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1. Lecture 1: Introduction

Let f ∈ C[X, Y ] be a polynomial in 2 variables. Consider the set of complex solutions
to f = 0, defined by

V (f) := {(x, y) ∈ C2 : f(x, y) = 0} ⊆ A2
C := C2.

This set will be called a complex plane affine algebraic curve in A2
C. More precisely we

make the following definition.

Definition 1.1. A complex plane affine (algebraic) curve C in A2
C is a subset of A2

C of
the form V (f) = {(x, y) ∈ C2 : f(x, y) = 0} for some non-zero f ∈ C[X, Y ]. We say
that C is irreducible if f is irreducible as a polynomial. We also define the degree of C,
denoted by degC, to be the degree of P (when P is irreducible).

In practice, it is often more convenient to add points to C to make it compact. More
precisely, embed A2

C into P2
C, for example by sending (x, y) 7→ [x : y : 1], and then define

F (X0, X1, X2) := Xdeg f
0 f(

X0

X2

,
X1

X2

).

Then F is a homogeneous polynomial of degree deg f . Define

V (F ) := {[x0 : x1 : x2] ∈ P2
C : F (x0, x1, x2) = 0} ⊆ P2

C.

It can be checked that V (F ) is V (f) with finitely many points added, and each of these
added points has X2-coordinate 0. Moreover, V (F ) is the closure of V (f) in P2

C in the
usual topology.

Definition 1.2. A complex plane projective (algebraic) curve C in P2
C is a subset of P2

C
of the form V (P ) = {[x : y : z] ∈ P2

C : P (x, y, z) = 0} for some non-zero P ∈ C[X, Y, Z].
We say that C is irreducible if P is irreducible as a polynomial. We also define the degree
of C, denoted by degC, to be the degree of P (when P is irreducible).

Each algebraic curve has complex dimension 1 and hence real dimension 2. In this
course, we will see that to each plane projective curve C we can associate a (unique)
Riemann surface. Today let us illustrate this with some examples.

Before moving on, let us make a definition based on this fact. It is known that each
Riemann surface has a genus g. So to each plane projective curve C we can define its
genus g.

We start with the multi-valued function w 7→
√
w on C. The fact that this function

is not single-valued is easy to see: For the polar coordinate w = reiθ, there are infinitely
many choices of θ, resulting in infinitely many choices of eiθ/2.
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To make this function single-valued, one needs to change the domain. Here is what we
can do. Note that if we cut C along the non-negative real axis [0,∞) we can define two
holomorphic functions ±

√
w on C− [0,∞) by

(1.1) ±
√
w = ±

√
reiθ/2

for θ ∈ (0, 2π).
Take two copies of C − [0,∞) and “glue” them together to get a space X. Perhaps

a better way to see the glueing process is by adding a point ∞ to C and then cut it
along [0,∞]. Note that C ∪ {∞} is a sphere topologically. Open up the cuts and glue
the two copies together to get X ∪ {∞}, which is again a sphere topologically. On
the space X it makes sense to say that there is a single-valued holomorphic function
sqr : X ∪ {∞} → C ∪ {∞} defined by +

√
w on the first copy of the cut plane and by

−
√
w on the second. Note that in view of sqr, there are two particular points on C∪{∞},

0 and ∞, in the following sense: #sqr−1(t) = 2 except when t = 0,∞. Similarly there
are two particular points on X ∪ {∞}, 0 and ∞, because #sqr−1(sqr(x)) = 2 except for
x = 0,∞.

Of course one should be careful with the glueing process to see which edges are glued
in what direction. To do this one needs to go back to the functions (1.1). If r ∈ [0,∞)
then +

√
w tends to

√
r and −

√
w tends to −

√
r as w tends to r through values in the

upper half plane, and vice versa as w tends to r through values in the lower half plane.
Thus from the last sentence of the previous paragraph, one glues the upper side of the
cut in the first copy to the lower side of the cut in the second copy, and the lower side of
the cut in the first copy to the upper side of the cut in the second copy. Now X ∪ {∞}
is a Riemann surface of genus 0.

