Bi-algebraic system on the universal vectorial extension
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1. UNIVERSAL VECTORIAL EXTENSION

1.1. Universal vector extension of an abelian variety. Let A be an abelian variety over
C. By avector extension of A, we mean an algebraic group FE such that there exist a vector
group W and an exact sequence 0 - W — E — A — 0. There exists a universal vector
extension A? of A such that any vector extension of A is obtained as £ =2 A% xWa ¥
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In fact A? is constructed as following: consider the Hodge decomposition H'(A,C) =
H%'(A) @ HY°(A). The holomorphic part HY(A) is dual to the tangent space t 4 of A
at0,and A = t4/H;(A,Z). The anti-holomorphic part H%!(A) is dual to wav.

0 — HOVY(A)Y —= HY(A,C)Y —= H'O(A) =t —=0

T

0 wAav Ah

In particular, we have the uniformization ' (A, C)Y = C?9 — A",

1.2. Universal vectorial extension. Let A, be a fine moduli space of principally polar-
ized abelian varieties and let 2(, be the universal family over A,. By a vector extension
of 4, we mean a group scheme I over A, such that there exist a vector group W over
Ay and an exact sequence 0 = W — E — A, — 0 of group schemes over A,. The uni-
versal vector extension ng of 2, exists and we call it the universal vectorial extension. It
satisfies 0 — wary /A, ng — 24 — 0 and any vector extension E of 2, is a push-out
B =0 x40

The construction of Q[g is similar as before: the dual of the first relative de Rham coho-
mology HY»(A,/A,)Y is a variation of Hodge structures of type {(—1,0), (0, —1)}. Let
FOULR(Ag/Ag)Y C HEp(Ay/A,y)Y be the Hodge filtration. Then FOH ), (A /Ay)Y =
wary /4, and we have
ey
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1.3. Uniformization. The uniformization of 2% is C29 x H}, where H is the Siegel
upper half plane. Let V := C?¢ x #{}. Each point z € H/ gives a Q-Hodge structure
of type {(—1,0), (0, —1)}, so Vis a variation of Hodge structures over " and we have
a Hodge filtration 7V C V. The group GSp,,(R)" acts on V by g(v,z) = (gv, gz).
Suppose A, = '\, where I' C Spy, (Z) is a neat subgroup. Then I'\ 7V = waty /A, -

The holomorphic bundle V/F°V over ’H; can be viewed as following: as a smooth
bundle it is R29 x H;, and the complex structure of the fiber over z € H; is the identifi-
cation R?9 = C9, (a,b) +— a+ xb (when g = 1, this is (a, b) — a + 7b for any 7 € H™).
Hence (Z%9 x I)\(V/FV) = 2,.

1.4. The Deligne-Pink language. To sum it up, let us define the following pair (Psy, XQh )
o Py is the Q-group Va2, x GSp, , where Va is the Q-vector group of dimension
2g and GSp,, acts on Va4 by the natural representation;
. thg is C?9 x H} as sets, with the action of Py, (R)*V54(C) on ng defined by
(v,9) - (V,z) == (v+ gV, gx) for (v,g) € Pog(R)TVa,(C) and (v',z) € thg.
This action is transitive.
Let I' be a neat subgroup of Sp,,(Z). We have (see [5])

Theorem 1.1 (Gao). ng := (Z%9 x T)\(C?9 x H}) is the universal vector extension of
the universal abelian variety over the fine moduli space Ay := F\"H:{.

2. BI-ALGEBRAIC SYSTEM ON Q[g

2.1. Arithmetic bi-algebraic system. We study the uniformization unif: C?9 x #}; —

Q[g. The algebraic variety ng is defined over Q. Denote by ¢ : ng — A,. The arithmetic
bi-algebraic property of unif is summarized in the following theorem, which follows from
two theorems of Wiistholz [8] and Cohen, Shiga-Wolfart [6]. See Ullmo [7].

Theorem 2.1. For any point u € @29 X ’H;r (Q), the followings are equivalent:

(1) unif (u) € A4(Q);

(2) 7 (unif(u)) is @ CM point of A, and w is a torsion point on its fiber of 7°.
2.2. Geometric bi-algebraic system. We endow C29 x 7-[; with the following complex
algebraic structure: 7—[!‘; is an open subset of C9(9+1)/2 and we say that a subset Z of
C29 x H} is algebraic if it is the intersection of its Zariski closure in C29+9(9+1)/2 with
C?9 x H;. We say that an irreducible subvariety Y of Q(g is bi-algebraic if one (and

hence all) complex analytic irreducible component of unif ~* (Y) is algebraic. We hope
to characterize all the bi-algebraic subvarieties of ng.
Let Y be a subvariety of Q[E]. Use the following notation:

L9 0, Yi— Y

OHWQZ/AH Q[h



Then 2, |5 := 7~ (B) is an abelian scheme over B. Let C be its isotrivial part.

Theorem 2.2 (Gao). ([3, Corollary 8.3], [4, Proposition 3.3]) Y is bi-algebraic iff

(1) B is a totally geodesic subvariey of Ag;
(2) Y is the translate of an abelian subscheme by a torsion section and then by a
constant section of C — B.

First of all, note that if ¥ is a point, then Y'? is always bi-algebraic and it can be any
subvariety of C29. So the characterization of bi-algebraic subvarieties of ng cannot be as
neat as for 2(,. However we show that this is the only problem.

Assume that Y/B is an abelian scheme (e.g. if Y is bi-algebraic), then ngh/ =
p~1(Y)) is a vector extension of Y which contains Y7 as a subvariety. In fact we have a
decomposition

Wly =Y x g (we-1()v/B/wyv/B) »
where Y “"™ ig the universal vector extension of Y.

Theorem 2.3 (Gao). ([5]) Use the notation above. Then Y is bi-algebraic iff

(1) Y is bi-algebraic,

Q) Y = Yuwniv x5 VT xp (L x B), where VT is an automorphic subbundle of
(wr1(B)V/B/QJYV/B) and L is an irreducible subvariety of a fiber ofC’fB — B
(here (leg is the largest trivial automorphic subbundle of (w,r_l (B)\//B/UJYV/B)).

3. SOME TRANSCENDENTAL STATEMENTS

We have some transcendental results for ng. See [5].

Theorem 3.1 (Ax logarithmique). Let Y? be an irreducible subvariety of ng. Let Y¥ be

a complex analytic irreducible component of unif_l(Yh) and let Y52 be its Zariski
closure in C?9 x 7—[;. Then Y527 is bi-algebraic.

Theorem 3.2 (Ax-Lindemann). Let Z" be an algebraic subset of C?9 x H;r, then any

irreducible component of unif (Z 9)Zar is bi-algebraic.

Conjecture 3.3 (weak Ax-Schanuel). Let Z'bea complex analytic irreducible subvariety
of C% x HS. Let X* := (Z%)%*" and let Y* := unif(Z%)%**. Let F* be the smallest
bi-algebraic subvariety of%lg containing unif(Zh). Then dim X" + dim Y? — dim Z° >
dim F*.

The weak Ax-Schanuel conjecture implies both Ax logarithmique and Ax-Lindemann.
We also have an Ax-Schanuel conjecture, but we must introduce the weakly special part
of an arbitrary bi-algebraic subvariety of 2[_5 in order to give the statement. We omit it
here, but refer to [5]. For relative version of these results (i.e. the bi-algebraic system
given in (1)), we refer to Bertrand-Pillay [1, 2].
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