Bi-algebraic system on the universal vectorial extension

ZIYANG GAO

1. Universal vectorial extension

1.1. Universal vector extension of an abelian variety. Let A be an abelian variety over \mathbb{C} . By a vector extension of A, we mean an algebraic group E such that there exist a vector group W and an exact sequence $0 \to W \to E \to A \to 0$. There exists a universal vector extension A^{\natural} of A such that any vector extension of A is obtained as $E \cong A^{\natural} \times^{W_A} W$:

In fact A^{\natural} is constructed as following: consider the Hodge decomposition $H^1(A,\mathbb{C})=H^{0,1}(A)\oplus H^{1,0}(A)$. The holomorphic part $H^{1,0}(A)$ is dual to the tangent space t_A of A at 0, and $A\cong t_A/H_1(A,\mathbb{Z})$. The anti-holomorphic part $H^{0,1}(A)$ is dual to $\omega_{A^{\vee}}$.

$$0 \longrightarrow H^{0,1}(A)^{\vee} \longrightarrow H^{1}(A, \mathbb{C})^{\vee} \longrightarrow H^{1,0}(A)^{\vee} = t_{A} \longrightarrow 0$$

$$\downarrow = \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow \omega_{A^{\vee}} \longrightarrow A^{\natural} \longrightarrow A \longrightarrow 0$$

In particular, we have the uniformization $H^1(A,\mathbb{C})^{\vee} \cong \mathbb{C}^{2g} \to A^{\natural}$.

1.2. Universal vectorial extension. Let A_g be a fine moduli space of principally polarized abelian varieties and let \mathfrak{A}_g be the universal family over A_g . By a vector extension of \mathfrak{A}_g , we mean a group scheme E over A_g such that there exist a vector group W over A_g and an exact sequence $0 \to W \to E \to \mathfrak{A}_g \to 0$ of group schemes over A_g . The universal vector extension $\mathfrak{A}_g^{\natural}$ of \mathfrak{A}_g exists and we call it the universal vectorial extension. It satisfies $0 \to \omega_{\mathfrak{A}_g^{\backprime}/A_g} \to \mathfrak{A}_g^{\natural} \to \mathfrak{A}_g \to 0$ and any vector extension E of \mathfrak{A}_g is a push-out $E = \mathfrak{A}_g^{\natural} \times^{\omega_{\mathfrak{A}_g^{\backprime}/A_g}} W$.

The construction of $\mathfrak{A}_g^{\natural}$ is similar as before: the dual of the first relative de Rham cohomology $\mathcal{H}^1_{dR}(\mathfrak{A}_g/A_g)^{\vee}$ is a variation of Hodge structures of type $\{(-1,0),(0,-1)\}$. Let $\mathcal{F}^0\mathcal{H}^1_{dR}(\mathfrak{A}_g/A_g)^{\vee}\subset\mathcal{H}^1_{dR}(\mathfrak{A}_g/A_g)^{\vee}$ be the Hodge filtration. Then $\mathcal{F}^0\mathcal{H}^1_{dR}(\mathfrak{A}_g/A_g)^{\vee}\cong\omega_{\mathfrak{A}_g^{\vee}/A_g}$ and we have (1)

$$0 \longrightarrow \mathcal{F}^{0}\mathcal{H}_{dR}^{1}(\mathfrak{A}_{g}/A_{g})^{\vee} \longrightarrow \mathcal{H}_{dR}^{1}(\mathfrak{A}_{g}/A_{g})^{\vee} \longrightarrow \frac{\mathcal{H}_{dR}^{1}(\mathfrak{A}_{g}/A_{g})^{\vee}}{\mathcal{F}^{0}\mathcal{H}_{dR}^{1}(\mathfrak{A}_{g}/A_{g})^{\vee}} \longrightarrow 0$$

$$\downarrow = \qquad \qquad \qquad \downarrow \qquad$$

1.3. Uniformization. The uniformization of $\mathfrak{A}_g^{\natural}$ is $\mathbb{C}^{2g} \times \mathcal{H}_g^+$, where \mathcal{H}_g^+ is the Siegel upper half plane. Let $\mathcal{V} := \mathbb{C}^{2g} \times \mathcal{H}_g^+$. Each point $x \in \mathcal{H}_g^+$ gives a \mathbb{Q} -Hodge structure of type $\{(-1,0),(0,-1)\}$, so \mathcal{V} is a variation of Hodge structures over \mathcal{H}_g^+ and we have a Hodge filtration $\mathcal{F}^0\mathcal{V} \subset \mathcal{V}$. The group $\mathrm{GSp}_{2g}(\mathbb{R})^+$ acts on \mathcal{V} by g(v,x) = (gv,gx). Suppose $A_g \cong \Gamma \backslash \mathcal{H}_g^+$, where $\Gamma \subset \mathrm{Sp}_{2g}(\mathbb{Z})$ is a neat subgroup. Then $\Gamma \backslash \mathcal{F}^0\mathcal{V} \cong \omega_{\mathfrak{A}_g^\vee}/A_g$.

