COMPARISON OF GALOIS ORBITS OF SPECIAL POINTS OF SHIMURA VARIETIES

ZIYANG GAO

Let (G, \mathcal{X}) be a Shimura datum satisfying

$$
\begin{equation*}
Z(G)^{\circ} \text { is an almost direct product of a } \mathbb{Q} \text {-split torus } Z_{G}^{s} \tag{SV5}
\end{equation*}
$$ with a torus of compact type Z_{G}^{c} defined over \mathbb{Q}

In this case, G is an almost direct product of Z_{G}^{s} with $G^{c}:=Z_{G}^{c} G^{\text {der }}$. Let $E=E(G, \mathcal{X})$ be its reflex field and let $K^{\prime}=\prod_{p} K_{p}^{\prime} \subset K=\prod_{p} K_{p}$ be two neat open compact subgroups of $G\left(\mathbb{A}_{f}\right)$. We have a natural morphism

$$
\begin{equation*}
\rho: \operatorname{Sh}_{K^{\prime}}(G, \mathcal{X}) \rightarrow \operatorname{Sh}_{K}(G, \mathcal{X}) . \tag{1}
\end{equation*}
$$

By [2, Theorem 5.5, Proposition 5.2], $\operatorname{Sh}_{K^{\prime}}(G, \mathcal{X}), \operatorname{Sh}_{K}(G, \mathcal{X})$ and ρ are all defined over E.
Let s be a special point of $\operatorname{Sh}_{K^{\prime}}(G, \mathcal{X})$, then $s \in \operatorname{Sh}_{K^{\prime}}(G, \mathcal{X})(\bar{E})$. The goal of this section is to compare $|\operatorname{Gal}(\bar{E} / E) s|$ and $|\operatorname{Gal}(\bar{E} / E) \rho(s)|$. Let $T:=\operatorname{MT}(s)$ be the Mumford-Tate group of s. Define $K_{T}^{\prime}:=K^{\prime} \cap T\left(\mathbb{A}_{f}\right)$ and $K_{T}:=K \cap T\left(\mathbb{A}_{f}\right)$. Then $K_{T}^{\prime}=\prod_{p} K_{T, p}^{\prime}$ and $K_{T}=\prod_{p} K_{T, p}$. Now we can state our theorem:

Theorem 1. There exists a constant $B \in(0,1)$ depending only on (G, \mathcal{X}) s.t.

$$
|\operatorname{Gal}(\bar{E} / E) s| \geqslant B^{i(T)}\left|K_{T} / K_{T}^{\prime}\right||\operatorname{Gal}(\bar{E} / E) \rho(s)|
$$

where $i(T)=\left|\left\{p: K_{T, p} \neq K_{T, p}^{\prime}\right\}\right|$.
Proof. This is a direct consequence of Lemma 2, equation (2), Lemma 4 and Lemma 5.
Remark 1. This theorem has essentially been studied by Ullmo-Yafaev [3, §2.2]. The authors proved this result for a less general (G, \mathcal{X}) and a particular K_{T}, but their proof also works for our (G, \mathcal{X}) and arbitrary K_{T} as long as it is neat. To make the demonstration more clear, we summarize their results and arguments and see how they apply to our (G, \mathcal{X}) and a general K_{T}.

Lemma 1. For any point $y \in \operatorname{Sh}_{K}(G, \mathcal{X}), K / K^{\prime}$ acts (on the right) simply transitively on $\rho^{-1}(y)$.

Proof. (cf. [3, Lemma 2.11]) Let $y=\overline{(x, g)}$ be a point of $\operatorname{Sh}_{K}(G, \mathcal{X})$, then $\rho^{-1}(y)=\overline{(x, g K)}$. We first prove

$$
\text { For any } a \in K, \overline{(x, g a)}=\overline{(x, g a k)} \Longleftrightarrow k \in K^{\prime}
$$

The direction \Leftarrow is trivial. Now let us prove \Rightarrow. Suppose

$$
\overline{(x, g a)}=\overline{(x, g a k)} \in \operatorname{Sh}_{K^{\prime}}(G, \mathcal{X})
$$

