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Introduction

During the 1960s the problem of estimating the number of points in

projective spaces, rational over a given number �eld K, of height at most B

was raised. Thereby, the height function lies at the basis of counting such

points [8]. It is a certain real valued function that de�nes the arithmetical

complexity of a point on a variety over a number �eld [13]. Typically, the

standard height function is de�ned to be the product, taken over all places

v of K, of the maximum of the v-adic absolute values of the coordinates of

the given point.

Schanuel proved in 1979 in Heights in Number Fields that the number

of rational points in the n-dimensional projective space over a number �eld

K of height B is given by cBn�1 � O
�
Bn�1�1{d

�
where d is the degree of

K over the �eld of rational numbers Q, and c is a constant depending on K

and n, expressed in terms of classical invariants of K. This result is known

as Schanuel's Theorem. His basic idea was to study points with integral

coordinates in an a�ne pn� 1q-space, divide by the action of the units, and

then divide by the action of the principal integral ideals [13].

In 2007 Masser and Vaaler provided in their paper Counting Algebraic

Numbers with Large Height a proof of Schanuel's Theorem, which is a sim-

pli�cation of the original exposition of Schanuel [10]. We use this paper

as a basis to proof Schanuel's Theorem in the third chapter. Similarly to

Schanuel we examine points with integral coordinates, and then use a fun-

damental domain of a lattice for the action of units.

It raises the question: How does the number of points with height at

most B asymptotically behave, when considering points being rational over

products of projective spaces over the �eld of the rational numbers, or more

generally over an arbitrary number �eld? For more general varieties (Fano

varieties) Manin's conjecture predicts an answer, which was proved for toric

varieties by Batyrev and Tschinkel [4]. We answer the above question by

extending the concepts and outcomes of Masser and Vaaler [10] to products

of projective spaces over number �elds. Our main result is Theorem 4.3 in

chapter four where we prove that the number of rational points over products

of m projective spaces over a number �eld K with height bounded by B is

given by cBd logm�1B � O
�
Bd logm�2B

�
where d is the degree of K over

1



NOTATION 2

Q, and c is a constant depending on K and the dimensions of the projective

spaces. During the writing process of this thesis, the author did not know

any source in which the proof of this result can be found in. 1

We now give a description of the content of the chapters of this thesis.

In the �rst chapter we give a brief introduction to the fundamentals we

need during this thesis. We start with giving the necessary basics about

lattices, followed by a short overview of the theory of algebraic integers and

valuation theory. Further, we give an introduction into the big O notation

and prove some asymptotic equalities of functions, for example by using

Abel's and Euler's summation formula.

Before considering arbitrary number �elds, we deal with rational points

over the n-dimensional projective space over the �eld of rational numbers,

and prove Schanuel's Theorem for this special case in the second chapter.

The basic idea is to consider pn� 1q-tuples with coprime integer coordinates

divided by the action of units. By using Möbius inversion we obtain the

desired result. Further, we prove an asymptotic formula for the number of

rational points with bounded height over products of projective spaces over

Q. Therefore, we start with products of two projective spaces and prove the

formula for arbitrary products by induction on the number of factors. The

elementary concepts are the same as in the case with just one projective

space.

In the third chapter we prove Schanuel's Theorem for arbitrary number

�elds, based on [10]. As already mentioned we use a fundamental domain of

a lattice for the action of units. Therefore, we give an estimate on counting

lattice points lying in a set, which satis�es certain conditions. Afterwards,

we introduce the sets to which this estimate is applied and pass to the proof

of the theorem.

Lastly, we extend the result for counting the number of points with

bounded height being rational over products of projective spaces over Q,
given in the second chapter, to arbitrary number �elds K. This is done in

the fourth chapter. For the proof we combine the techniques of the second

chapter with the results of the third chapter for counting rational points over

projective spaces over K.

Notation

We write N for the set of natural numbers, and N0 for N including 0. The

ring of integers is denoted by Z. For the �eld of rational, real and complex

1After completing this thesis, the author was pointed to the existence of the paper

Rational Points of Bounded Height on Fano Varieties by Franke, Manin and Tschinkel.

They have already dealt with the same question in 1989 and used a similar approach to

prove this result.



NOTATION 3

numbers we write Q, R and C, respectively. We denote its positive numbers

by Q¡0, R¡0 and C¡0, respectively. Bold letters always denote vectors. The

coordinates of a vector are denoted by the corresponding letter with a su�x

from 1 to the dimension of the vector. If the bold letter denoting the vector

already has a su�x, then the coordinate su�x is put behind that one, e.g.

x � px0, x1, . . . , xnq,
x1 � px1,0, x1,1, . . . , x1,nq.

The length of a vector is given by the Euclidean norm | � |, e.g.
|x| �

b
x2

0 � x2
1 � . . .� x2

n

for real x and

|x| �
a
|x0|2 � |x1|2 � . . .� |xn|2

for complex x. If K is a �eld or R (rings are assumed commutative and

without divisors of 0)is a ring, K� and R�, respectively, denotes its multi-

plicative group. For an element a in a ring R we write paq for the principal
ideal aR generated in R. We denote the algebraic closure of a �eld K by K̄.

For x P Rn and a P R we set

ax � pax0, ax1, . . . , axnq.
The symbol # is used for the cardinality of a set. For a real number x

we write txu for the greatest integer less than or equal to x. For a m � n

matrix A with entries aij we use the notation A � paijqi�1,...,m,j�1,...,n, which

sometimes is abbreviated to pai,jqi,j .



CHAPTER 1

Basics

1.1. Lattices

This section gives a short overview about lattices and the main results

we will need for later proofs. Primarily, it is based on [11, chap. 1, �4].

De�nition 1.1. Let v1, . . . ,vn be linearly independent vectors of Rm�1. A

lattice Λ of rank n in Rm is a subgroup of the shape

Λ � Zv1 � . . .� Zvn.

We refer to v1, . . . ,vn as a basis of the lattice. The set

Φ � tx1v1 � . . .� xnvn | xi P R, 0 ¤ xi   1u
is called fundamental domain of the lattice. We say the lattice Λ has full

rank if n � m.

Remark 1.2. Let Λ be a lattice with basis v1, . . . ,vn. If we de�ne M as

the m� n matrix with columns v1, . . . ,vn, we see that

Λ � tMx | x P Znu .
Example 1.3. It is Λ � Zn a full rank lattice in Rn and the standard vectors
in Rn form a basis of Λ with fundamental domain r0, 1qn.

Another example of a full rank lattice are the Gaussian integers Zris in
R2. We can take for example v1 � 1 and v2 � i as well as v1 � 1 and

v2 � 1� i as a basis, and we see that the shape of the fundamental domain

depends on the choice of the basis.

Obviously, every lattice contains the origin. We are interested in the

length λ1 of the shortest nonzero vector of a lattice. Or more generally, we

are interested in the length λj of the shortest lattice vector being linearly in-

dependent to j�1 arbitrary linearly independent lattice vectors v1, . . . ,vj�1.

These lengths are known as the successive minima of a lattice. We can also

de�ne these minima independently of a choice of vectors v1, . . . ,vj�1.

De�nition 1.4. Let Λ be a lattice of rank n. For 1 ¤ j ¤ n we de�ne the

j-th successive minimum as

λj � λjpΛq � inf tr | dimpspanpΛX rBmqq ¥ ju
where Bm � tx P Rm | |x| ¤ 1u, and span denotes the linear span.

4



1.1. LATTICES 5

According to [5, p. 204] we have

Lemma 1.5. Let Λ � Rm be a lattice of rank n. Then, there exist n linearly

independent points a1, . . . ,an P Λ with

|aj | � λj p1 ¤ j ¤ nq.
Proof. By de�nition of the successive minima, there are n linearly in-

dependent points of Λ in

tx P Rm | |x|   λn � 1u.
Clearly, this set is bounded. Hence, it contains only a �nite number of

lattice points and it su�ces to consider only these points in the de�nition of

the successive minima. Therefore, the in�mum has to be achieved, i.e. for

every j there exists a point aj P Λ with |aj | � λj , and by de�nition of the

successive minima, these points are linearly independent. �

Lemma 1.6. Let a1, . . . ,an be n linearly independent points of a lattice Λ

of rank n. Then, there exists a basis v1, . . . ,vn of Λ for which

|vj | ¤ max

"
|aj |, 1

2
p|a1| � . . .� |aj |q

*
.

If |a1| ¤ . . . ¤ |an|, we have

|vj | ¤ max
!

1,
n

2

)
|aj |.

Proof. [5, p. 135 Lemma 8]. �

Corollary 1.7. Let Λ be a lattice of rank n. Then, there exists a basis

v1, . . . ,vn of Λ such that

|vj | ¤ cλj

for a constant c depending only on n.

Proof. Lemma 1.5 implies that the successive minima are achieved, i.e

there exist n linearly independent points a1, . . . ,an of Λ such that |aj | � λj

for each 1 ¤ j ¤ n. Obviously, it is |a1| ¤ . . . ¤ |an|. Thus, Lemma 1.6

yields a basis v1, . . . ,vn of Λ satisfying

|vj | ¤ max
!

1,
n

2

)
|aj |.

The corollary follows. �

According to [11, chap. 1, �4] we introduce the concept of volumes and

determinants of lattices. Let x�, �y : Rm�Rm Ñ R denote the scalar product

on Rm.
In Example 1.3 we have already seen that the shape of a fundamental

domain of a lattice Λ depends on the choice of the basis vectors. However,
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in the following we will see that the volume of a fundamental domain is

independent of a choice of a basis of Λ.

Let e1, . . . , en be an orthonormal basis of V . The cube#
ņ

i�1

xiei

����� 0 ¤ xi ¤ 1

+

has a volume of 1. Let v1, . . . ,vn be a basis of a lattice Λ in V . With a

change of basis we receive a matrix A � paijqi,j�1,...,n in Rn�n such that

vj �
ņ

i�1

aijei.

Hence, the volume of the fundamental domain

Φ �
#

ņ

i�1

xivi

����� 0 ¤ xi   1

+

is

volpΦq � |detA|.
Since

pxvi,vjyqi,j � Atpxei, ejyqi,jA � AtA,

we obtain

volpΦq �
c

det
�
pxvi,vjyqi,j

	
.

