COMPARISON OF GALOIS ORBITS OF SPECIAL POINTS OF SHIMURA VARIETIES

ZIYANG GAO

Let (G, \mathcal{X}) be a Shimura datum satisfying

(SV5)
$$Z(G)^{\circ} \text{ is an almost direct product of a } \mathbb{Q}\text{-split torus } Z_G^s$$
with a torus of compact type Z_G^c defined over \mathbb{Q}

In this case, G is an almost direct product of Z_G^s with $G^c := Z_G^c G^{\text{der}}$. Let $E = E(G, \mathcal{X})$ be its reflex field and let $K' = \prod_p K'_p \subset K = \prod_p K_p$ be two neat open compact subgroups of $G(\mathbb{A}_f)$. We have a natural morphism

(1)
$$\rho \colon \operatorname{Sh}_{K'}(G, \mathcal{X}) \to \operatorname{Sh}_K(G, \mathcal{X}).$$

By [2, Theorem 5.5, Proposition 5.2], $\operatorname{Sh}_{K'}(G, \mathcal{X})$, $\operatorname{Sh}_K(G, \mathcal{X})$ and ρ are all defined over E.

Let s be a special point of $\operatorname{Sh}_{K'}(G, \mathcal{X})$, then $s \in \operatorname{Sh}_{K'}(G, \mathcal{X})(E)$. The goal of this section is to compare $|\operatorname{Gal}(\overline{E}/E)s|$ and $|\operatorname{Gal}(\overline{E}/E)\rho(s)|$. Let $T := \operatorname{MT}(s)$ be the Mumford-Tate group of s. Define $K'_T := K' \cap T(\mathbb{A}_f)$ and $K_T := K \cap T(\mathbb{A}_f)$. Then $K'_T = \prod_p K'_{T,p}$ and $K_T = \prod_p K_{T,p}$. Now we can state our theorem:

Theorem 1. There exists a constant $B \in (0,1)$ depending only on (G, \mathcal{X}) s.t.

$$|\operatorname{Gal}(\overline{E}/E)s| \ge B^{i(T)}|K_T/K_T'||\operatorname{Gal}(\overline{E}/E)\rho(s)|$$

where $i(T) = |\{p : K_{T,p} \neq K'_{T,p}\}|.$

Proof. This is a direct consequence of Lemma 2, equation (2), Lemma 4 and Lemma 5. \Box

Remark 1. This theorem has essentially been studied by Ullmo-Yafaev [3, §2.2]. The authors proved this result for a less general (G, \mathcal{X}) and a particular K_T , but their proof also works for our (G, \mathcal{X}) and arbitrary K_T as long as it is neat. To make the demonstration more clear, we summarize their results and arguments and see how they apply to our (G, \mathcal{X}) and a general K_T .

Lemma 1. For any point $y \in \text{Sh}_K(G, \mathcal{X})$, K/K' acts (on the right) simply transitively on $\rho^{-1}(y)$.

Proof. (cf. [3, Lemma 2.11]) Let $y = \overline{(x,g)}$ be a point of $\operatorname{Sh}_K(G, \mathcal{X})$, then $\rho^{-1}(y) = \overline{(x,gK)}$. We first prove

For any $a \in K$, $\overline{(x,ga)} = \overline{(x,gak)} \iff k \in K'$.

The direction \Leftarrow is trivial. Now let us prove \Rightarrow . Suppose

$$(x,ga) = (x,gak) \in \operatorname{Sh}_{K'}(G,\mathcal{X})$$

with $k \in K$. There exist $q \in G(\mathbb{Q})$ and $k' \in K'$ s.t. x = qx and ga = qgakk'. By (SV5), we can write $q = q_1q_2$ (resp. $g = g_1g_2$) with $q_1 \in Z_G^s(\mathbb{Q}) \simeq (\mathbb{Q}^*)^n$ (resp. $g_1 \in Z_G^s(\mathbb{A}_f) \simeq (\mathbb{A}_f^*)^n$) and $q_2 \in G^c(\mathbb{Q})$ (resp. $g_2 \in G^c(\mathbb{A}_f)$). Now x = qx implies that q_2 is a compact subgroup