Another way to think of X is being the complex plane affine curve

C0 = {(x, y) ∈ C2 : y2 = x}

where one copy of C − [0,∞) corresponds to {(x, y) ∈ C2 : y = +
√
x} and the other to

{(x, y) ∈ C2 : y = −
√
x}. Then sqr corresponds to C0 → C, (x, y) 7→ y. And X ∪ {∞}

is the projectification of the plane affine curve defined above.
The discussion above says that the plane projective curve {(x : y : z) ∈ C2 : y2 = xz}

is a Riemann surface of genus 0.
This process of relating plane projective curves to Riemann surfaces is more general.

Let us see more examples.

Example 1.3. Consider the plane affine curve

C0 = {(x, y) ∈ C2 : y2 = x3 − x = x(x− 1)(x+ 1)}.

Its projectification is C = {[x : y : z] ∈ P2
C : y2z = x3 − xz2}. The multi-valued function

associated with C is z 7→ (z3 − z)1/2. Apart from z = −1, 0, 1, this function has 3
values. So when we cut C, we should cut [−1, 0] and [1,∞). Again take two copies of
C ∪ {∞} − ([−1, 0] ∪ [1,∞]), open the cuts and glue them together along the cuts. Thus
we get a torus as C. In other words, C in this case is a Riemann surface of genus 1.

Note that in this case, there are 4 exceptional points on C in view of the function
φ : C → C∪ {∞}, which are −1, 0, 1 and ∞. Apart from these 4 points #φ−1(φ(x)) = 3
for each x ∈ C. Note that the restriction φ|C0 : C0 → C is (x, y) 7→ y.
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The drawing procedure in Example 1.3 is valid for most curves of degree 3, for example
{(x, y) ∈ C2 : y2 = x3 + x2 + 1}. Or more generally {(x, y) ∈ C2 : y2 = x(x− 1)(x− λ)}
for λ 6= 0, 1. However sometimes we may get “singular points” in the process.

Example 1.4. Consider
{(x, y) ∈ C2 : y2 = x3 + x2}.

There are 3 exceptional points: 0, −1 and ∞. However 0 is counted twice. One way to
see this is by looking at the tangent space of C at 0.[1] So when we draw the similar picture
for C as above, it is a torus but the point 0 is a “node”.

As Riemann surfaces are not supposed to have singular points, we must solve this prob-
lem. Now from which Riemann surface can we obtain C in the easiest way? Note that
this torus with node can be obtained by identifying two points on the Riemann sphere. So
in fact the Riemann surface associated with this C is of genus 0.

Example 1.5. Consider
{(x, y) ∈ C2 : y2 = x3}.

This is more similar to the first example z 7→
√
z. In a similar way we can draw the

picture for C, with 0 being a cusp.

Before moving on, let us see the following example related to Fermat’s Last Theorem.

Example 1.6. Consider
{(x, y) ∈ C2 : xn + yn = 1}.

Its projectification is C = {[x : y : z] ∈ P2
C : xn + yn − zn = 0}. The associated multi-

valued function is w 7→ (1− wn)1/n. Let ζ1, . . . , ζn be the n-th roots of unity. Apart from
ζ1, . . . , ζn, this function takes n values. Cut C ∪ {∞} along the [ζi, ζi+1] for each odd i
from 1 to n (if n is odd, then set ζn+1 =∞), then we obtain n single-valued holomorphic
functions. So we want to glue n copies of

(C ∪ {∞})−
⋃
i odd

[ζi, ζi+1]

to obtain C. However the glueing process is rather complicated: one needs to study the
local behavior of the function to see how these copies are glued together.