De�nition 1.8. Let Λ be a full rank lattice with basis v1, . . . ,vn. The

determinant of Λ, denoted det Λ, is de�ned as the volume of the fundamental

domain of Λ:

det Λ �
c

det
�
pxvi,vjyqi,j

	
.

Instead of the determinant we can also speak of the volume of Λ.

Remark 1.9. The determinant det Λ is independent of a choice of a basis of

Λ. Let v1, . . . ,vn and w1, . . . ,wn be two bases of Λ. We obtain a change of

basis matrixB in the general linear group of degree n over Z (i.eB P GLnpZq)
such that

pxwi,wjyqi,j � Bt pxvi,vjyqi,j B.
Hence,

det pxwi,wjyqi,j � detB2 det pxvi,vjyqi,j � det pxvi,vjyqi,j .
Therefore, the volumes of the fundamental domains de�ned by these two

bases are equal.

Example 1.10. In the case Λ � Zn we have det Λ � 1.
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Now, we can formulate Minkowski's Second Theorem on successive min-

ima, which will be applied in later results. We omit the proof.

Theorem 1.11 (Minkowski's Second Theorem). Let Λ be a full rank lattice

of dimension n. Then,

n¹
i�1

λi ¤ 2n det Λ

vol pBnq
where

vol pBnq � πn{2

Γ
�
n
2 � 1

� .
Proof. [7] and [1, Example 6.6c]. �

1.2. Number �elds

In this section we give a brief introduction to the theory of number �elds

and its main properties we will need in this thesis. This section is based on

chapters 1 and 2 in [11] as well as chapter 2 in [8], and for further reading

we refer to those ones.

1.2.1. Algebraic Integers. Let K be a �nite �eld extension of the

rational numbers Q, i.e. the dimension d of the �eld K as a vector space

over Q is �nite. Then, we call K a number �eld of degree d. We denote its

ring of integers, i.e. the set of elements of K being a root of a normalized

polynomial with coe�cients over the integers Z, with OK . The ring OK is

a Dedekind domain. Further, K equals QuotpOKq, the �eld of fractions of

OK . Any number �eld K has an integral basis w1, . . . , wd, that is a basis of

OK as a Z-module. Let dK be the discriminant of K, i.e.

dK � dpw1, . . . , wdq � det ppσipwjqqi,j�1,...,dq2

where w1, . . . , wd is an integral basis of K and

tσ1, . . . , σdu �HomQpK,Cq
�tσ : K Ñ C | σ �eld homomorphism, σpxq � x @x P Qu.

Note, that dK is independent of the choice of the integral basis w1, . . . , wd.

More generally, let L be a number �eld and let K be a �nite, separable �eld

extension of L. For a P K we de�ne the �eld norm NK{Lpaq of a as the

determinant of the L-linearly map ma : K Ñ K, x ÞÑ ax. It is NK{Lpaq P L
for every a P K. Another characterization of the norm in this situation is

NK{Lpaq �
¹
σ

σpaq

where the product is taken over all σ P HomKpL, K̄q. Further, for a P OK

we have NK{Lpaq P OL, e.g. NK{Qpaq P Z for a P Z(cf. [11, chap. 1, �2,3]).
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We write rK for the number of real embeddings, and sK for the number

of complex conjugate embeddings. Then, d � rK � 2sK . We set di � 1 for

1 ¤ i ¤ rK (if rK ¥ 1) and di � 2 for rK � 1 ¤ i ¤ rK � sK (if sK ¥ 1).

Proposition 1.12. Let O be a Dedekind domain. Then, every nonzero ideal

a � O factors into a product of prime ideals. This product is unique up to

the order of the factors [11, chap. 1, Thm. 3.3].

Hence, every nonzero ideal a � OK has the unique (up to the order of

the factors) factorization

a � pe11 � � � perr
where p1, . . . , pr are pairwise distinct nonzero prime ideals in OK , r ¥ 1, and

ei P N, for each 1 ¤ i ¤ r.

We call a nonzero, �nite generated OK-submodule of K a fractional

ideal. The fractional ideals in K generate an abelian group with respect to

the product

a � b �
# ¸

finite

aibi | ai P a, bi P b

+
,

with unit OK and inverse

a�1 � tx P K | xa P OKu .

We denote this group by JK . One can show that every fractional ideal a

in OK factors unique up to the order of the factors into a � pe11 � � � perr for

pairwise distinct nonzero prime ideals p1, . . . , pr, r ¥ 0, and ei P Z for each

1 ¤ i ¤ r. Thereby, r � 0 means a � OK . Let PK denote the subgroup of

the fractional principal ideals of JK . Then, the quotient group CK � JK{PK
is called ideal class group of K. The order hK of this group, which is �nite,

is called class number of K. The size hK is a measure for the deviation of

the ring OK from being a principal ideal domain. The ring OK is a principal

ideal domain if and only if hK � 1 (cf. [11, chap. 1, �3, 6]).

The absolute norm of a nonzero ideal a in OK is de�ned by

Npaq � pOK : aq � # OK{a.

By convention, the absolute norm of the zero ideal is taken to be 0. For

0 � α P OK we have Nppαqq � |NK{Qpαq|. The absolute norm is multiplica-

tive and takes values in N. We can extend the absolute norm to fractional

ideals a P JK . Let a � pe11 � � � perr be the factorization of a into pairwise

distinct prime ideals. We set Npaq � Npp1qe1 � � �Npprqer and get a group

homomorphism N : JK Ñ Q¡0 (cf. [11, chap. 1, �6]).
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By O�
K we denote the multiplicative group of units of OK . We introduce

the standard logarithmic map l from K� to RrK�sK taking η to

lpηq � pd1 log |σ1pηq|, . . . , drK�sK log |σrK�sK pηq|q .(1.1)

For every η P O�
K it is

rK�sK¸
i�1

di log |σipηq| � log

�����
rK�sK¹
i�1

σipηqdi
����� � log

��NK{Qpηq
�� � 0.

Proposition 7.3 in [11, chap. 1] yields that lpO�
Kq is a full rank lattice in the

hyperplane Σ � tx P RrK�sK | x1 � . . .� xrK�sK � 0u � RrK�sK�1. Let

µpKq � tξ P K | Dn P N : ξn � 1u

be the group of roots of unity in K. We write ωK for the cardinality of µpKq.
It is µpKq the kernel of the map l : O�

K Ñ RrK�sK [11, chap. 1, Prop. 7.1].

Proposition 1.13 (Dirichlet). Let K be a number �eld. Then, the unit

group O�
K is a �nite generated abelian group, more precisely

O�
K � µpKq �

!
εa11 ε

a2
2 � � � εarK�sK�1

rK�sK�1

��� ai P Z
)

where the units ε1, . . . , εrK�sK�1 are called a system of fundamental units

[11, chap. 1, Thm. 7.4].

We note that
!
εa11 � � � εarK�sK�1

rK�sK�1

��� ai P Z
)
� ZrK�sK�1. Thus, O�

K has

rank rK � sK � 1. Let Φ be a fundamental domain of the lattice lpO�
Kq.

Then, [11, chap. 1, Thm. 7.5] implies

vol
�
l
�
O�
K

�� � volpΦq � ?
rK � sKRK(1.2)

where RK is the absolute value of the determinant of an arbitrary minor of

rank rK � sK � 1 of the matrix�
���

log |σ1pε1q|d1 . . . log |σ1pεrK�sK�1q|drK�sK�1

...
...

log |σrK�sK pε1q|d1 . . . log |σrK�sK pεrK�sK�1q|drK�sK�1

�
��.

This absolute value of the determinant RK is called regulator of K.

1.2.2. Valuation Theory. Let K be a �eld. An absolute value on K

is a real valued function | � |v : K Ñ R satisfying

(i) |x|v ¥ 0 for all x P K, and |x|v � 0 if and only if x � 0,

(ii) |xy|v � |x|v|y|v for all x, y P K,

(iii) |x� y|v ¤ |x|v � |y|v for all x, y P K.
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If and only if the absolute value satis�es |x � y|v ¤ max t|x|v, |y|vu, it is

called nonarchimedean. Otherwise we say the absolute value is archimedean.

The absolute value with |x|v � 1 for all x P Kzt0u is called trivial. By

convention, from now on we only consider nontrivial absolute values.

Every absolute value on K de�nes a distance function px, yq ÞÑ |x� y|v.
Thus, K becomes a topological space. We call two absolute values | � |1,
| � |2 equivalent if they de�ne the same topology. This is equivalent to the

existence of a λ ¡ 0 with | � |1 � | � |λ2 .
If | � | is a nonarchimedean absolute value on K, we can de�ne a valuation

v : K Ñ RY t8u on K by

vpxq �
$&
%� log |x|, if x � 0,

8, if x � 0
.

This valuation satis�es the following three properties:

(i) vpxq � 8 if and only if x � 0,

(ii) vpxyq � vpxq � vpyq for all x, y P K,

(iii) vpx� yq ¥ mintvpxq, vpyqu for all x, y P K.

We call two valuations v1, v2 equivalent if there exists an s P R¡0 such

that v1pxq � sv2pxq for all x P K. Conversely, a function v satisfying the

above properties (i)-(iii) de�nes a nonarchimedean absolute value on K by

|x| � q�vpxq where q P R¡1 is �xed (cf. [11, chap. 2, �3]).

Absolute values or valuations up to equivalence are called a place of K.

Let ΩK denote the set of places ofK. If an absolute value |�|v is archimedean,

we say the place v is in�nite. Otherwise we call v �nite. We use the notation

v � 8 for the in�nite places, and v � 8 for the �nite places.

Let | � |v be an absolute value on K. We say K is complete with respect

to | � |v if every Cauchy sequence converges. Now, let K be an arbitrary

�eld with absolute value | � |v. Then, we can complete K to Kv � R{m
where R is the ring of Cauchy sequences in K under | � |v, and m is the set

of null sequences, which is the only maximal ideal in R. Furthermore, we

can extend the absolute value on K uniquely to an absolute value on Kv,

which we denote by | � |v, too. This completion is unique up to isomorphism

(cf. [11, chap. 2, �4]).

