2⌦M2 = hX,L1 + hX,M1 � hX,L2 � hX,M2 = hX,L + hX,M .

Notice that this also establishes case (iii) of Construction 5.1.1 (that hX,L is well-defined up to
O(1) for an arbitrary L).

For (iii): By (ii) it su�ces to prove the assertion for L very ample. Let ◆L : Y ! Pn be a closed
immersion given by global sections of L; then ◆⇤LO(1) ' L. In particular, hPn �◆L = hY,L+OY (1)
by part (i). There exists some very ample M on X such that �⇤L ⌦ M is very ample; see
Proposition 4.4.14. The global sections ofM give rise to a closed immersion ◆M : X ! Pm. Hence
we have a morphism (◆L � �, ◆M ) : X ! Pn

⇥ Pm, which composed with the Segre embedding
gives a closed immersion ◆ : X ! PN . One can check that ◆⇤O(1) ' �⇤L⌦M . So as in the proof
of part (ii), we have up to OX(1)

hX,�⇤L⌦M = hPN � ◆ = hPn � ◆L � �+ hPm � ◆M = hY,L � �+ hX,M .

Hence we are done by part (ii).
For (iv): There exist a positive integer k and a very ample line bundle M on X such

that L⌦k
⌦M is very ample on X; see Proposition 4.4.14. Notice that sk 2 H0(X,L⌦k). Let

{f0, . . . , fm} be a basis of H0(X,M); then we have a closed immersion ◆M := [f0 : · · · : fm] : X !

Pm. One can complete skf0, . . . , skfm to a basis {skfj , gi}0jm,1in of H0(X,L⌦k
⌦M), and

thus obtain a closed immersion ◆ : X ! PN . Now up to O(1), hX,L⌦k = hPN � ◆ � hPm � ◆M by

part (ii). For any x 2 (X \ div(s))(Q), we have ◆M (x) = [f0(x) : · · · : fm(x)] = [s(x)kf0(x) : · · · :
s(x)kfm(x)] 2 Pm(Q), and so

hPN � ◆(x)� hPm � ◆M (x) =
1

[K : Q]

X
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for an appropriate number field K, and hence is � 0. Hence we are done.
For (v), it su�ces to prove for L very ample. Then the conclusion follows immediately from

the Northcott Property for Weil height (Theorem 1.2.5).

5.2 Normalized Height after Néron and Tate

Let X be an irreducible projective variety defined over Q.
The Height Machine associates to each line bundle L 2 Pic(X) a height function hL : X(Q) !

R. However, these height functions are well-defined only up to O(1). It is sometimes desirable
to find particular representatives.

While one can always fix a representative by fixing every operation needed to define hL (for
example, the basis of H0(X,L) giving the embedding of X into some PN if L is very ample),
for some particular (X,L) we have some more canonical choices. In this section, we discuss one
case developed by Néron and Tate.

Assume that � : X ! X is a morphism satisfying �⇤L ' L⌦↵ for some integer ↵ > 1.

Theorem 5.2.1. There exists a unique height function

ĥX,�,L : X(Q) ! R

with the following properties.

(i) ĥX,�,L(x) = hX,L(x) +O(1) for all x 2 X(Q),

(ii) ĥX,�,L(�(x)) = ↵ĥX,�,L(x) for all x 2 X(Q).

The height function ĥX,�,L depends only on the isomorphism class of L. Moreover, it can be
computed as the limit

ĥX,�,L(x) = lim
n!1

1

↵n
hX,L(�

n(x)) (5.2.1)

with �n the n-fold iterate of �.

Property (i) says that ĥX,�,L is in the class of heights of hX,L. The height function is
sometimes called the canonical height function.

Here is an example of the application of Theorem 5.2.1. Let � : Pn
! Pn be given by

homogeneous polynomials of degree d > 1, then �⇤O(1) ' O(d) = O(1)⌦d. If �([x0 : · · · : xn]) =
[xd0 : · · · : xdn], then one can check that ĥPn,�,O(1) is precisely the Weil height.