with $k \in K$. There exist $q \in G(\mathbb{Q})$ and $k^{\prime} \in K^{\prime}$ s.t. $x=q x$ and $g a=q g a k k^{\prime}$. By (SV5), we can write $q=q_{1} q_{2}\left(\right.$ resp. $\left.g=g_{1} g_{2}\right)$ with $q_{1} \in Z_{G}^{s}(\mathbb{Q}) \simeq\left(\mathbb{Q}^{*}\right)^{n}\left(\right.$ resp. $\left.g_{1} \in Z_{G}^{s}\left(\mathbb{A}_{f}\right) \simeq\left(\mathbb{A}_{f}^{*}\right)^{n}\right)$ and $q_{2} \in G^{c}(\mathbb{Q})$ (resp. $g_{2} \in G^{c}\left(\mathbb{A}_{f}\right)$). Now $x=q x$ implies that q_{2} is a compact subgroup
of $G^{c}(\mathbb{R})$. The condition $g a=q g a k k^{\prime}$ imples that $q_{1}\left(\right.$ resp. $\left.q_{2}\right)$ is in the neat open compact subgroup $g_{1}\left(K \cap Z_{G}^{s}\left(\mathbb{A}_{f}\right)\right) g_{1}^{-1}\left(\right.$ resp. $\left.g_{2}\left(K \cap G^{c}\left(\mathbb{A}_{f}\right)\right) g_{2}^{-1}\right)$ of $Z_{G}^{s}\left(\mathbb{A}_{f}\right) \simeq\left(\mathbb{A}_{f}^{*}\right)^{n}\left(\right.$ resp. $\left.G^{c}\left(\mathbb{A}_{f}\right)\right)$. But $\left(\mathbb{Q}^{*}\right)^{n} \cap g_{1}\left(K \cap\left(\mathbb{A}_{f}^{*}\right)^{n}\right) g_{1}^{-1}=1$, and the intersection of any compact subgroup of $G^{c}(\mathbb{R})$ with a neat open compact subgroup of $G^{c}\left(\mathbb{A}_{f}\right)$ is trivial. Hence $q_{1}=q_{2}=1$. So $q=1$. Therefore $k=\left(k^{\prime}\right)^{-1} \in K^{\prime}$.

So K acts transitively on the right on $\rho^{-1}(y)$ and the kernel of this action is K^{\prime}. So K / K^{\prime} acts simply transitively on $\rho^{-1}(y)$.

Lemma 2. $|\operatorname{Gal}(\bar{E} / E) s| \geqslant\left|\operatorname{Gal}(\bar{E} / E) s \cap \rho^{-1} \rho(s)\right| \cdot|\operatorname{Gal}(\bar{E} / E) \rho(s)|$.
Proof. (cf. [3, Lemma 2.12]) Because ρ is defined over $E,\left|\operatorname{Gal}(\bar{E} / E) s \cap \rho^{-1}(\sigma(\rho(s)))\right|$ is independent of $\sigma \in \operatorname{Gal}(\bar{E} / E)$. This allows us to conclude.

To give a lower bound for $\left|\operatorname{Gal}(\bar{E} / E) s \cap \rho^{-1} \rho(s)\right|$, we shall work with the Shimura subdatum (T, x) of (G, \mathcal{X}). The Shimura subdatum (T, x) is defined as follows: $T=\mathrm{MT}(s)$. By [1, Lemma 5.13], $\mathrm{Sh}_{K^{\prime}}(G, \mathcal{X})=\amalg \Gamma(g) \backslash \mathcal{X}^{+}$, where $\Gamma(g)=G(\mathbb{Q})_{+} \cap g K^{\prime} g^{-1}$ is a congruence subgroup of $G(\mathbb{Q})$. Choose $x \in \mathcal{X}^{+}$s.t. s is the image of x under the uniformization. It is not hard to check that (T, x) still satisfies (SV5) (see e.g. [3, Remark 2.3]).

Let F be the reflex field of (T, x), then F is a finite extension of E. Define

$$
\rho^{\prime}: \operatorname{Sh}_{K_{T}^{\prime}}(T, x) \rightarrow \operatorname{Sh}_{K_{T}}(T, x),
$$

which is the restriction of ρ, then ρ^{\prime} is defined over F. It is clear that

$$
\begin{equation*}
\left|\operatorname{Gal}(\bar{E} / E) s \cap \rho^{-1} \rho(s)\right| \geqslant\left|\operatorname{Gal}(\bar{E} / F) s \cap \rho^{\prime-1} \rho^{\prime}(s)\right| \tag{2}
\end{equation*}
$$

Let $\pi_{0}\left(\operatorname{Sh}_{K_{T}^{\prime}}(T, x)\right)$ be the set of geometric components of $\operatorname{Sh}_{K_{T}^{\prime}}(T, x)$. Recall that

$$
\pi_{0}\left(\mathrm{Sh}_{K^{\prime}}(T, x)\right)=T(\mathbb{Q})_{+} \backslash T\left(\mathbb{A}_{f}\right) / K_{T}^{\prime} .
$$

This is a finite abelian group. The action of $\operatorname{Gal}(\bar{E} / F)$ on $\pi_{0}\left(\mathrm{Sh}_{K_{T}^{\prime}}(T, x)\right)$ is given by the reciprocity morphism

$$
r: \operatorname{Gal}(\bar{E} / F) \rightarrow \pi_{0}\left(\operatorname{Sh}_{K_{T}^{\prime}}(T, x)\right) .
$$