The holomorphic bundle $\mathcal{V}/\mathcal{F}^0\mathcal{V}$ over \mathcal{H}_g^+ can be viewed as following: as a smooth bundle it is $\mathbb{R}^{2g} \times \mathcal{H}_g^+$, and the complex structure of the fiber over $x \in \mathcal{H}_g^+$ is the identification $\mathbb{R}^{2g} \cong \mathbb{C}^g$, $(a,b) \mapsto a + xb$ (when g=1, this is $(a,b) \mapsto a + \tau b$ for any $\tau \in \mathcal{H}^+$). Hence $(\mathbb{Z}^{2g} \rtimes \Gamma) \setminus (\mathcal{V}/\mathcal{F}^0\mathcal{V}) \cong \mathfrak{A}_g$.

- 1.4. The Deligne-Pink language. To sum it up, let us define the following pair $(P_{2g}, \mathcal{X}_{2g}^{\natural})$:
 - P_{2g} is the \mathbb{Q} -group $V_{2g} \rtimes \mathrm{GSp}_{2g}$, where V_{2g} is the \mathbb{Q} -vector group of dimension 2g and GSp_{2g} acts on V_{2g} by the natural representation;
 - $\mathcal{X}_{2g}^{\natural}$ is $\mathbb{C}^{2g} \times \mathbb{H}_{g}^{+}$ as sets, with the action of $P_{2g}(\mathbb{R})^{+}V_{2g}(\mathbb{C})$ on $\mathcal{X}_{2g}^{\natural}$ defined by $(v,g)\cdot (v',x):=(v+gv',gx)$ for $(v,g)\in P_{2g}(\mathbb{R})^{+}V_{2g}(\mathbb{C})$ and $(v',x)\in \mathcal{X}_{2g}^{\natural}$. This action is transitive.

Let Γ be a neat subgroup of $\mathrm{Sp}_{2q}(\mathbb{Z})$. We have (see [5])

Theorem 1.1 (Gao). $\mathfrak{A}_g^{\natural} := (\mathbb{Z}^{2g} \rtimes \Gamma) \setminus (\mathbb{C}^{2g} \times \mathcal{H}_g^+)$ is the universal vector extension of the universal abelian variety over the fine moduli space $A_g := \Gamma \setminus \mathcal{H}_q^+$.

2. BI-ALGEBRAIC SYSTEM ON $\mathfrak{A}_q^{\natural}$

2.1. **Arithmetic bi-algebraic system.** We study the uniformization unif: $\mathbb{C}^{2g} \times \mathcal{H}_g^+ \to \mathfrak{A}_g^{\sharp}$. The algebraic variety \mathfrak{A}_g^{\sharp} is defined over $\overline{\mathbb{Q}}$. Denote by $\pi^{\sharp} : \mathfrak{A}_g^{\sharp} \to A_g$. The arithmetic bi-algebraic property of unif is summarized in the following theorem, which follows from two theorems of Wüstholz [8] and Cohen, Shiga-Wolfart [6]. See Ullmo [7].

Theorem 2.1. For any point $u \in \overline{\mathbb{Q}}^{2g} \times \mathcal{H}_g^+(\overline{\mathbb{Q}})$, the followings are equivalent:

- (1) $\operatorname{unif}(u) \in \mathfrak{A}_g^{\sharp}(\overline{\mathbb{Q}});$
- (2) $\pi^{\natural}(\operatorname{unif}(u))$ is a CM point of A_q and u is a torsion point on its fiber of π^{\natural} .
- 2.2. **Geometric bi-algebraic system.** We endow $\mathbb{C}^{2g} \times \mathcal{H}_g^+$ with the following complex algebraic structure: \mathcal{H}_g^+ is an open subset of $\mathbb{C}^{g(g+1)/2}$ and we say that a subset Z of $\mathbb{C}^{2g} \times \mathcal{H}_g^+$ is algebraic if it is the intersection of its Zariski closure in $\mathbb{C}^{2g+g(g+1)/2}$ with $\mathbb{C}^{2g} \times \mathcal{H}_g^+$. We say that an irreducible subvariety Y^\natural of \mathfrak{A}_g^\natural is $\mathit{bi-algebraic}$ if one (and hence all) complex analytic irreducible component of $\mathsf{unif}^{-1}(Y)$ is algebraic. We hope to characterize all the bi-algebraic subvarieties of \mathfrak{A}_g^\natural .

Let Y^{\natural} be a subvariety of $\mathfrak{A}_{q}^{\natural}$. Use the following notation:

Then $\mathfrak{A}_g|_B := \pi^{-1}(B)$ is an abelian scheme over B. Let \mathcal{C} be its isotrivial part.

Theorem 2.2 (Gao). ([3, Corollary 8.3], [4, Proposition 3.3]) Y is bi-algebraic iff

- (1) B is a totally geodesic subvariey of A_q ;
- (2) Y is the translate of an abelian subscheme by a torsion section and then by a constant section of $C \to B$.

First of all, note that if Y is a point, then Y^{\natural} is always bi-algebraic and it can be any subvariety of \mathbb{C}^{2g} . So the characterization of bi-algebraic subvarieties of $\mathfrak{A}^{\natural}_g$ cannot be as neat as for \mathfrak{A}_g . However we show that this is the only problem.