A more important example for the Tate Limit Process (5.2.1) is the definition of the Néron–
Tate heights on abelian varieties. This height turns out to be extremely useful. We will come
back to this in the next section.

Before moving on to the proof, let us have a digest. The morphism � induces a Z-linear map
�⇤ : Pic(X) ! Pic(X).[1] Tensoring with R gives a linear map �⇤ : Pic(X) ⌦Z R ! Pic(X) ⌦Z R of real
vector spaces of finite dimension. Say L is non-trivial. Then the assumption �⇤L ' L⌦↵ implies that L
is an eigenvector for the eigenvalue ↵. The assumption ↵ > 1 guarantees that the Tate Limit Process
(5.2.1) will work in the end.

Proof of Theorem 5.2.1. Applying Proposition 5.1.3.(iii) to the relation �⇤L ' L⌦↵, we get a constant
C such that

|hX,L(�(y))� ↵hX,L(y)|  C for all y 2 X(Q).

[1]The “addition” on the group Pic(X) is ⌦.
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Notice that C depends on X,L,� and the choice of the height function hX,L.

Claim: For any x 2 X(Q), the sequence ↵�nhX,L(�n(x)) converges.

We prove this by Cauchy. The proof uses the telescoping sum. Let n � m and compute

��↵�nhX,L(�
n(x))� ↵�mhX,L(�

m(x))
�� =

�����

nX

i=m+1

↵�i
�
hX,L(�

i(x))� ↵hX,L(�
i�1(x))

�
����� (telescoping sum)



nX

i=m+1

↵�i
��hX,L(�

i(x))� ↵hX,L(�
i�1(x))

�� (triangle inequality)



nX

i=m+1

↵�iC from above with y = �i�1(x).

So
��↵�nhX,L(�

n(x))� ↵�mhX,L(�
m(x))

��  ↵�m
� ↵�n

↵� 1
C. (5.2.2)

But ↵�m
�↵�n

↵�1 C ! 0 as n > m ! 1. Thus the sequence ↵�nhX,L(�n(x)) is Cauchy, and hence converges.

So we can define ĥX,�,L(x) as in (5.2.1).
Now we verify the properties (i) and (ii). For (i), take m = 0 and let n ! 1 in the inequality (5.2.2).

We then get ���ĥX,�,L(x)� hX,L(x)
��� 

C

↵� 1
. (5.2.3)

And this gives (a more explicit form of) property (i).
Property (ii) follows directly from the computation

ĥX,�,L(�(x)) = lim
n!1

1

↵n
hX,L (�n(�(x)))

= lim
n!1

↵

↵n+1
hX,L(�

n+1(x))

= ↵ĥX,�,L(x).

It remains to prove the uniqueness. Suppose ĥ and ĥ0 are two functions with properties (i) and (ii). Set
g := ĥ � ĥ0. Then (i) implies that g is bounded, say |g(x)|  C 0 for all x 2 X(Q). Property (ii) implies
that g � � = ↵g and thus g � �n = ↵ng for all n � 1. Hence

|g(x)| =
|g(�n(x))|

↵n


C 0

↵n

n!1
����! 0.

Thus g ⌘ 0 and hence ĥ = ĥ0. We are done.

Proposition 5.2.2. Assume furthermore that L is ample. Then

(i) ĥX,�,L(x) � 0 for all x 2 X(Q);

(ii) ĥX,�,L(x) = 0 if and only if x is preperiodic for �, i.e. O+
� (x) := {x,�(x),�2(x), . . .} is

a finite set.