Let us describe this action more explicitly. Denote for any $\alpha \in T\left(\mathbb{A}_{f}\right)$ by $\overline{(x, \alpha)}$ the image of (x, α) in $\mathrm{Sh}_{K_{T}^{\prime}}(T, x)$. It is a connected component of $\mathrm{Sh}_{K_{T}^{\prime}}(T, x)$. As sets we have the following identification:

$$
\begin{array}{ccc}
\left\{\overline{(x, \alpha)} \frac{\sim}{\left.\mid \alpha \in T\left(\mathbb{A}_{f}\right)\right\}}\right. & \xrightarrow{(x, \alpha)} & \pi_{0}\left(\mathrm{Sh}_{K_{T}^{\prime}}(T, x)\right) \\
& \mapsto & \bar{\alpha}
\end{array} .
$$

Let $\sigma \in \operatorname{Gal}(\bar{E} / F)$ and let $t \in T\left(\mathbb{A}_{f}\right)$ s.t. $\bar{t}=r(\sigma)$, then $\forall \alpha \in T\left(\mathbb{A}_{f}\right)$,

$$
\begin{equation*}
\sigma(\overline{(x, \alpha)})=\overline{(x, t \alpha)}=\overline{(x, \alpha t)} . \tag{3}
\end{equation*}
$$

Recall the following result from Ullmo-Yafaev [3, Proposition 2.9]:
Lemma 3. There exists a positive integer A depending only on (G, \mathcal{X}) s.t. $\forall m \in T\left(\mathbb{A}_{f}\right)$, the image of m^{A} in $\pi_{0}\left(\mathrm{Sh}_{K_{T}^{\prime}}(T, x)\right)$ is $r(\sigma)$ for some $\sigma \in \operatorname{Gal}(\bar{E} / F)$.
Proof. [3, Proposition 2.9], which follows from Lemma 2.4-Lemma 2.8 of loc.cit., announces this result when $Z(G)(\mathbb{R})$ is compact. However the only role this hypothesis plays is to guarantee that $T(\mathbb{Q})$ is discrete (hence closed) in $T\left(\mathbb{A}_{f}\right)$ in Lemma 2.8 of loc.cit.. Our hypothesis for $Z(G)$
at the beginning of this section implies that T is an almost product of a \mathbb{Q}-split torus with a torus of compact type defined over \mathbb{Q} (see e.g. [3, Remark 2.3]), and hence $T(\mathbb{Q})$ is discrete in $T\left(\mathbb{A}_{f}\right)([1$, Theorem 5.26]).

Lemma 4. Let Θ_{A} be the image of the morphism $k \mapsto k^{A}$ on K_{T} / K_{T}^{\prime}. We have
(1) $\Theta_{A} \cdot s \subset \operatorname{Gal}(\bar{E} / F) s \cap \rho^{\prime-1} \rho^{\prime}(s)$;
(2) $\left|\operatorname{Gal}(\bar{E} / F) s \cap \rho^{\prime-1} \rho^{\prime}(s)\right| \geqslant\left|\Theta_{A}\right|$.

Proof. (cf. [3, Lemma 2.15 \& 2.16])
(1) We have $\rho^{\prime}\left(\Theta_{A} \cdot s\right)=\rho^{\prime}(s)$. So $\Theta_{A} \cdot s \subset \rho^{\prime-1} \rho^{\prime}(s)$. Moreover similar to Lemma 1, K_{H} / K_{H}^{\prime} acts simply transitively on $\rho^{\prime-1} \rho^{\prime}(s)$. For any $\overline{(x, \alpha)} \in \rho^{\prime-1} \rho^{\prime}(s)$ and $k \in K_{T} / K_{T}^{\prime}$, this action is given by

$$
\begin{equation*}
\overline{(x, \alpha)} k=\overline{(x, \alpha k)} . \tag{4}
\end{equation*}
$$

Let $m \in K_{T}$, then the image of m^{A} in $\pi_{0}\left(\mathrm{Sh}_{K_{T}^{\prime}}(T, x)\right)$ is $r(\sigma)$ for some $\sigma \in \operatorname{Gal}(\bar{E} / F)$ by Lemma 3. It follows that the image of Θ_{A} in $\pi_{0}\left(\operatorname{Sh}_{K_{T}^{\prime}}(T, x)\right)=T(\mathbb{Q})_{+} \backslash T\left(\mathbb{A}_{f}\right) / K_{T}^{\prime}$ is contained in the image of $\operatorname{Gal}(\bar{E} / F)$. So for $s=\overline{(x, \beta)}$, we have by (4) and (3)

$$
\Theta_{A} \cdot s \subset \operatorname{Gal}(\bar{E} / F) s
$$

To sum it up,

$$
\Theta_{A} \cdot s \subset \operatorname{Gal}(\bar{E} / F) s \cap \rho^{\prime-1} \rho^{\prime}(s)
$$