Assume that Y/B is an abelian scheme (e.g. if Y is bi-algebraic), then $\mathfrak{A}_g^{\natural}|_Y:=p^{-1}(Y)$ is a vector extension of Y which contains Y^{\natural} as a subvariety. In fact we have a decomposition

$$\mathfrak{A}_{a}^{\natural}|_{Y} = Y^{univ} \times_{B} \left(\omega_{\pi^{-1}(B)^{\vee}/B}/\omega_{Y^{\vee}/B}\right),$$

where Y^{univ} is the universal vector extension of Y.

Theorem 2.3 (Gao). ([5]) Use the notation above. Then Y^{\natural} is bi-algebraic iff

- (1) Y is bi-algebraic;
- (2) $Y^{\natural} = Y^{univ} \times_B \mathbb{V}^{\dagger} \times_B (L \times B)$, where \mathbb{V}^{\dagger} is an automorphic subbundle of $(\omega_{\pi^{-1}(B)^{\vee}/B}/\omega_{Y^{\vee}/B})$ and L is an irreducible subvariety of a fiber of $\mathbb{C}^k_B \to B$ (here \mathbb{C}^k_B is the largest trivial automorphic subbundle of $(\omega_{\pi^{-1}(B)^{\vee}/B}/\omega_{Y^{\vee}/B})$).

3. Some transcendental statements

We have some transcendental results for $\mathfrak{A}_{q}^{\natural}$. See [5].

Theorem 3.1 (Ax logarithmique). Let Y^{\natural} be an irreducible subvariety of $\mathfrak{A}_g^{\natural}$. Let \widetilde{Y}^{\natural} be a complex analytic irreducible component of $\mathrm{unif}^{-1}(Y^{\natural})$ and let $\widetilde{Y}^{\natural,Zar}$ be its Zariski closure in $\mathbb{C}^{2g} \times \mathcal{H}_g^+$. Then $\widetilde{Y}^{\natural,Zar}$ is bi-algebraic.

Theorem 3.2 (Ax-Lindemann). Let \widetilde{Z}^{\natural} be an algebraic subset of $\mathbb{C}^{2g} \times \mathcal{H}_g^+$, then any irreducible component of $\mathrm{unif}(\widetilde{Z}^{\natural})^{Zar}$ is bi-algebraic.

Conjecture 3.3 (weak Ax-Schanuel). Let \widetilde{Z}^{\natural} be a complex analytic irreducible subvariety of $\mathbb{C}^{2g} \times \mathcal{H}_g^+$. Let $\widetilde{X}^{\natural} := (\widetilde{Z}^{\natural})^{\mathrm{Zar}}$ and let $Y^{\natural} := \mathrm{unif}(\widetilde{Z}^{\natural})^{\mathrm{Zar}}$. Let F^{\natural} be the smallest bi-algebraic subvariety of $\mathfrak{A}_g^{\natural}$ containing $\mathrm{unif}(\widetilde{Z}^{\natural})$. Then $\dim \widetilde{X}^{\natural} + \dim Y^{\natural} - \dim \widetilde{Z}^{\natural} \geqslant \dim F^{\natural}$.

The weak Ax-Schanuel conjecture implies both Ax logarithmique and Ax-Lindemann. We also have an Ax-Schanuel conjecture, but we must introduce the weakly special part of an arbitrary bi-algebraic subvariety of \mathfrak{A}_g^{\sharp} in order to give the statement. We omit it here, but refer to [5]. For relative version of these results (i.e. the bi-algebraic system given in (1)), we refer to Bertrand-Pillay [1, 2].

REFERENCES

- [1] D. Bertrand and A. Pillay. A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields. *J.Amer.Math.Soc.*, 23(2):491–533, 2010.
- [2] D. Bertrand and A. Pillay. Galois theory, functional Lindemann–Weierstrass, and Manin maps. *Pacific Journal of Mathematics*, 281:51–82, 2016.
- [3] Z. Gao. Towards the André-Oort conjecture for mixed Shimura varieties: the Ax-Lindemann-weierstrass theorem and lower bounds for Galois orbits of special points. *J.Reine Angew. Math (Crelle)*, online, 2015.
- [4] Z. Gao. A special point problem of André-Pink-Zannier in the universal family of abelian varieties. *Annali della Scuola Normale Superiore di Pisa, Classe di Scienze*, to appear.
- [5] Z. Gao. Enlarged mixed Shimura varieties, bi-algebraic system and some Ax type transcendental results. *Preprint*, available on the author's page, 2015.
- [6] H. Shiga and J. Wolfart. Criteria for complex multiplication and transcendence properties of automorphic functions. *J.Reine Angew. Math (Crelle)*, 463:1–25, 1995.
- [7] E. Ullmo. Structures spéciales et problème de Pink-Zilber. Panoramas et Synthèses, to appear.
- [8] G. Wüstholz. Algebraic groups, Hodge theory, and transcendence. In *Proceedings of the International Congress of Mathematicians*, volume 1,2, pages 476–483, 1986.