[1]Two directions, defined by y = x and y = −x.
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2. Lecture 2: Hilbert Nullstellensatz and Singularities of plane curves

2.1. Hilbert Nullstellensatz. We start the following theorem without proof.

Theorem 2.1. For P,Q ∈ C[X, Y ], we have:

{(x, y) ∈ C2 : P (x, y) = 0} = {(x, y) ∈ C2 : Q(x, y) = 0}
if and only if P divides some power of Q and Q divides some power of P ; or equivalently,
if and only if P and Q have the same irreducible factors.

This theorem implies that the irreducible factors of a polynomial in C[X, Y ] are char-
acterized by the plane algebraic curve associated with it. More precisely, we have

Corollary 2.2. Assume P,Q ∈ C[X, Y ] have no repeated factors, i.e. there exists no
polynomial of degree ≥ 1 whose square divides P or Q. Then P and Q define the same
plane algebraic curve in C2 if and only if P (x, y) = λQ(x, y) for some λ ∈ C∗.

2.2. Singularities of plane curves. Consider a plane affine curve Caff = V (P ) =
{(x, y) ∈ C2 : P (x, y) = 0}. For each point (a, b) ∈ Caff , by Taylor’s expansion we
have

P (x, y) = (x− a)
∂P

∂x
(a, b) + (y − b)∂P

∂y
(a, b) + higher terms.

Thus T(a,b)Caff is the line defined by (x− a)∂P
∂x

(a, b) + (y− b)∂P
∂y

(a, b) = 0 if one of ∂P
∂x

(a, b)

and ∂P
∂y

(a, b) is not zero. However if ∂P
∂x

(a, b) = ∂P
∂y

(a, b) = 0, then either T(a,b)Caff is the

union of several different lines[2], or (a, b) is a cusp[3]. Based on this observation we make
the following definition.

Definition 2.3. A point (a, b) ∈ Caff

(1) is a singular point if

∂P

∂x
(a, b) =

∂P

∂y
(a, b) = 0.

(2) has multiplicity m if m is the smallest integer such that

∂mP

∂xi∂yj
(a, b) 6= 0

for some i, j with i + j = m. Denote by mP (Caff) the multiplicity of Caff at
P = (a, b).

(3) is a node (or ordinary double point) if it has multiplicity 2 and(
∂2P

∂x∂y

)2

6=
(
∂2P

∂x2

)(
∂2P

∂y2

)
at (a, b).

The geometric meaning of nodes is that T(a,b)Caff is the union of two simple lines.

We have similar definitions for plane projective curves

C = V (P ) = {[x : y : z] ∈ P2
C : P (x, y, z) = 0}.

[2]For example C = {(x, y) ∈ C2 : y2 = x3 − x2} at (0, 0).
[3]For example C = {(x, y) ∈ C2 : y2 = x3} at (0, 0).



ELLIPTIC CURVES: WITH A FOCUS ON COMPLEX ANALYSIS 5

It can be computed that T[a:b:c]C is the projective line defined by

(x− a)
∂P

∂x
(a, b, c) + (y − b)∂P

∂y
(a, b, c) + (z − c)∂P

∂z
(a, b, c) = 0

if not all three partial derivatives are 0.

Definition 2.4. A point [a : b : c] ∈ C is a singular point if

∂P

∂x
(a, b, c) =

∂P

∂y
(a, b, c) =

∂P

∂z
(a, b, c) = 0.

The curve C is said to be smooth if it has no singular points.

We can define multiplicities and nodes as for plane affine curves. But one can also use
known information to treat this by covering P2

C by three pieces of affine charts to obtain
three plane affine curves and by the following lemma.

Lemma 2.5. Let [a : b : c] ∈ C. If c 6= 0, then [a : b : c] is a non-singular point of C if
and only if (a

c
, b
c
) is a non-singular point of the affine curve

C0 = {(x, y) ∈ C2 : P (x, y, 1) = 0}.
Similar results for the cases a 6= 0 and b 6= 0.