Proposition 1.14 (Ostrowski). Let K be a complete �eld under an archi-

medean absolute value | � |v. Then, there is an isomorphism σv : K Ñ R or

σv : K Ñ C such that there exists a number s P r0, 1s with |σvpxq|s8 � |x|v
for every x P K where | � |8 � | � | denotes the Euclidean norm [11, chap. 2,

Prop. 4.2].
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Proposition 1.15. Let L be a complete �eld under a nonarchimedean abso-

lute value | � |v. Then, we can �nd a unique extension | � |w of | � |v on every

�nite �eld extension K of L. Further, if the �eld extension K � L is �nite

of degree n � rK : Ls, it is

|α|w � |NK{Lpαq|1{nv for all α P K,

and K is complete under the extension | � |w [11, chap. 2, Thm. 4.8].

The latter proposition shows that we can extend the valuation v on L to

the valuation w on K by wpαq � 1
nv

�
NK{Lpαq

�
if rK : Ls � n   8.

In this thesis, we deal with the case that K is a number �eld. How can

we de�ne an absolute value or a valuation on K? Firstly, let K � Q. On Q
we have the Euclidean norm | � |8 � | � |, which is an archimedean absolute

value. And for every prime number p we can de�ne the p-adic absolute value

| � |p and the p-adic valuation vp by

|pmb{c|p � p�m, vp ppmb{cq � m

where m is an integer and b, c are nonzero integers, which are not divisible

by p. We have ΩQ � tp primeu Y t8u. Let p be prime and let Qp be the

completion of Q under vp. We have the embedding

ι : QÑ Qp

a ÞÑ pa, a, a, . . .q.

Then, for x P Qp we get by setting vppxq � limiÑ8 vppxiq where pxiqiPN is a

Cauchy sequence representing x the unique extension of vp on Qp. Further,

|x|p � p�vppxq for every x P Qp (cf. [11, chap. 2, �2]).

Now, let L be a number �eld and let K be a �nite �eld extension of L

(e.g. L � Q and K an arbitrary number �eld). For every valuation v P ΩL

we can �nd an extension w on K. However, this extension is not necessarily

unique. If w is an extension of v, we write w � v. For v P ΩK we set

dv � rKv : Lvs and say dv is the local degree. Let σw denote the embedding

of K into Kw. We have (cf. [11, chap. 2, Cor. 8.4])

Proposition 1.16. (i) rK : Ls � °
w�v

dv,

(ii) NK{Lpαq �
±
w�v

NKw{Lvpσwpαqq for all α P K.

Let v P ΩK be an in�nite place. Then, due to Proposition 1.14, Kv is

isomorphic to R or C. Thus, we can choose an identi�cation of Kv with R
or C. Hence, we can choose

|σvpxq|v � |x|8 � |x|
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for all x P K. As there are rK real embeddings and sK pairs of complex

conjugate embeddings, there are rK�sK in�nite places ofK. For every �nite

place v we can �nd a prime number p such that v � p. Then, Proposition 1.15
yields a unique extension of the standard p-adic absolute value | � |p on Qp

to | � |v on Kv, as Qp is complete. More precisely, for x P Kv we have

|x|v �
��NKv{Qppxq

��1{dv
p

.

Let x P K. Then,

|x|v � |σvpxq|v �
��NKv{Qppσvpxqq

��1{dv
p

.

In particular,

|p|v �
��NKv{Qpppq

��1{dv
p

� |pdv |1{dvp � p�1.

Let p be a nonzero prime ideal in OK . Due to Proposition 1.12 (and the

following remarks) every fractional ideal xOK has a unique factorization into

prime ideals. Let vppxq denote the exponent of p in the prime factorization

of xOK . We set vpp0q � 8. Then,

‖x‖p � Nppq�vppxq

is a unique nonarchimedean absolute value on K. We call ‖�‖p the p-adic

absolute value. In this way, we obtain every nonarchimedean value on K

(cf. [9, chap. 20.4]). For all x P K� we deduce (cf. [8, p.34-35])

|x|dpp � ‖x‖p � Nppq�vppxq.
In particular, |x|p ¤ 1 for all x P OK , as vppxq ¥ 0.

Proposition 1.17 (Product formula). Every x P K� satis�es¹
vPΩK

|σvpxq|dvv � 1.

Proof. Firstly, consider K � Q. Then, dv � 1 for all v P ΩK . By

considering the prime factorization of x we get

x � �
¹
p�8

pvppxq � x

|x|8
¹
p�8

1

|x|p �
x±

pPΩK

|x|p

and the product formula follows.

Let K be an arbitrary number �eld. For all x P K it is NK{Qpxq P Q.
Hence, we deduce

1 �
¹
vPΩQ

��NK{Qpxq
��
v
�

¹
vPΩQ

¹
w�v

��NKw{Qvpσwpxqq
��
v
�

¹
wPΩK

|σwpxq|dww

where we used the already proved result over Q in the �rst equation, Propo-

sition 1.16 in the second one, and the de�nition of the absolute value | � |w
in the last one. (This proof is based on [8, p.99].) �
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1.3. Asymptotic Equality of Functions

1.3.1. Big O Notation. We will study the number of points in a set

with height less than a certain bound B. As we are mainly interested in the

behaviour of the number of these points for B Ñ8, we introduce the big O

notation and asymptotic equality of functions, according to [2, chap. 3].

De�nition 1.18. Let gpxq be a real valued function with gpxq ¡ 0 for every

x ¥ a with �xed a P R. We write

fpxq � Opgpxqq
for a real valued function fpxq if there exists a constant M ¡ 0 such that

|fpxq| ¤Mgpxq for every x ¥ a,

or equivalently formulated if and only if the quotient fpxq{gpxq is bounded.
We say fpxq is big O of gpxq.

The notation fpxq � hpxq �Opgpxqq means that fpxq � hpxq � Opgpxqq.
And for positive functions hpxq and gpxq we mean by Ophpxqq � Opgpxqq
that there exists a constant M ¡ 0 such that hpxq ¤ Mgpxq. Note, that in
general Ophpxqq � Opgpxqq is not equivalent to Opgpxqq � Ophpxqq.

Remark 1.19. For positive functions gpxq and hpxq we have
OpgpxqqOphpxqq � Opgpxqhpxqq and gpxqOphpxqq � Opgpxqhpxqq,

as well as

Opgpxqq �Ophpxqq � O pmax tgpxq, hpxquq .

De�nition 1.20. We write

fpxq � gpxq as xÑ8
and say fpxq is asymptotic to gpxq as xÑ8 if

lim
xÑ8

fpxq
gpxq � 1.

Let us take a look at an example. Later on we will show that

(1.3)
¸
k¤x

1

k
� logpxq �Op1q

where log denotes the natural logarithm. Thus,¸
k¤x

1

k
� log x as xÑ8.

We call log x the asymptotic value of the sum and Op1q represents the error
term being made by this approximation.

In the following we give some asymptotic formulas, which will be needed

for later proofs.
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Lemma 1.21. For every x ¥ 1, m P N and r P Q¡0, it is

logm x � O pxrq .
Proof. We show that there exists a constant M ¡ 0 such that every

x ¥ 1 satis�es |logm x| ¤Mxr. Consider the function

f : r1,8q Ñ R, t ÞÑ logm t

tr
.

This function is continuous. Further, fp1q � 0, and l'Hospital's rule implies

lim
tÑ8

fptq � lim
tÑ8

logm t

tr
� lim

tÑ8

m logm�1 t

rtr
� . . . � lim

tÑ8

m!

rmtr
� 0.

Thus, f is bounded and we �nd a constant M ¡ 0 such that |fptq|  M for

every t ¥ 1. It follows logm x � O pxrq. �

1.3.2. Summation Formulas. To prove the asymptotic behaviour of

sums like (1.3) or sums of the form
°
k¤x k

s and
°
k¡x k

s for x, s in R, it is
useful to compare the sums with integrals.

Proposition 1.22 (Abel's summation formula). Let pakqkPN be a sequence

of real or complex numbers. De�ne for all real numbers t

Aptq �
¸
k¤t

ak.

Let y   x be real numbers with x ¥ 1, and let ϕ be a continuously di�eren-

tiable function on ry, xs. Then¸
y k¤x

akϕpkq � Apxqϕpxq �Apyqϕpyq �
» x
y
Aptqϕ1ptqdt.

Proof. By using a telescoping series we get

¸
k¤x

akϕpkq � Apxqϕptxuq �
txu�1¸
k�1

Apkqpϕpk � 1q � ϕpkqq

where the second sum is to be understood as 0 if txu�1   1. For t P rk, k�1q
it is Apkq � Aptq. Hence,

txu�1¸
k�1

Apkqpϕpk � 1q � ϕpkqq �
txu�1¸
k�1

Apkq
» k�1

k
ϕ1ptqdt

�
txu�1¸
k�1

» k�1

k
Aptqϕ1ptqdt

�
» txu

1
Aptqϕ1ptqdt.

Moreover,» x
txu
Aptqϕ1dt � Apxq

» x
txu
ϕ1ptqdt � Apxq pϕpxq � ϕptxuqq .
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Therefore,¸
k¤x

akϕpkq �Apxqϕptxuq �
» x

1
Aptqϕ1ptqdt�Apxq pϕpxq � ϕptxuqq

�Apxqϕpxq �
» x

1
Aptqϕ1ptqdt.

We deduce ¸
y k¤x

akϕpkq �
¸
k¤x

akϕpkq �
¸
k¤y

akϕpkq

�Apxqϕpxq �Apyqϕpyq �
» x
y
Aptqϕ1ptqdt.

�

As a special case of this summation formula we obtain (cf. [2, Thm. 3.1]):

Proposition 1.23 (Euler's summation formula). If f is continuously di�er-

entiable on the interval ry, xs where 0   y   x, x ¥ 1, we have¸
y k¤x

fpkq �
» x
y
fptqdt�

» x
y
pt� ttuqf 1ptqdt� fpxqpx� txuq � fpyqpy � tyuq.

In particular, if 0   y   1, it is¸
k¤x

fpkq �
» x

1
fptqdt�

» x
1
pt� ttuqf 1ptqdt� fpxqpx� txuq � fp1q.

Proof. Let ak � 1 for each k P N in Proposition 1.22. Then, Aptq � ttu

for all t ¡ 0. Thus, we deduce with Proposition 1.22¸
y k¤x

fpkq � txufpxq � tyufpyq �
» x
y

ttuf 1ptqdt.(1.4)

By partial integration we obtain» x
y
fptqdt � xfpxq � yfpyq �

» x
y
tf 1ptqdt,

which is equivalent to» x
y
fptqdt�

» x
y
tf 1ptqdt� xfpxq � yfpyq � 0.