Proof. For (i): As L is ample, L⌦m is very ample for some m � 1. Take a basis {s1, . . . , sk} of
H0(X,L⌦m), then

Tk
i=1 div(si) = ;. By Proposition 5.1.3.(iv) applied to each si, we can choose a

representative hX,L⌦m with hX,L⌦m(x) � 0 for all x 2 X(Q). Thus hX,L(x) = (1/m)hX,L⌦m(x) �

0 for all x 2 X(Q). So ĥX,�,L(x) � 0 for all x 2 X(Q) by (5.2.1).
Let us prove property (ii). Take x 2 X(Q). For (: It is clear that hX,L(�n(x)) is bounded

because O+
� (x) is a finite set. So ↵�nhX,L(�n(x)) ! 0 as n ! 1. Thus ĥX,�,L(x) = 0 by (5.2.1).
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It remains to prove ) of property (ii). Take a number field K such that X, L, � are defined
over K and x 2 X(K). Suppose ĥX,�,L(x) = 0. Then for any n � 1, we have

hX,L(�
n(x)) = ĥX,�,L(�

n(x)) +O(1) = ↵nĥX,�,L(x) +O(1) = O(1).

Here the constant O(1) depends only on X and L. As all �n(x) are in X(K), we obtain a
constant B such that

O+
� (x) ✓ {y 2 X(K) : hX,L(y)  B}.

Thus O+
� (x) is a finite set by the Northcott property (Proposition 5.1.3.(v)). We are done.

This proposition is important when we study the canonical heights on abelian varieties in
the next section.

Here is an application.

Corollary 5.2.3 (Kronecker’s Theorem). Consider the Weil height h on Q = A1(Q). Let ⇣ 2 Q⇤

. Then
h(⇣) = 0 if and only if ⇣ is a root of unity.

Proof. Consider the morphism � : P1
! P1, [x0 : x1] 7! [x2

0 : x2
1]. Then h(x) = ĥP1,�,O(1)([1 : x]) for all

x 2 Q. For ), suppose h(⇣) = 0. By Proposition 5.2.2.(ii), {[1 : ⇣], [1 : ⇣2], [1 : ⇣4], . . .} is a finite set. So

⇣2
i

= ⇣2
j

for some i 6= j. Thus ⇣ is a root of unity. For (, suppose ⇣n = 1. Fermat’s Little Theorem
implies 2�(n) ⌘ 1 (mod n) for the Euler-� function. Thus {[1 : ⇣], [1 : ⇣2], [1 : ⇣4], . . .} is a finite set, and
hence h(⇣) = ĥP1,�,O(1)([1 : ⇣]) = 0 by Proposition 5.2.2.(ii).

5.3 Néron–Tate height on abelian varieties

In this section, we discuss about normalized height functions on abelian varieties.
Let A be an abelian variety defined over Q. Let L 2 Pic(A) be a line bundle such that

L ' [�1]⇤L (we call such an L even). By Corollary 4.5.8, we have

[n]⇤L ' L⌦n2
(5.3.1)

for all n 2 Z.
Let us apply Theorem 5.2.1 to [2] : A ! A and L. Then we obtain the normalized height

function
ĥA,L : A(Q) ! R. (5.3.2)

This function is called the Néron–Tate height on A with respect to L. Compared to the
notation in the last section, we omitted the map [2] in the subscript. This is justified by the
following proposition, which implies that we can replace [2] by any [n] with n � 2 in the definition
of ĥA,L.

Proposition 5.3.1. For each N 2 Z, we have ĥA,L([N ]x) = N2ĥA,L(x) for all x 2 A(Q). In
particular, we have

ĥA,L(x) = lim
N!1

hA,L([N ]x)

N2
.

Proof. We have [N ]⇤L ' L⌦N2
by (5.3.1). Thus (ii) and (iii) of Proposition 5.1.3 (applied to the

height function ĥ) yield ĥA,L([N ]y) = ĥA,[N ]⇤L(y) + O(1) = ĥA,L⌦N2 (y) + O(1) = N2ĥA,L(y) +

O(1) for all y 2 A(Q), where O(1) is a constant depending on A and L. In particular let
y = [2n]x, then we have

ĥA,L([2
n][N ]x) = N2ĥA,L([2

n]x) +O(1) = N24nĥA,L(x) +O(1)
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where the last equality follows from Theorem 5.2.1.(ii). Dividing both sides by 4n and letting
n ! 1, we get ĥA,L([N ]x) = N2ĥA,L(x).