Moreover, the intersection of C2, identified with {[x : y : z] ∈ P2
C : z 6= 0}, and the

projective tangent line T[a:b:c]C ⊆ P2
C is the tangent line T(a/c,b/c)C0 ⊆ C2.

Proof. Assume m = degP . Differentiating the identity P (λx, λy, λz) = λmP (x, y, z) with
respect to λ and setting λ = 1, we obtain the following Euler’s relation

x
∂P

∂x
(x, y, z) + y

∂P

∂y
(x, y, z) + z

∂P

∂z
(x, y, z) = mP (x, y, z).

The point (a
c
, b
c
) is a singular point of C0 if and only if

P (
a

c
,
b

c
, 1) = 0 =

∂P

∂x
(
a

c
,
b

c
, 1) =

∂P

∂y
(
a

c
,
b

c
, 1).

Since P (x, y, z) and its partial derivatives are homogeneous and c 6= 0, this holds true if
and only if

P (a, b, c) = 0 =
∂P

∂x
(a, b, c) =

∂P

∂y
(a, b, c).

By Euler’s relation above, this is equivalent to

P (a, b, c) = 0 =
∂P

∂x
(a, b, c) =

∂P

∂y
(a, b, c) =

∂P

∂z
(a, b, c),

and hence equivalent to [a : b : c] being a singular point of C.
For the “moreover” part, the intersection of C2 (identified with {[x : y : z] ∈ P2

C : z 6=
0}) and the projective tangent line

x
∂P

∂x
(a, b, c) + y

∂P

∂y
(a, b, c) + z

∂P

∂z
(a, b, c) = 0

is the line in C2 defined by

x
∂P

∂x
(a, b, c) + y

∂P

∂y
(a, b, c) +

∂P

∂z
(a, b, c) = 0.
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Since all these partial derivatives are homogeneous of degree m−1, Euler’s relation implies
that this is precisely

(x− a

c
)
∂P

∂x
(
a

c
,
b

c
, 1) + (y − b

c
)
∂P

∂y
(
a

c
,
b

c
, 1) = 0,

which is T(a/c,b/c)C0 ⊆ P2
C. �

Example 2.6. Consider the curve C of degree 3 defined by

y2z = x(x− z)(x− λz).

One can check that C is smooth if and only if λ 6= 0, 1. If λ = 0, then [0 : 0 : 1] is a node.
If λ = 1, then [1 : 0 : 1] is a node.

Example 2.7. Let us look at the following example. Let α1, . . . , αn ∈ C be distinct
numbers (n ≥ 4). Consider the projective curve

C = {[x : y : z] ∈ P2
C : y2zn−2 = (x− α1z) · · · (x− αnz)}.

Then P (x, y, z) = y2zn−2 − (x− α1z) · · · (x− αnz).
Let us look at the affine chart {[x : y : z] ∈ P2

C : z 6= 0}, and the plane affine curve
C0 = {(x, y) ∈ C2 : P (x, y, 1) = 0} thus obtained. Then

∂P (x, y, 1)

∂x
= −

n∑
i=1

∏
j 6=i

(x− αj),
∂P (x, y, 1)

∂y
= 2y.

It is then easy to check that C0 has no singular points.
On the other hand, one can compute C − C0 = {[0 : 1 : 0]}. To see whether this point

is singular, we consider the affine chart {[x : y : z] ∈ P2
C : y 6= 0}, and the plane affine

curve C1 = {(x, z) ∈ C2 : P (x, 1, z) = 0} thus obtained. In this chart [0 : 1 : 0] becomes
the origin (0, 0), and

∂P (x, 1, z)

∂x
(0, 0) =

∂P (x, 1, z)

∂z
(0, 0) = 0.

Hence [0 : 1 : 0] is a singular point of C (of multiplicity n− 2).

Example 2.7 gives a good explanation why we need projective curves instead of affine
curves: although the affine curve C0 is smooth, its projectification C is NOT. When
computing the genus, we need to study the singular points, which is {∞} for these curves.
Worse, they are not nodes.
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