By adding the left-hand side to (1.4) we get¸
y k¤x

fpkq �
» x
y
fptqdt�

» x
y
tf 1ptqdt�

» x
y

ttuf 1ptqdt� txufpxq � xfpxq

� tyufpyq � yfpyq

�
» x
y
fptqdt�

» x
y
pt� ttuqf 1ptqdt� px� txuqfpxq

� py � tyuqfpyq.
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Now, choose 0   y   1. Partial integration implies» 1

y
fptqdt�

» 1

y
pt� ttuqf 1ptqdt� fpyqpy � tyuq

�
» 1

y
fptqdt�

» 1

y
tf 1ptqdt� yfpyq

�
» 1

y
fptqdt� fp1q � yfpyq �

» 1

y
fptqdt� yfpyq

�fp1q
and the assertion follows. �

1.3.3. Elementary Asymptotic Formulas. The following elemen-

tary asymptotic formulas are easy consequences of Euler's and Abel's sum-

mation formula.

Proposition 1.24. If x ¥ 1, we have

p1q °
k¤x

1
k � log x�Op1q,

p2q °
k¤x

1
ks �

$'&
'%
x1�s

1�s � ζpsq �O px�sq , if s ¡ 1°
k¤x

1
ks � x1�s

1�s �Op1q, if 0   s   1
,

p3q °
k¡x

1
ks � O

�
x1�s

�
if s ¡ 1,

p4q °
k¤x

kα � xα�1

α�1 �O pxαq if α ¥ 0.

Proof. This proof is based on [2, Thm. 3.2]. For part p1q we use Euler's
summation formula with fptq � 1{t and 0   y   1 to get¸

k¤x

1

k
�
» x

1

dt

t
�
» x

1
pt� ttuq

�
d

dt

1

t



dt� x� txu

x
� 1

� log x�O

�» x
1

�
d

dt

1

t



dt



� 1�O

�
1

x




� log x�O

�
1

x
� 1



�Op1q

� log x�O p1q .
To prove part (2) we use Euler's summation formula with fptq � t�s

where s ¡ 0, s � 1 and 0   y   1. We obtain¸
k¤x

1

ks
�
» x

1

dt

ts
� s

» x
1

t� ttu

ts�1
dt� x� txu

xs
� 1

� x1�s

1� s
� 1

1� s
� s

» x
1

t� ttu

ts�1
dt�O

�
x�s

�� 1.
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Hence,

¸
k¤x

1

ks
� x1�s

1� s
� Cpsq �O

�
x�s

�
(1.5)

where

Cpsq � 1� 1

1� s
� s

» x
1

t� ttu

ts�1
dt.

If s ¡ 1, the left-hand side of (1.5) converges to ζQpsq as xÑ 8, as well as

x1�s and x�s both tend to 0. Therefore, Cpsq � ζQpsq if s ¡ 1. If 0   s   1,

we deduce

O

�
s

» x
1

t� ttu

ts�1
dt



� O

�
s

» x
1

dt

ts�1



� O

�
1� 1

xs



� O p1q

and therefore, Cpsq � Op1q. Since x1�s ¥ 1 for every x ¥ 1, and x�s ¤ 1 if

0   s   1, we deduce from (1.5)

¸
k¤x

1

ks
� x1�s

1� s
�Op1q.

We prove (3) by using (2) with s ¡ 1:

¸
k¡x

1

ks
�

8̧

k�1

1

ks
�

¸
k¤x

1

ks
� ζQpsq �

�
x1�s

1� s
� ζQpsq �O

�
x�s

�


� x1�s

s� 1
�O

�
x�s

� � O
�
x1�s

�
,

since x�s ¤ x1�s for all s ¡ 1 and x ¥ 1.

For the last part (4) we use Euler's summation formula one more time,

with fptq � tα and 0   y   1. We obtain

¸
k¤x

kα �
» x

1
tαdt�

» x
1
pt� ttuq

�
d

dt
tα



dt� px� txuqxα � 1

� xα�1

α� 1
� 1

α� 1
�O

�» x
1

�
d

dt
tα



dt



�O pxαq � 1

� xα�1

α� 1
�O pxαq .

�

Corollary 1.25. In particular, we have

p1q °
k¤x

1
k � O plog xq if x ¥ e, and

°
k¤x

1
k � O pmax tlog x, 1uq if x ¥ 1,

p2q °
k¤x

1
ks � O

�
x1�s

�
if 0   s   1, and

°
k¤x

1
ks � Op1q if s ¡ 1,

p3q °
k¤x

kα � O
�
xα�1

�
if α ¥ 0.
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Proof. Due to Proposition 1.24 we have
°
k¤x

1
k � log x�Op1q. If x ¥ e,

it is log x ¥ 1 and thus, log x � Op1q � Oplog xq. As log 1 � 0, we have to

increase the error term for x ¥ 1 to Opmaxtlog x, 1uq.
For part p2q we note that Op1q � O

�
x1�s

�
if 0   s   1. If s ¡ 1, we

have O
�
x1�s

� � Op1q. �

Lemma 1.26. Let n ¥ 2 be natural number. Then,

¸
k¤x

log k

kn
� Op1q.

Proof. Firstly, we prove the case n � 2, and subsequently we use this

result to prove the statement for arbitrary n ¥ 2. Euler's summation formula

(Proposition 1.23) with fptq � log t{t2 yields

¸
k¤x

log k

k2
�
» x

1

log t

t2
dt�

» x
1
pt� ttuq

�
d

dt

log t

t2



dt� log x

x2
px� txuq

�
» x

1

log t

t2
dt�O

�» x
1

d

dt

log t

t2
dt



�O

�
log x

x2




�� log t� 1

t

����x
1

�O

�
log x

x2




�1� log x� 1

x
�O

�
log x

x2



.

Lemma 1.21 shows that log x � O pxq for all x ¥ 1. Thus,

log x

x
� 1

x
� O

�
1� 1

x



� O p1q and

log x

x2
� O p1q .

Therefore, we get ¸
k¤x

log k

k2
� Op1q.

Now, let n ¥ 2 be an arbitrary natural number. It is

¸
k¤x

log k

kn
¤

¸
k¤x

log k

k2
.

We obtain ¸
k¤x

log k

kn
� Op1q

by using the result for n � 2. �

Lemma 1.27. For all x ¥ 1 and m ¥ 0 we have

¸
k¤x

logm k

k
� logm�1pxq

m� 1
�Op1q.
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Proof. Euler's summation formula with fptq � logmptq{t yields
¸
k¤x

logm k

k
�
» x

1

logm t

t
dt�

» x
1
pt� ttuq

�
d

dt

logm t

t



dt

� logmpxq
x

px� txuq

�
» x

1

logm t

t
dt�O

�» x
1

�
d

dt

logm t

t



dt



�O

�
logmpxq

x




�
» x

1

logm t

t
dt�O

�
logmpxq

x



.

To compute the integral for m ¥ 1, we use partial integration» x
1

logm t

t
dt � logm�1 t

����x
1

�m

» x
1

logm�1 t

t
log tdt

This equation is equivalent to» x
1

logm t

t
dt � logm�1pxq

m� 1
.

Together with Lemma 1.21 we deduce

¸
k¤x

logm k

k
� logm�1pxq

m� 1
� Opxq

x
� logm�1pxq

m� 1
�Op1q.

The case m � 0 immediately follows by Proposition 1.24 part p1q. �

Lemma 1.28. Let K be a number �eld of degree d over Q. Then, for every

x ¥ 1 we have

¸
a

Npaq¤x

1

Npaqu �

$''&
''%
O
�
x1�u

�
, if u   1,

O pmaxt1, log xuq , if u � 1,

O p1q , if u ¡ 1

and ¸
a

Npaq¡x

1

Npaqu � O
�
x1�u

�
for all u ¡ 1.

Proof. For every C in CK set

NKpx,Cq � #t0 � a � OK ideal | a P C, Npaq ¤ xu,
EKpx,Cq � #t0 � a � OK ideal | a P C, Npaq � xu.

Due to [8, VI, �3 Theorem 3] we have

(1.6) NKpx,Cq � 2rK p2πqsKRK
ωK

a
|dK |

x�O
�
x1�1{d

	
� O pxq .
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By using Abel's summation formula (Proposition 1.22) we obtain¸
a

Npaq¤x

1

Npaqu �
¸
CPCK

¸
aPC

Npaq¤x

1

Npaqu

�
¸
CPCK

x̧

N�1

EKpN,Cq 1

Nu

�
¸
CPCK

�
1

xu

x̧

N�1

EKpN,Cq �
» x

1

�
ţ

N�1

EKpN,Cq
�

�u
t1�u

dt

�

�
¸
CPCK

�
1

xu
NKpx,Cq � u

» x
1
NKpt, Cq 1

t1�u
dt



.

With equation 1.6 the sum above becomes¸
CPCK

�
O
�
x1�u

��O

�» x
1

1

tu
dt




.

If u � 1, it is

O

�» x
1

1

tu
dt



� O

�
x1�u � 1

� �
$&
%Op1q, if u ¡ 1,

O
�
x1�u

�
, if u   1

.

If u � 1, we get

O

�» x
1

1

tu
dt



� O plog x� 1q � O pmax t1, log xuq .

Since
°
CPCK 1 � hK by de�nition of the class number, we immediately

deduce the �rst part of the lemma.

Now, let u ¡ 1. For each natural number n ¡ x it is¸
a

x Npaq¤n

1

Npaqu �
¸
CPCK

¸
aPC

x Npaq¤n

1

Npaqu

�
¸
CPCK

¸
x N¤n

EKpN,Cq 1

Nu
.

Abel's summation formula and equation 1.6 imply¸
a

x Npaq¤n

1

Npaqu �
¸
CPCK

�
NKpn,Cq

nu
� NKpx,Cq

xu
� u

» n
x
NKpt, Cq 1

t1�u
dt




�
¸
CPCK

�
O
�
n1�u

��O
�
x1�u

��O

�» n
x

1

tu
dt





�
¸
CPCK

�
O
�
n1�u

��O
�
x1�u

��
�O �

x1�u
�
.

Again we used
°
CPCK 1 � hK . By considering nÑ8 the lemma follows. �



CHAPTER 2

Rational Points on Products of Projective Spaces

over Q

Firstly, let us introduce the sets we deal with in this thesis.