(2) By (1) we have

$$
\left|\operatorname{Gal}(\bar{E} / F) s \cap \rho^{\prime-1} \rho^{\prime}(s)\right| \geqslant\left|\Theta_{A} \cdot s\right| .
$$

Moreover we have

$$
\left|\rho^{\prime-1} \rho^{\prime}(s)\right|=\left|\left(K_{T} / K_{T}^{\prime}\right) \cdot s\right| \leqslant \frac{\left|K_{T} / K_{T}^{\prime}\right|}{\left|\Theta_{A}\right|}\left|\Theta_{A} \cdot s\right|
$$

and

$$
\left|K_{T} / K_{T}^{\prime}\right|=\left|\rho^{\prime-1} \rho^{\prime}(s)\right|
$$

by the same argument for Lemma 1. These three (in)equalities yield the desired inequality. Remark that we have also proved $\left|\Theta_{A} \cdot s\right|=\left|\Theta_{A}\right|$.

Lemma 5. There exists an integer $r>0$ depending only on (G, \mathcal{X}) s.t.

$$
\left|\Theta_{A}\right| \geqslant \prod_{\left\{p: K_{T, p} \neq K_{T, p}^{\prime}\right\}} \frac{1}{A^{r}}\left|K_{T, p} / K_{T, p}^{\prime}\right| .
$$

Proof. (cf. [3, Lemma 2.18]) Since $K_{T} / K_{T}^{\prime}=\prod_{p} K_{T, p} / K_{T, p}^{\prime}$, we have

$$
\Theta_{A}=\prod_{\left\{p: K_{T, p} \neq K_{T, p}^{\prime}\right\}} \Theta_{A, p}
$$

Let L_{T} be the splitting field of T and let $d:=\operatorname{dim}(T) .\left[L_{T}: \mathbb{Q}\right]$ is the size of the image of the representation of $\operatorname{Gal}(\bar{E} / \mathbb{Q})$ on the character group $X^{*}(T)$ of T. This is a finite subgroup of $\mathrm{GL}_{d}(\mathbb{Z})$ and hence its size is bounded from above in terms of d only. But d is bounded from above in terms of $\operatorname{dim}(G)$ only, so $\left[L_{T}: \mathbb{Q}\right]$ is bounded from above in terms of $\operatorname{dim}(G)$ only.

Using a basis of the character group of T one can embed T into $\operatorname{Res}_{L_{T} / \mathbb{Q}} \mathbb{G}_{m, L_{T}}$. Via this embedding, K_{T} and K_{T}^{\prime} are both subgroups of the product of $\left(\mathbb{Z}_{p} \otimes O_{L_{T}}\right)^{*}$. The group $\left(\mathbb{Z}_{p} \otimes O_{L_{T}}\right)^{*}$ is the direct product of the groups of units of E_{v}, completion of E at the place v with $v \mid p$. By the local unit theorem, the group of units of such an E_{v} is a dirct product of a cyclic group and $\mathbb{Z}_{p}^{\left[E_{v}: \mathbb{Q}_{p}\right]}$.

It follows that there exists a constant r depending only on (G, \mathcal{X}) s.t. $K_{T, p} / K_{T, p}^{\prime}$ is a finite abelian group which is the product of at most r cyclic factors. Therefore the size of the kernel of the A-th power map on $K_{T, p} / K_{T, p}^{\prime}$ is bounded by A^{r}, i.e.

$$
\Theta_{A, p} \geqslant \frac{1}{A^{r}}\left|K_{T, p} / K_{T, p}^{\prime}\right| .
$$

References

[1] J. Milne. Introduction to Shimura varieties. In Harmonic analysis, the trace formula, and Shimura varieties, volume 4 of Clay Math. Proc. Amer. Math. Soc.
[2] J. Milne. Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In Automorphic forms, Shimura varieties, and L-functions. Vol. I. Proceedings of the conference held at the University of Michigan, Ann Arbor, Michigan, July 6-16 1988.
[3] E. Ullmo and A. Yafaev. Galois orbits and equidistribution of special subvarieties: towards the André-Oort conjecture. Annals Math., to appear.

Institut des Hautes Études Scientifiques, Le Bois-Marie 35, route de Chartres, 91440 Bures-sur-Yvette, France

E-mail address: ziyang.gao@math.u-psud.fr