ZIYANG GAO

of $G^{c}(\mathbb{R})$. The condition ga = qgakk' imples that q_{1} (resp. q_{2}) is in the neat open compact subgroup $g_{1}(K \cap Z_{G}^{s}(\mathbb{A}_{f}))g_{1}^{-1}$ (resp. $g_{2}(K \cap G^{c}(\mathbb{A}_{f}))g_{2}^{-1}$) of $Z_{G}^{s}(\mathbb{A}_{f}) \simeq (\mathbb{A}_{f}^{*})^{n}$ (resp. $G^{c}(\mathbb{A}_{f})$). But $(\mathbb{Q}^{*})^{n} \cap g_{1}(K \cap (\mathbb{A}_{f}^{*})^{n})g_{1}^{-1} = 1$, and the intersection of any compact subgroup of $G^{c}(\mathbb{R})$ with a neat open compact subgroup of $G^{c}(\mathbb{A}_{f})$ is trivial. Hence $q_{1} = q_{2} = 1$. So q = 1. Therefore $k = (k')^{-1} \in K'$.

So K acts transitively on the right on $\rho^{-1}(y)$ and the kernel of this action is K'. So K/K' acts simply transitively on $\rho^{-1}(y)$.

 $\textbf{Lemma 2.} \ |\operatorname{Gal}(\overline{E}/E)s| \geqslant |\operatorname{Gal}(\overline{E}/E)s \cap \rho^{-1}\rho(s)| \cdot |\operatorname{Gal}(\overline{E}/E)\rho(s)|.$

Proof. (cf. [3, Lemma 2.12]) Because ρ is defined over E, $|\operatorname{Gal}(\overline{E}/E)s \cap \rho^{-1}(\sigma(\rho(s)))|$ is independent of $\sigma \in \operatorname{Gal}(\overline{E}/E)$. This allows us to conclude.

To give a lower bound for $|\operatorname{Gal}(\overline{E}/E)s \cap \rho^{-1}\rho(s)|$, we shall work with the Shimura subdatum (T, x) of (G, \mathcal{X}) . The Shimura subdatum (T, x) is defined as follows: $T = \operatorname{MT}(s)$. By [1, Lemma 5.13], $\operatorname{Sh}_{K'}(G, \mathcal{X}) = \coprod \Gamma(g) \setminus \mathcal{X}^+$, where $\Gamma(g) = G(\mathbb{Q})_+ \cap gK'g^{-1}$ is a congruence subgroup of $G(\mathbb{Q})$. Choose $x \in \mathcal{X}^+$ s.t. s is the image of x under the uniformization. It is not hard to check that (T, x) still satisfies (SV5) (see e.g. [3, Remark 2.3]).

Let F be the reflex field of (T, x), then F is a finite extension of E. Define

$$\rho' \colon \operatorname{Sh}_{K'_T}(T, x) \to \operatorname{Sh}_{K_T}(T, x),$$

which is the restriction of ρ , then ρ' is defined over F. It is clear that

(2)
$$|\operatorname{Gal}(\overline{E}/E)s \cap \rho^{-1}\rho(s)| \ge |\operatorname{Gal}(\overline{E}/F)s \cap \rho'^{-1}\rho'(s)|$$

Let $\pi_0(\operatorname{Sh}_{K'_T}(T, x))$ be the set of geometric components of $\operatorname{Sh}_{K'_T}(T, x)$. Recall that

$$\pi_0(\operatorname{Sh}_{K'}(T,x)) = T(\mathbb{Q})_+ \backslash T(\mathbb{A}_f) / K'_T.$$