De�nition 2.1. For a �eld K we set

PnpKq � PnKpKq �
 px0, . . . , xnq P Kn�1zt0u( { �

with equivalence relation

x � y if and only if Dλ P K� such that xi � λyi @ 0 ¤ i ¤ n,

and say PnpKq is the set of rational points on n-dimensional projective space

over K. We denote the equivalence class of the rational point px0, x1, . . . , xnq
by x � px0 : x1 : . . . : xnq.

Remark 2.2. For the multidimensional case we have�
m¹
i�1

Pni
�
pKq �

m¹
i�1

Pni pKq

where m,n1, . . . , nm P N, and K is a �eld.

In the following chapters we will consider the asymptotic behaviour of the

number of rational points with bounded height on n-dimensional projective

space over K, and on products of such projective spaces where K is an

arbitrary number �eld of degree d over Q. To begin with, we look at the

easiest caseK � Q. Of course this case is covered by considering an arbitrary
number �eld K, but the number of rational points on PnpQq can be counted

easily without any further theory, which we do not want to withhold.

2.1. Projective Spaces over Q

Let x be a rational point on PnpQq. That means x � px0 : x1 : . . . : xnq
for a choice of coordinates xi in Q.

De�nition 2.3. The height HQ of x P PnpQq is de�ned by

HQpxq �
¹

vPtprimesuYt8u

maxt|x0|v, . . . , |xn|vu.

21
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The height HQ is independent of a choice of coordinates. If two points

x and y lie in the same equivalence class on PnpQq, there exits an a in Q�

with py0, . . . , ynq � pax0, . . . , axnq. By using the product formula (Proposi-

tion 1.17) and the properties of absolute values, we get

HQpyq �
¹

vPtprimesuYt8u

max t|y0|v, . . . , |yn|vu

�
¹

vPtprimesuYt8u

maxt|ax0|v, . . . , |axn|vu

�
¹

vPtprimesuYt8u

|a|v maxt|x0|v, . . . , |xn|vu

�
¹

vPtprimesuYt8u

|a|v
¹

vPtprimesuYt8u

maxt|x0|v, . . . , |xn|vu

�HQpxq.
By taking some assumptions on the choice of coordinates of x, the def-

inition of the height can be simpli�ed. As λx � x for all nonzero rational

λ, without loss of generality we can assume xi P Z for each 0 ¤ i ¤ n

by multiplying with the least common denominator. Further, by divid-

ing out common factors we can suppose that the greatest common divisor

gcdpx0, . . . , xnq equals 1. Consequently, the coordinates x0, . . . , xn of x are

unique up to sign. And because x0, . . . , xn are coprime integers, we have

|xi|v ¤ 1 for each 1 ¤ i ¤ n and v prime. Furthermore, for every v prime

there exits at least one 0 ¤ i ¤ n with |xi|v � 1. We get¹
vPtprimesu

maxt|x0|v, . . . , |xn|vu �
¹

vPtprimesu

1 � 1.

Hence, we obtain an equal de�nition of the height of x � px0 : . . . : xnq on
PnpQq if the chosen coordinates x0, . . . , xn are coprime integers:

HQpxq � maxt|x0|, . . . , |xn|u.
By convention, we write H instead of HQ for the rest of this chapter.

Lemma 2.4. Every x on PnpQq satis�es Hpxq ¥ 1.

Proof. Let x0, . . . , xn be a choice of coordinates of x. As seen above,

we can always assume that these coordinates are coprime integers. Thus,

at least one of these coordinates has absolute value (i.e. Euclidean norm)

greater than or equal to 1 and the claim follows immediately. �

We count the number of rational points x with Hpxq ¤ B for a real

bound B. And as B tends to in�nity, we get the asymptotic number of

rational points on PnpQq. We de�ne

NQpBq � #tx P PnpQq | Hpxq ¤ Bu.
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With Lemma 2.4 we deduce at once that NQpBq � 0 for all B   1.

Proposition 2.5. For every positive B there are only �nitely many rational

points x on PnpQq with Hpxq ¤ B, and as B ¥ 1 their number is

NQpBq � 2nBn�1

ζQpn� 1q �OpBnLq0

where ζQpnq denotes the Dedekind zeta function on Q, and L0 � 1 unless

n � 1 in which case L0 � maxtlogB, 1u. Thus,

NQpBq � 2nBn�1

ζQpn� 1q as B Ñ8.

Proof. Lemma 2.4 yields that NQpBq � 0, and hence is �nite for all

B   1. So, let B ¥ 1. We have already mentioned that for every x P PnpQq
there exists an pn� 1q-tuple x � px0, . . . , xnq P Zn�1zt0u unique up to sign

with gcdpx0, . . . , xnq � 1 such that x � px0 : . . . : xnq. Thus, we obtain

NQpBq � 1

2
#
 px0, . . . xnq P Zn�1zt0u �� gcdpx0, . . . , xnq � 1,

maxt|x0|, . . . , |xn|u ¤ Bu .
Hence, NQpBq is less than
#
 px0, . . . , xnq P Zn�1zt0u �� |x0| ¤ B, . . . , |xn| ¤ B

( � p2tBu� 1qn�1 � 1

� p2B �Op1qqn�1 � 1

� 2n�1Bn�1 �OpBnq.
It follows that NQpBq is �nite for all B ¥ 1 and �xed n. Here we used that

there are 2tBu � 1 possible choices for every xi with |xi| ¤ B (0 ¤ i ¤ nq,
and tBu � B �Op1q.

To compute NQpBq, we want to simplify the constraint of being relatively

prime. The basic idea is to take all pn� 1q-tuples in Zn�1zt0u with |xi| ¤ B

for each 0 ¤ i ¤ n, and subtract the ones being not coprime, i.e. subtract

the pn� 1q-tuples for which there exists an integer k greater than 1 dividing

xi for each 0 ¤ i ¤ n. This method is called Möbius inversion. We recall

the Möbius function µQ for each positive integer k:

µQpkq �
$&
%p�1qn, if k � p1 � � � pn for pairwise coprime primes p1, . . . , pn,

0, if k has a squared prime factor
.

Using the Möbius function yields

NQpBq � 1

2

tBu̧

k�1

µQpkq#
 px0, . . . , xnq P Zn�1zt0u �� |xi| ¤ B,

k � xi for i � 0, . . . , nu .
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We only have to sum up to tBu, because for k greater than B the number

of the above set is zero, since on the one hand xi has to be greater than B

but on the other hand |xi| is less than or equal to B. Now, k divides each

coordinate of x. So we can �nd an x1 in Zn�1zt0u such that x � kx1. We

obtain

NQpBq � 1

2

tBu̧

k�1

µQpkq#
 
x1 P Zn�1zt0u �� |x1i| ¤ B{k for i � 0, . . . , n

(
.

The number of x10 in Z with absolute value less than or equal to B{k totals

2
X
B
k

\� 1 for each positive integer k less than or equal to B. Since we omit

the origin, we obtain

N1,QpBq �1

2

tBu̧

k�1

µQpkq
��

2

Z
B

k

^
� 1


n�1

� 1

�

�1

2

tBu̧

k�1

µQpkq
��

2
B

k
�Op1q


n�1

� 1

�

�1

2

tBu̧

k�1

µQpkq
�

2n�1Bn�1

kn�1
�O

�
Bn

kn





�2nBn�1
tBu̧

k�1

µQpkq
kn�1

�O pBnq
������
tBu̧

k�1

µQpkq
kn

������
�2nBn�1

tBu̧

k�1

µQpkq
kn�1

�O pBnq
tBu̧

k�1

1

kn
.

Here we used in the third equation that k ¤ B, and thus pB{kqn dominates

pB{kqs for every 0 ¤ s   n, and |µQpkq| ¤ 1 in the last one. To compute the

second sum, we have to separate the two cases n � 1 and n ¥ 2. For n � 1

Corollary 1.25 part (1) yields

tBu̧

k�1

1

k
�

¸
k¤B

1

k
� O plogBq

for every B ¥ e. If we want to allow B ¥ 1, we need to increase the error

term to OpmaxtlogB, 1uq (cf. Corollary 1.25). For n ¥ 2, Corollary 1.25

part (2) implies for all B ¥ 1

tBu̧

k�1

1

kn
�

¸
k¤B

1

kn
� Op1q.

To complete the proof, we write

tBu̧

k�1

µQpkq
kn�1

�
8̧

k�1

µQpkq
kn�1

�
8̧

k�tBu�1

µQpkq
kn�1

.
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By using the Euler product, one can show that

(2.1)
8̧

k�1

µQpkq
ks

� 1

ζQpsq
for every complex number s with real part larger than 1 (here s � n�1 ¡ 1),

see for example [2, Thm. 11.7]. Moreover, Proposition 1.24 part (3) yields

8̧

k�tBu�1

µQpkq
kn�1

� O

�
8̧

k¡B

1

kn�1

�
� O

�
1

Bn



.

Thus,

(2.2)

tBu̧

k�1

µQpkq
kn�1

� 1

ζQpn� 1q �O

�
1

Bn



.

Hence, for every B ¥ 1 we obtain

NQpBq � 2nBn�1

�
1

ζQpn� 1q �O

�
1

Bn




�OpBnL0q

� 2nBn�1

ζQpn� 1q �OpBnL0q

with L0 � 1, unless n � 1 in which case L0 � maxtlogB, 1u. �

Remark 2.6. As we consider the height function H to the power of n � 1

in the following, let us take a look on how the number of points x in PnpQq
with Hn�1pxq ¤ B for B Ñ8 behaves. Set

N1,QpBq � #
 
x P PnpQq �� Hn�1pxq ¤ B

(
.

Since Hn�1pxq ¤ B is equivalent to Hpxq ¤ B1{pn�1q, we get

N1,QpBq � NQ

�
B1{pn�1q

	
and Proposition 2.5 yields

N1,QpBq � 2nB

ζQpn� 1q as B Ñ8.

2.2. Products of Two Projective Spaces over Q

The next aim is to count the number of rational points on the product

of two projective spaces before we pass to rational points on
±m
i�1 PnipQq

where m and n1, . . . , nm are positive integers.