For the “In particular” part, we know (Theorem 5.2.1.(i)) that ĥA,L = hA,L +O(1). Thus

lim
N!1

hA,L([N ]x)

N2
= lim

N!1

ĥA,L([N ]x) +O(1)

N2
= ĥA,L(x).

We are done.

Proposition 5.3.2. Assume L is ample. Then

(i) ĥA,L(x) � 0 for all x 2 A(Q);

(ii) ĥA,L(x) = 0 if and only if x is a torsion point, i.e. [N ]x = 0 for some integer N 6= 0;

Proof. Part (i) follows immediately from Proposition 5.2.2.(i).
For (ii), we use Proposition 5.2.2.(ii). Assume ĥA,L(x) = 0. Then {[2n]x : n � 1} is a finite

set by Proposition 5.2.2.(ii). Thus [2n]x = [2m]x for some m > n. Thus [2m � 2n]x = 0 and
2m � 2n 6= 0, and hence x is a torsion point. Conversely assume [N ]x = 0 with N 6= 0. Then
the set O+

[N ](x) := {x, [N ]x, [N2]x, · · · } is a finite set. So Proposition 5.2.2.(ii) implies that

ĥA,[N ],L(x) = 0. But ĥA,[N ],L = ĥA,L by Proposition 5.3.1. Hence we are done.

We finish this section by the following discussion.
Take a finitely generated subgroup � of A(Q). By linearity, the Néron–Tate height ĥA,L

extends to a function �R := �⌦Z R ! R. By abuse of notation we still denote this function by
ĥA,L.

Proposition 5.3.3. For each finitely generated subgroup � of A(Q), ĥA,L is a quadratic form
on �R which is furthermore positive definite.

Proof. In view of Proposition 5.3.2.(i), in order to prove that ĥA,L is a quadratic form on A(Q),
it su�ces to show that the pairing

h·, ·iL : A(Q)⇥A(Q) ! R, (a, b) 7!
1

2

⇣
ĥA,L(a+ b)� ĥA,L(a)� ĥA,L(b)

⌘
(5.3.3)

is bilinear. This easily follows from the theorem of the square (Theorem 4.5.9) because ĥA,L(x) =

ĥA,t⇤xL(0) for all x 2 A(Q).

Notice that ĥA,L is then a quadratic form on �R by linearity.

To show that ĥA,L is positive definite on �R, we need to prove two things by Lemma 5.3.4.

In order to distinguish ĥA,L on � and on �R, we denote the latter by q. We use � to denote the
image of � ! �R; it is isomorphic to � mod the torsion points.

(a) If 0 6= � 2 �R lies in �, then q(�) > 0.

(b) For every C > 0, the set {� 2 � : q(�)  C} is finite.

For (a), it easily follows from (i) and (ii) of the current proposition. For (b), suppose � is the
image of some x 2 �. Then q(�)  C ) ĥA,L(x)  C. As � is finitely generated, there exists a

number field K such that � ✓ A(K). Thus we are looking at {x 2 A(K) : ĥA,L(x)  C}, which
is a finite set by the Northcott property (Proposition 5.1.3.(v)). So (b) is also established. We
are done.
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Lemma 5.3.4. Let M be a finitely generated abelian group and let q : M ! R be a quadratic
form. Set qR : MR := M ⌦Z R ! R to be the quadratic form defined by linearity. Then qR is
positive definite if and only if the following two conditions are satisfied:

(a) q(x) > 0 for all x 2 M \ {0}, where M is the image of M ! MR;

(b) For every C > 0, the set {x 2 M : qR(x)  C} is finite.