This is a finite abelian group. The action of $\operatorname{Gal}(\overline{E}/F)$ on $\pi_0(\operatorname{Sh}_{K'_T}(T, x))$ is given by the reciprocity morphism

$$r: \operatorname{Gal}(\overline{E}/F) \to \pi_0(\operatorname{Sh}_{K'_T}(T, x)).$$

Let us describe this action more explicitly. Denote for any $\alpha \in T(\mathbb{A}_f)$ by (x, α) the image of (x, α) in $\operatorname{Sh}_{K'_T}(T, x)$. It is a connected component of $\operatorname{Sh}_{K'_T}(T, x)$. As sets we have the following identification:

$$\{\overline{(x,\alpha)} \mid \alpha \in T(\mathbb{A}_f)\} \xrightarrow{\sim} \pi_0(\operatorname{Sh}_{K'_T}(T,x))$$
$$\xrightarrow{} \mapsto \overline{\alpha}$$

Let $\sigma \in \operatorname{Gal}(\overline{E}/F)$ and let $t \in T(\mathbb{A}_f)$ s.t. $\overline{t} = r(\sigma)$, then $\forall \alpha \in T(\mathbb{A}_f)$,

(3)
$$\sigma(\overline{(x,\alpha)}) = \overline{(x,t\alpha)} = \overline{(x,\alpha t)}.$$

Recall the following result from Ullmo-Yafaev [3, Proposition 2.9]:

Lemma 3. There exists a positive integer A depending only on (G, \mathcal{X}) s.t. $\forall m \in T(\mathbb{A}_f)$, the image of m^A in $\pi_0(\operatorname{Sh}_{K'_T}(T, x))$ is $r(\sigma)$ for some $\sigma \in \operatorname{Gal}(\overline{E}/F)$.

Proof. [3, Proposition 2.9], which follows from Lemma 2.4-Lemma 2.8 of *loc.cit.*, announces this result when $Z(G)(\mathbb{R})$ is compact. However the only role this hypothesis plays is to guarantee that $T(\mathbb{Q})$ is discrete (hence closed) in $T(\mathbb{A}_f)$ in Lemma 2.8 of *loc.cit.*. Our hypothesis for Z(G)

at the beginning of this section implies that T is an almost product of a \mathbb{Q} -split torus with a torus of compact type defined over \mathbb{Q} (see e.g. [3, Remark 2.3]), and hence $T(\mathbb{Q})$ is discrete in $T(\mathbb{A}_f)$ ([1, Theorem 5.26]).

Lemma 4. Let Θ_A be the image of the morphism $k \mapsto k^A$ on K_T/K'_T . We have

- (1) $\Theta_A \cdot s \subset \operatorname{Gal}(\overline{E}/F) s \cap \rho'^{-1} \rho'(s);$
- (2) $|\operatorname{Gal}(\overline{E}/F)s \cap \rho'^{-1}\rho'(s)| \ge |\Theta_A|.$

Proof. (cf. [3, Lemma 2.15 & 2.16])

(1) We have $\rho'(\Theta_A \cdot s) = \rho'(s)$. So $\Theta_A \cdot s \subset \rho'^{-1}\rho'(s)$. Moreover similar to Lemma 1, K_H/K'_H acts simply transitively on $\rho'^{-1}\rho'(s)$. For any $\overline{(x,\alpha)} \in \rho'^{-1}\rho'(s)$ and $k \in K_T/K'_T$, this action is given by

$$\overline{(x,\alpha)}k = \overline{(x,\alpha k)}.$$

Let $m \in K_T$, then the image of m^A in $\pi_0(\operatorname{Sh}_{K'_T}(T, x))$ is $r(\sigma)$ for some $\sigma \in \operatorname{Gal}(\overline{E}/F)$ by Lemma 3. It follows that the image of Θ_A in $\pi_0(\operatorname{Sh}_{K'_T}(T, x)) = T(\mathbb{Q})_+ \backslash T(\mathbb{A}_f)/K'_T$ is contained in the image of $\operatorname{Gal}(\overline{E}/F)$. So for $s = \overline{(x, \beta)}$, we have by (4) and (3)

$$\Theta_A \cdot s \subset \operatorname{Gal}(\overline{E}/F)s$$

To sum it up,

$$\Theta_A \cdot s \subset \operatorname{Gal}(\overline{E}/F) s \cap \rho'^{-1} \rho'(s).$$