Firstly, we need to de�ne a height on
±m
i�1 PnipQq. Let x � px1, . . . , xmq

be a point in
±m
i�1 PnipQq, i.e. xi lies in PnipQq for each 1 ¤ i ¤ m. With

the same arguments as in section 2.1 we can assume that the coordinates

xi,0, . . . , xi,ni of xi are coprime integers for each 1 ¤ i ¤ m. Then, the choice

of coordinates for a point x is unique up to sign and we can de�ne the height

as follows.
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De�nition 2.7. The height Hm,Q of x � px1 : . . . : xmq in
±m
i�1 PnipQq is

de�ned by

Hm,Qpxq �
m¹
i�1

Hni�1pxiq

�
m¹
i�1

maxt|xi,0|, . . . , |xi,ni |uni�1

for a choice of coprime integer coordinates xi,0, . . . , xi,ni for each 1 ¤ i ¤ m.

Since the choice of coordinates of x is unique up to sign, it is easy to see

that the height Hm,Q is wellde�ned. Analogously to Lemma 2.4 we obtain

Lemma 2.8. Every x in
±m
i�1 PnipQq satis�es

Hm,Qpxq ¥ 1.

For each 0 ¤ i ¤ m and every choice of coprime integer coordinates

xi,0, . . . , xi,ni of xi in PnipQq let xi � pxi,0, . . . , xi,niq denote the correspond-
ing vector in Zni�1zt0u. Further, by j � xi we mean that j divides each

coordinate of xi. For every positive B we set

Nm,QpBq � #

#
x P

m¹
i�1

PnipQq
����� Hm,Qpxq ¤ B

+
.

Firstly, we are interested in its asymptotic behaviour for m � 2 as B Ñ 8.

Instead of n1 and n2 we will write a and b to provide a better overview.

Lemma 2.8 shows that Nm,QpBq � 0 for all B   1. Hence, let B ¥ 1.

In the �rst place we notice that, thanks to Lemma 2.8, it is

Nm,QpBq ¤
�

max
1¤i¤m

#
!

xi P PnipQq
��� Hni�1

Q pxiq ¤ B
)
2

.

Proposition 2.5 implies that Nm,QpBq is �nite.
Let x � py, zq be a rational point on

�
Pa � Pb

� pQq with a choice of co-

prime integer coordinates y0, . . . , ya and z0, . . . , zb, with corresponding vec-

tors y and z in Za�1zt0u and Zb�1zt0u, respectively. For symmetry reasons

the number of rational points on
�
Pa � Pb

� pQq and �
Pb � Pa

� pQq does not
di�er. So, without loss of generality we can assume a ¤ b.

The same type of argument as in the proof of Proposition 2.5 implies

N2,QpBq � 1

22
#

"
y P Za�1zt0u, z P Zb�1zt0u

���� gcdpy0, . . . , yaq � 1,

gcdpz0, . . . , zbq � 1, max
0¤p¤a

t|yp|ua�1 max
0¤q¤b

t|zq|ub�1 ¤ B

*
.
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To count N2,QpBq we use Möbius inversion for both vectors y and z to get

rid of the greatest common divisor condition. We obtain

N2,QpBq � 1

22

tB1{pa�1qu¸
j�1

µQpjq

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq#
"
y P Za�1zt0u,

z P Zb�1zt0u
���� j � y, k � z, max

0¤p¤a
t|yp|ua�1 max

0¤q¤b
t|zq|ub�1 ¤ B

*
.

Since max0¤p¤at|yp|u ¤ B1{pa�1q, due to Lemma 2.8, we only have to sum

up to
X
B1{pa�1q

\
for j. The condition j � y yields max0¤p¤at|yp|u ¥ j, and

thus, we deuce

max
0¤q¤b

t|zq|ub�1 ¤ B{ja�1.

Hence, it su�ces to sum up to
Y�
B{ja�1

�1{pb�1q
]
for k. In addition, the

condition j � y yields that there exists a unique y1 in Za�1zt0u such that

y � jy1. Analogously we �nd a unique z1 in Zb�1zt0u with z � kz1. We get

N2,QpBq � 1

22

tB1{pa�1qu¸
j�1

µQpjq

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq#
"
y1 P Za�1zt0u,

z1 P Zb�1zt0u
���� max

0¤p¤a
t|y1p|ua�1 max

0¤q¤b
t|z1q|ub�1 ¤ B

ja�1kb�1

*
.

As max0¤q¤bt|z1q|ub�1 is at least 1, the term max0¤p¤at|y1p|u can take integer

values between 1 and
�
B{pja�1kb�1q�1{pa�1q

. So we can split the above set

by summing over these integers. We obtain

N2,QpBq � 1

22

tB1{pa�1qu¸
j�1

µQpjq

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq

Z
B1{pa�1q

jkpb�1q{pa�1q

^
¸
N�1

#

"
y1 P Za�1zt0u

���� max
0¤p¤a

t|y1p|u � N

*

�#
"
z1 P Zb�1zt0u

���� max
0¤q¤b

t|z1q|ub�1 ¤ B

ja�1kb�1Na�1

*
.

By using the Binomial Theorem, the cardinality of the �rst set becomes�p2N � 1qa�1 � 1
�� �p2N � 1qa�1 � 1

�
�
a�1̧

i�0

�
a� 1

i



p2Nqa�1�i1i �

a�1̧

i�0

�
a� 1

i



p2Nqa�1�ip�1qi

�2
a�1̧

i�0
2�i

�
a� 1

i



p2Nqa�1�i

�pa� 1q2a�1Na �O
�
Na�2

�
,
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because there are
�p2N � 1qa�1 � 1

�
points in Za�1zt0u whose coordinates

have absolute value less than or equal to N , and there are
�p2N � 1qa�1 � 1

�
points whose coordinates have absolute value less than N . The error term

only occurs if a ¥ 2. The number of the second set totals

�
2

[�
B

ja�1kb�1Na�1


1{b�1
_
� 1

�b�1

� 1

�
�

2

�
B

ja�1kb�1Na�1


1{b�1

�Op1q
�b�1

� 1

� 2b�1B

ja�1kb�1Na�1
�O

�
Bb{pb�1q

jpa�1qb{pb�1qkbN pa�1qb{pb�1q

�
.

Note that by construction we have B{ �ja�1kb�1Na�1
� ¥ 1 and hence,�

B{ �ja�1kb�1Na�1
��r ¥ 1 for every r P Q¡0. We deduce

N2,QpBq � 1

22

tB1{pa�1qu¸
j�1

µQpjq

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq

Z
B1{pa�1q

jkpb�1q{pa�1q

^
¸
N�1�pa� 1q2a�1Na �O

�
Na�2

��
�
�

2b�1B

ja�1kb�1Na�1
�O

�
Bb{pb�1q

jpa�1qb{pb�1qkbN pa�1qb{pb�1q

��

�
tB1{pa�1qu¸

j�1

µQpjq

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq

Z
B1{pa�1q

jkpb�1q{pa�1q

^
¸
N�1�

pa� 1q2a�bB
ja�1kb�1N

�O

�
Bb{pb�1qNa

jpa�1qb{pb�1qkbN pa�1qb{pb�1q

�
(2.3)

�O
�

B

ja�1kb�1N3



�O

�
Bb{pb�1qNa�2

jpa�1qb{pb�1qkbN pa�1qb{pb�1q

��

where O
�
Na�2

�
, and thus the last two error terms only occur if a ¥ 2.

2.2.1. The Main Term. Firstly, consider the leading term in (2.3).

By using Proposition 1.24 and logarithmic identities, we get

pa� 1q2a�bB
tB1{pa�1qu¸

j�1

µQpjq
ja�1

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq
kb�1

�
�

1

a� 1
logB � log j � b� 1

a� 1
log k �Op1q
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�2a�bB logB

tB1{pa�1qu¸
j�1

µQpjq
ja�1

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq
kb�1

� pa� 1q2a�bB
tB1{pa�1qu¸

j�1

µQpjq log j

ja�1

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq
kb�1

� pb� 1q2a�bB
tB1{pa�1qu¸

j�1

µQpjq
ja�1

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq log k

kb�1

�OpBq

���������
tB1{pa�1qu¸

j�1

µQpjq
ja�1

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq
kb�1

���������
.

It is µQpkq � Op1q for each k in N. Hence, Lemma 1.26 and Corollary 1.25

show that the last three summands in the term above are dominated by

OpBq. Equation (2.1) yields

2a�bB logB

tB1{pa�1qu¸
j�1

µQpjq
ja�1

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq
kb�1

�2a�bB logB

�
� 1

ζQpa� 1qζQpb� 1q �
8̧

ja�1kb�1¥tBu�1

µQpjq
ja�1

µQpkq
kb�1

�
.

By using Corollary 1.25 one more time we obtain

O

�
� 8̧

ja�1kb�1¥tBu�1

1

ja�1

1

kb�1

�


�O

�
��tB1{pa�1qu¸

j�1

1

ja�1

8̧

k�tpB{ja�1q1{pb�1qu�1

1

kb�1

�
8̧

j�tB1{pa�1qu�1

1

ja�1

8̧

k�1

1

kb�1

�
�

�O

�
��tB1{pa�1qu¸

j�1

1

ja�1

B�b{pb�1q

j�pa�1qb{pb�1q
�

8̧

j�tB1{pa�1qu�1

1

ja�1

�
�

�O
�
�B�b{pb�1q

tB1{pa�1qu¸
j�1

1

jpa�1q{pb�1q
�B�a{pa�1q

�
.
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Note that

a� 1� pa� 1qb
b� 1

� pa� 1qpb� 1q � pa� 1qb
b� 1

� a� 1

b� 1
.(2.4)

If a   b, Corollary 1.25 implies that the error term above becomes

O
�
B�a{pa�1q

�
, since

� b

b� 1
� 1� pa� 1q{pb� 1q

a� 1
� 1

a� 1
� 1 � �a

a� 1
.(2.5)

If a � b, the error term is dominated by O
�
B�a{pa�1q maxtlogB, 1u� .

Lemma 1.21 yields that logB as well as log2B lie in O
�
Ba{pa�1q

�
. By

combining these results, we obtain for the �rst summand in (2.3)

2a�bB logB

ζQpa� 1qζQpb� 1q �O
�
B logB �B�a{pa�1q maxtlogB, 1u

	
�OpBq

� 2a�bB logB

ζQpa� 1qζQpb� 1q �OpBq.

This holds for every B ¥ 1.

2.2.2. The Error Term. By comparing the �rst and the third error

term in (2.3), we see that the latter one is contained in the �rst one, since

x̧

N�1

1

N pa�1qb{pb�1q�a�2
¤

x̧

N�1

1

N pa�1qb{pb�1q�a

for all x ¥ 1. Thus, it su�ces to consider the �rst and the second error term.