Part (b) is necessary as is shown by the following example. Suppose ↵ is a transcendental
number in R, then the quadratic form in R2 given by q(x1, x2) := (x1 � ↵x2)2 is not positive

definite since q(↵, 1) = 0, but q(x1, x2) > 0 for all (x1, x2) 2 Q2
\ {0}!

Proof. The direction ) is easy. We prove (. Assume qR is not positive definite. Then there exists
y 2 MR \ {0} such that qR(y) = 0.

We claim that y 62 MQ = MQ. Indeed if y 2 MQ, then Ny 2 M \ {0} for some 0 6= N 2 N. Then
q(Ny) > 0 by (a). But q is quadratic, so q(Ny) = N2q(y) > 0. This contradicts the choice of y.

Choose a basis {x1, . . . , xr} of M ; it is also a basis of MR. For any n 2 N, there exists yn 2 M such
that the coordinates of yn � ny are in the interval [0, 1]. Thus yn � ny is contained in the compact cube
{
Pr

i=1 ↵ixi : 0  ↵i  1}. But qR(yn) = qR(yn � ny) (since qR(y) = 0)[2] and hence is bounded on the
cube, say by C. Since y 62 MQ, the set {yn : n 2 N} is infinite and is contained in {x 2 M : qR(x)  C}.
This contradicts (b). Hence we are done.

[2]This can be seen from (for example) the bilinear pairing associated with the quadratic form qR.


	Heights on Projective and Affine Spaces
	Absolute values
	Basic notions
	Normalized absolute values

	Height on projective spaces
	Definition and basic properties
	Height on affine spaces
	Liouville's inequality
	The change of height under geometric operations

	Height of polynomials
	Affine height vs the Projective height
	Height of product
	Some other operations with polynomials
	Mahler measure and algebraic number


	Siegel Lemma
	Basic version
	Faltings's version of Siegel's Lemma
	Background and statement
	Proof of Theorem 2.2.3

	Arakelov height of matrices
	Arakelov height on ¶N
	Height of matrices

	Generalized Siegel Lemma by Bombieri–Vaaler
	Proof of Corollary 2.4.2 assuming Theorem 2.4.1
	Relative Version
	Adelic version of Minkowski's Second Theorem
	Setup for the application of Minkowski's Second Theorem
	Proof of Theorem 2.4.1


	Roth's Theorem
	Historical background (Liouville, Thue, Siegel, Gelfond, Dyson, Roth)
	From Liouville to Thue
	Statement of Roth's Theorem

	Index and preparation of the construction of the auxiliary polynomial
	Proof of Roth's Theorem assuming zero estimates
	Step 0: Choosing independent solutions.
	Step 1: Construction of an auxiliary polynomial.
	Step 2: Non-vanishing at the rational points.
	Step 3: Lower bound (Liouville).
	Step 4: Upper bound.
	Step 5: Comparison of the two bounds.

	Zero estimates: Roth's Lemma
	Proof of Lemma 3.3.2 by Roth's Lemma
	Proof of Roth's Lemma
	Proof of Proposition 3.4.2

	An alternative approach to the zero estimates: Dyson's Lemma

	Abelian Varieties
	Algebraic curves
	Basic definitions
	Divisors
	Differentials and canonical divisor
	Genus and the Riemann–Roch Theorem
	A result of Weil

	Curves and Jacobians
	Periods
	Jacobians

	Weil and Cartier Divisors
	Weil divisors
	Cartier divisors
	Theta divisor on Jacobians

	Line bundles and ampleness
	Line bundles
	Line bundles and Cartier divisors
	Polynomials viewed as sections of line bundles
	Ampleness

	Abelian varieties
	Abstract definition and abelian varieties over C
	Theorem of the cube
	Theorem of square
	Poincaré divisor class

	Rationality

	Height Machine
	Construction and basic properties of the Height Machine
	Normalized Height after Néron and Tate
	Néron–Tate height on abelian varieties