(2) By (1) we have

$$|\operatorname{Gal}(\overline{E}/F)s \cap \rho'^{-1}\rho'(s)| \ge |\Theta_A \cdot s|.$$

Moreover we have

$$|\rho'^{-1}\rho'(s)| = |(K_T/K_T') \cdot s| \leq \frac{|K_T/K_T'|}{|\Theta_A|} |\Theta_A \cdot s|$$

and

(4)

$$|K_T/K'_T| = |\rho'^{-1}\rho'(s)|$$

by the same argument for Lemma 1. These three (in)equalities yield the desired inequality. Remark that we have also proved $|\Theta_A \cdot s| = |\Theta_A|$.

Lemma 5. There exists an integer r > 0 depending only on (G, \mathcal{X}) s.t.

$$|\Theta_A| \ge \prod_{\{p:K_{T,p} \neq K'_{T,p}\}} \frac{1}{A^r} |K_{T,p}/K'_{T,p}|.$$

Proof. (cf. [3, Lemma 2.18]) Since $K_T/K'_T = \prod_p K_{T,p}/K'_{T,p}$, we have

$$\Theta_A = \prod_{\{p:K_{T,p} \neq K'_{T,p}\}} \Theta_{A,p}$$

Let L_T be the splitting field of T and let $d := \dim(T)$. $[L_T : \mathbb{Q}]$ is the size of the image of the representation of $\operatorname{Gal}(\overline{E}/\mathbb{Q})$ on the character group $X^*(T)$ of T. This is a finite subgroup of $\operatorname{GL}_d(\mathbb{Z})$ and hence its size is bounded from above in terms of d only. But d is bounded from above in terms of $\dim(G)$ only, so $[L_T : \mathbb{Q}]$ is bounded from above in terms of $\dim(G)$ only.

ZIYANG GAO

Using a basis of the character group of T one can embed T into $\operatorname{Res}_{L_T/\mathbb{Q}} \mathbb{G}_{m,L_T}$. Via this embedding, K_T and K'_T are both subgroups of the product of $(\mathbb{Z}_p \otimes O_{L_T})^*$. The group $(\mathbb{Z}_p \otimes O_{L_T})^*$ is the direct product of the groups of units of E_v , completion of E at the place v with v|p. By the local unit theorem, the group of units of such an E_v is a direct product of a cyclic group and $\mathbb{Z}_p^{[E_v:\mathbb{Q}_p]}$.

It follows that there exists a constant r depending only on (G, \mathcal{X}) s.t. $K_{T,p}/K'_{T,p}$ is a finite abelian group which is the product of at most r cyclic factors. Therefore the size of the kernel of the A-th power map on $K_{T,p}/K'_{T,p}$ is bounded by A^r , i.e.

$$\Theta_{A,p} \ge \frac{1}{A^r} |K_{T,p}/K'_{T,p}|.$$

References

- [1] J. Milne. Introduction to Shimura varieties. In *Harmonic analysis, the trace formula, and Shimura varieties,* volume 4 of *Clay Math. Proc.* Amer. Math. Soc.
- [2] J. Milne. Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In Automorphic forms, Shimura varieties, and L-functions. Vol. I. Proceedings of the conference held at the University of Michigan, Ann Arbor, Michigan, July 6-16 1988.
- [3] E. Ullmo and A. Yafaev. Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture. *Annals Math.*, to appear.

INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES, LE BOIS-MARIE 35, ROUTE DE CHARTRES, 91440 BURES-SUR-YVETTE, FRANCE

E-mail address: ziyang.gao@math.u-psud.fr

4