Corollary 1.25 shows that���������
tB1{pa�1qu¸

j�1

µQpjq
ja�1

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

µQpkq
kb�1

Z
B1{pa�1q

jkpb�1q{pa�1q

^
¸
N�1

1

N3

���������
�O

�
��� ¸
j¤B1{pa�1q

1

ja�1

¸
k¤ B1{pb�1q

jpa�1q{pb�1q

1

kb�1

¸
N¤ B1{pa�1q

jkpb�1q{pa�1q

1

N3

�
��� Op1q.

Hence, the second error term in (2.3) simpli�es to OpBq. Now, consider the
�rst error term in (2.3). We have

Z
B1{pa�1q

jkpb�1q{pa�1q

^
¸
N�1

Na

N pa�1qb{pb�1q
�

Z
B1{pa�1q

jkpb�1q{pa�1q

^
¸
N�1

1

N pb�aq{pb�1q
.
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Firstly, consider the case a   b. Then 0   pb � aq{pb � 1q   b{pb � 1q   1.

Hence, Corollary 1.25 part (2) yields
Z

B1{pa�1q

jkpb�1q{pa�1q

^
¸
N�1

1

N pb�aq{pb�1q
� O

�
��

B1{pa�1q

jkpb�1q{pa�1q

�1�pb�aq{pb�1q
�


� O

�
B1{pb�1q

jpa�1q{pb�1qk

�
.

If a � b, we have
Z

B1{pa�1q

jkpb�1q{pa�1q

^
¸
N�1

1

N pb�aq{pb�1q
� B1{pa�1q

jkpb�1q{pa�1q
� O

�
B1{pb�1q

jpa�1q{pb�1qk

�
.

So the results of both cases coincide. According to Corollary 1.25 part (2),

the �rst error term in (2.3) reduces to

O pBq
tB1{pa�1qu¸

j�1

1

ja�1

Z
B1{pb�1q

jpa�1q{pb�1q

^
¸
k�1

1

kb�1
� O pBq ,

as

pa� 1qb
b� 1

� a� 1

b� 1
� a� 1

b� 1
pb� 1q � a� 1.

Finally, in total we obtain

N2,QpBq � 2a�bB logB

ζQpa� 1qζQpb� 1q �OpBq.

We have shown:

Proposition 2.9. For all positive B there are only �nitely many rational

points x on
�
Pa � Pb

� pQq with H2,Qpxq ¤ B, and as B ¥ 1 their number is

N2,QpBq � 2a�bB logB

ζQpa� 1qζQpb� 1q �O pBq .

Thus,

N2,QpBq � 2a�bB logB

ζQpa� 1qζQpb� 1q as B Ñ8.

2.3. Arbitrary Products of Projective Spaces over Q

The next step is to consider products of more than two projective spaces.

By using induction on the number of factors, we will see that basically one

only needs an idea of how to prove an asymptotic behaviour of the number

of rational points on pPn1 � Pn2 � Pn3q pQq to obtain the general case. The

previous proposition will serve as the base case.
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Let x � px1, . . . , xmq be a rational point on
±m
i�1 PnipQq. Again, due

to the arguments in section 2.1 we can assume that the chosen coordinates

xi,0, . . . , xi,ni for xi are coprime integers for each 1 ¤ i ¤ m. So the choice

of coordinates for a point x is unique up to sign. By xi � pxi,0, . . . , xi,niq we
denote the corresponding vector to xi in Zni�1zt0u (1 ¤ i ¤ mq.
Proposition 2.10. For all positive B and natural numbers m,n1, . . . , nm

with m ¥ 2 there are only �nitely many rational points x on
±m
i�1 PnipQq

with Hm,Qpxq ¤ B. And if B ¥ e, their number is

Nm,QpBq � 2
°m
i�1 niB logm�1B

pm� 1q!±m
i�1 ζQpni � 1q �OpB logm�2Bq.

Thus,

NpBqm,Q � 2
°m
i�1 niB logm�1B

pm� 1q!±m
i�1 ζQpni � 1q as B Ñ8.

Proof. We have already shown on page 26 that Nm,QpBq is �nite. We

prove the rest of this proposition by induction on m. Proposition 2.9 yields

the base case for m � 2. Let m ¥ 3. We assume that the above formula for

Nm�1,QpBq is true, and we show that the formula holds for Nm,QpBq, too.
Again by j � xi we mean j divides each coordinate of xi (1 ¤ i ¤ m). Thus,

Nm,QpBq �1

2
#

#
x1 P Zn1�1zt0u, px2 . . . , xmq P

m¹
i�2

Pni�1pQq
�����

gcdpx1,0, . . . , x1,n1q � 1,
m¹
i�1

Hpxiqni�1 ¤ B

+
.

By using Möbius inversion for the vector x1 and the fact that

1 ¤ max
0¤p¤n1

t|x1,p|un1�1 ¤ B,

due to Lemma 2.8, we obtain

Nm,QpBq �1

2

tB1{pn1�1qu¸
j�1

µQpjq#
#
x1 P Zn1�1zt0u,

px2, . . . , xmq P
m¹
i�2

Pni�1pQq
����� j � x1,

m¹
i�1

Hpxiqni�1 ¤ B

+
.

For each of these j in the above formula we �nd a unique x11 in Zn1�1zt0u
such that x1 � jx11. Therefore,

Nm,QpBq �1

2

tB1{pn1�1qu¸
j�1

µQpjq#
#
x11 P Zn1�1zt0u, px2, . . . , xmq

P
m¹
i�2

Pni�1pQq
����� max

0¤p¤n1

t|x11,p|un1�1
m¹
i�2

Hpxiqni�1 ¤ B{jn1�1

+
.
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Similarly to the proof of the previous proposition, we split the above set by

summing over all integer values that max0¤p¤n1t|x11,p|u can take. Hence,

Nm,QpBq �1

2

tB1{pn1�1qu¸
j�1

µQpjq
tB1{pn1�1q{ju¸

N�1

#

#
x11 P Zn1�1zt0u

�����
max

0¤p¤n1

t|x11,p|u � N

+
�#

#
px2, . . . , xmq P

m¹
i�2

Pni�1pQq
�����

m¹
i�2

Hpxiqni�1 ¤ B

jn1�1Nn1�1

+
.

For the number of the elements the �rst set we obtain

pn1 � 1q2n1�1Nn1 �O
�
Nn1�2

�
where the error term only occurs if n1 ¥ 2 (cf. proof of Proposition 2.9).

By taking a closer look at the second cardinality, we see that this number

equals Nm�1,Q
�
B{ �jn1�1Nn1�1

��
. As the induction hypothesis for Nm�1,Q

only holds if B{ �jn1�1Nn1�1
� ¥ e, we split the sums into the following parts

tB1{pn1�1qu¸
j�1

Z
B1{pn1�1q

j

^
¸
N�1

1 �

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

Z
B1{pn1�1q

je1{pn1�1q

^
¸
N�1

1

�
tB1{pn1�1qu¸

j�

Z
B1{pn1�1q

e1{pn1�1q

^
�1

Z
B1{pn1�1q

j

^
¸
N�1

1

�

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

Z
B1{pn1�1q

j

^
¸

N�

Z
B1{pn1�1q

je1{pn1�1q

^
�1

1.

In the �rst summand the indexes j and N satisfy B{ �jn1�1Nn1�1
� ¥ e and

for the remaining two summands it is 1 ¤ B{ �jn1�1Nn1�1
�   e. Obviously,

in the latter case it is

Nm�1,Q

�
B

jn1�1Nn1�1



¤ Nm�1,Qpeq.

By using the induction hypothesis we deduce

Nm�1,Qpeq � cm�1e logm�2 e�O
�
e logm�3 e

� � Op1q

where

cm�1 � 2n2�...�nm

pm� 2q!ζQpn2 � 1q � � � ζQpnm � 1q .
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If B{ �jn1�1Nn1�1
� ¥ e, the induction hypothesis implies

Nm�1,Q

�
B

jn1�1Nn1�1



�cm�1

B logm�2
�

B
jn1�1Nn1�1

	
jn1�1Nn1�1

�O

�
B

jn1�1Nn1�1
logm�3

�
B

jn1�1Nn1�1




.

Otherwise, we notice that the error term dominates the main term. That is

why we consider the case 1 ¤ B{ �jn1�1Nn1�1
�   e separately. We obtain

Nm,QpBq �1

2

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq

Z
B1{pn1�1q

je1{pn1�1q

^
¸
N�1

�pn1 � 1q2n1�1Nn1 �O
�
Nn1�2

��
�
cm�1

B logm�2
�
B{ �jn1�1Nn1�1

��
jn1�1Nn1�1

�O
�

B

jn1�1Nn1�1
logm�3

�
B{ �jn1�1Nn1�1

��
�

�
tB1{pn1�1qu¸

j�

Z
B1{pn1�1q

e1{pn1�1q

^
�1

µQpjq

Z
B1{pn1�1q

j

^
¸
N�1

O pNn1qOp1q

�
tB1{pn1�1qu¸

j�1

µQpjq

Z
B1{pn1�1q

j

^
¸

N�

Z
B1{pn1�1q

je1{pn1�1q

^
�1

O pNn1qOp1q

�cm�1B

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

Z
B1{pn1�1q

je1pn1�1q

^
¸
N�1

logm�2
�
B{ �jn1�1Nn1�1

��
N

�OpBq

���������

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

Z
B1{pn1�1q

je1{pn1�1q

^
¸
N�1

logm�3
�

B
jn1�1Nn1�1

	
N

���������

�OpBq

���������

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

Z
B1{pn1�1q

je1{pn1�1q

^
¸
N�1

O
�
logm�2 pBq�
N3

���������

�OpBq

���������

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

Z
B1{pn1�1q

je1{pn1�1q

^
¸
N�1

logm�3
�

B
jn1�1Nn1�1

	
N3

���������

(2.6)
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�O p1q

���������
tB1{pn1�1qu¸

j�

Z
B1{pn1�1q

e1{pn1�1q

^
�1

µQpjq

Z
B1{pn1�1q

j

^
¸
N�1

Nn1

���������

�Op1q

���������
tB1{pn1�1qu¸

j�1

µQpjq

Z
B1{pn1�1q

j

^
¸

N�

Z
B1{pn1�1q

je1{pn1�1q

^N
n1

���������
where the second and the third error term only occur if n1 ¥ 2. The last

two error terms are dominated by���������
tB1{pn1�1qu¸

j�1

Z
B1{pn1�1q

j

^
¸
N�1

Nn1

���������
�
������
tB1{pn1�1qu¸

j�1

O

�
B

jn1�1


������ � O pBq

where we used Corollary 1.25. Clearly, the third error term is dominated by

the �rst one. So we can omit it. For B{ �jn1�1Nn1�1
� ¥ e it is

logm�2

�
B

jn1�1Nn1�1



� O

�
logm�2B

�
.

Hence, by using Corollary 1.25 the second error term in (2.6) is dominated

by O
�
B logm�2B

�
. Further, it is

logm
�
B{ �jn1�1Nn1�1

�� � �
log

�
B{jn1�1

�� log
�
Nn1�1

��m
.

Thus, by using the Binomial Theorem we obtain for the leading term in (2.6)

Nm,QpBq �cm�12n1pn1 � 1qB

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

Z
B1{pn1�1q

je1{pn1�1q

^
¸
N�1

1

N

�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
B{jn1�1

� p�1qk logk
�
Nn1�1

�

We note that

pm� 1q
m̧

j�0

�
m

j


p�1qj
j � 1

�
m̧

j�0

pm� 1q!
pj � 1q!pm� jq!p�1qj �

m̧

j�0

�
m� 1

j � 1



p�1qj

�
m�1̧

j�1

�
m� 1

j



p�1qj�1 � 1�

m�1̧

j�0

�
m� 1

j



p�1qj(2.7)

� 1� p�1� 1qm�1 � 1,
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and that x ÞÑ logk x is monotonically increasing for x ¥ e and k ¥ 0. Then,

logarithmic identities and Lemma 1.27 yield for 1 ¤ j ¤ B1{pn1�1q{e1{pn1�1q

Z
B1{pn1�1q

je1{pn1�1q

^
¸
N�1

1

N
�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
B

jn1�1



p�1qk logk

�
Nn1�1

�

�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
B

jn1�1



p�1qkpn1 � 1qk

Z
B1{pn1�1q

je1{pn1�1q

^
¸
N�1

logkpNq
N

�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
B

jn1�1



p�1qkpn1 � 1qk

�
�
� logk�1

�
B1{pn1�1q

je1{pn1�1q

	
k � 1

�Op1q
�


�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
B

jn1�1


 p�1qk
n1 � 1

�
� logk�1

�
B

jn1�1e

	
k � 1

�Op1q
�


�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
B

jn1�1


 p�1qk
n1 � 1

�
�

1

k � 1

�
logk�1

�
B

jn1�1



� 1



�Op1q




�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
B

jn1�1


 p�1qk
n1 � 1

�
�

1

k � 1

�
log

�
B

jn1�1


k�1

�O

�
logk

�
B

jn1�1



��

� logm�1pB{jn1�1q
n1 � 1

m�2̧

k�0

�
m� 2

k


p�1qk
k � 1

�O
�
logm�2pB{jn1�1q�

����� 1

n1 � 1

m�2̧

k�0

�
m� 2

k


p�1qk
k � 1

�����
� logm�1pB{jn1�1q
pm� 1qpn1 � 1q �O

�
logm�2pBq� .

Analogously we obtain that the �rst error term in (2.6) is dominated by

OpBq

���������

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

1

jn1�1
O
�
logm�2B

�
���������
�O �

B logm�2B
�
.

Here we used Corollary 1.25 in the last equation and the fact that

logm�2
�
B{jn1�1

� ¤ logm�2 pBq for each 1 ¤ j ¤ B1{pn1�1q{e1{pn1�1q.
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In total we obtain

Nm,QpBq �cm�12n1pn1 � 1qB

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

�
logm�1pB{jn1�1q
pm� 1qpn1 � 1q �O

�
logm�2B

�
�O
�
B logm�2B

�

�cm�12n1B

m� 1

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

m�1̧

k�0

�
m� 1

k



logm�1�k B

� p�1qk logkpjn1�1q �O
�
B logm�2B

�
�cm�12n1B

m� 1

m�1̧

k�0

�
m� 1

k



logm�1�k Bp�1qk

�

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

logkpjn1�1q �O
�
B logm�2B

�

�cm�12n1B logm�1B

m� 1

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

� cm�12n1B

m� 1

m�1̧

k�1

�
m� 1

k



p�1qk logm�1�k B

�

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

logkpjn1�1q �O
�
B logm�2B

�
.

Equation (2.2) yields

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

� 1

ζQpn1 � 1q �O

�
en1{pn1�1q

Bn1{pn1�1q

�

� 1

ζQpn1 � 1q �O
�
B�n1{pn1�1q

	
.

By using Lemma 1.21 we obtain

logm�1B � logm�2BO
�
Bn1{pn1�1q

	
and thereby

B logm�1BO
�
B�n1{pn1�1q

	
� O

�
B logm�2B

�
.
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Moreover, logarithmic identities, monotony of the logarithm and Lemma 1.26

show that

m�1̧

k�1

�
m� 1

k



logm�1�k Bp�1qk

Z
B1{pn1�1q

e1{pn1�1q

^
¸
j�1

µQpjq
jn1�1

logkpjn1�1q

�Op1q
�����
m�1̧

k�1

�
m� 1

k



logm�1�k Bp�1qkpn1 � 1qk

�����
�O �

logm�2B
�
.

Finally, we obtain the expected result

Nm,QpBq � 2n1�...�nmB logm�1B

pm� 1q!ζQpn1 � 1q � � � ζQpnm � 1q �O
�
B logm�2B

�
.

Thereby, the proposition is proven. �



CHAPTER 3

Rational Points on Projective Spaces over Number

Fields

Let us return to an arbitrary number �eld K of degree d with ring of

integers OK . We use the same notation introduced as in Chapter 1. Based

on [10] we study the number of rational points of bounded height on PnpKq
where n P N. Take x � px0 : . . . : xnq P PnpKq. The height HQ on PnpQq
(cf. De�nition 2.3) can be generalised for arbitrary number �elds K.

De�nition 3.1. The height HK of x P PpKq is de�ned by

HKpxq �
¹
vPΩK

maxt|σvpx0q|v, . . . , |σvpxnq|vudv{d.

Lemma 3.2. The height HK satis�es HKpxq ¥ 1 for every x P PnpKq and
is wellde�ned on PnpKq.

Proof. By using the product formula 1.17 we get

HKpxq �
¹
vPΩK

maxt|σvpx0q|v, . . . , |σvpxnq|vudv{d ¥
¹
vPΩK

|σvpx0q|dv{dv � 1

for every x P PnpKq where we assumed x0 � 0 without loss of generality.

Analogously to the case K � Q one can show that the height HK on PnpKq
is wellde�ned, by using the product formula. �

Let us note that this de�nition coincides with the one for K � Q, as
dv � d � 1 for every v P ΩQ. We can further show if we have two number

�elds K1 � K2 and a point x in PnpK1q, and consequently x in PnpK2q,
that HK1pxq � HK2pxq. Let K1,v and K2,v denote the completions of K1,

K2 relating to v in ΩK1 , ΩK2 , respectively. We write di,v � rKi,v : Qvs,
di � rKi : Qs for each 1 ¤ i ¤ 2. Then, we have

HK2pxq �
¹

wPΩK2

maxt|σwpx0q|w, . . . , |σwpxnq|wud2,w{d2

�
¹

vPΩK1

¹
w�v

maxt|σwpx0q|w, . . . , |σwpxnq|wud2,w{d2

�
¹

vPΩK1

¹
w�v

maxt|σvpx0q|v, . . . , |σvpxnq|vud2,w{d2

�
¹

vPΩK1

maxt|σvpx0q|v, . . . , |σvpxnq|vu
°
w�v d2,w{d2

39
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and °
w�v d2,w

d2
� d1,v

d1

°
w�vrK2,w : K1,vs
rK2 : K1s � d1,v

d1
,

due to Proposition 1.16. Hence, HK2pxq � HK1pxq.
Now, our aim is to count the number

NKpBq � # tx P PnpKq | HKpxq ¤ Bu
for a real bound B.

Similarly to the case K � Q, by multiplying with the least common

denominator we can assume that xi P OK , as K � QuotpOKq is the �eld

of fractions of OK . However, when trying to use the same approach as for

K � Q two problems arise. Firstly, the greatest common divisor of x0, . . . , xn

is the ideal generated by x0, . . . , xn. If and only if the class number hK of

K is greater than 1, this ideal is not necessarily principal, i.e. we cannot

assume the greatest common divisor to be the ring of integers OK . Thus,

it is di�cult to normalize the coordinates of x. Secondly, if we can assume

the greatest common divisor to be the ring of integers, x is unique up to

O�
K-factors. Dirichlet's Unit Theorem (Proposition 1.13) yields that the

group of units O�
K is isomorphic to µpKq�ZrK�sK�1. If the rank rK�sK�1

is at least 1, it is easy to see that O�
K is not necessarily �nite. Take for

example K � Qp?2q. Here we have two real embeddings and therefore O�
K

has rank 1. Clearly, O�
K �  �p?2� 1qn | n P Z

( � t�1u � Z is in�nite.

Thus, we cannot divide out the number of units in O�
K .

That is why we need to do some preliminaries and generalizations to

count the number of rational points of bounded height on PnpKq. To achieve
the number of these rational points we will use the concept of lattices and

fundamental domains. For that purpose we need to introduce the concept

of Lipschitz parametrizable sets and Lipschitz distance functions.

3.1. A Generalization

De�nition 3.3. Let δ be an integer with 0 ¤ δ ¤ D. We say a set in RD

is Lipschitz parametrizable of codimension δ if there exists a constant L and

�nitely many maps φ from the cube r0, 1sD�δ to RD, whose images cover the

set, each satisfying

|φpx1q � φpx2q| ¤ L|x1 � x2|.(3.1)

If δ � D, this is to be interpreted as the �niteness of the set.

De�nition 3.4. Let n be a positive integer. We call a continuous function

N from Rn�1 or Cn�1 to the real interval r0,8q Lipschitz distance function

(of dimension n) if it satis�es the following three conditions:
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p1q Npzq � 0 if and only if z is the zero vector,

p2q Npazq � |a|Npzq for every scalar a in R or C,
p3q the set tz | Npzq � 1u in Rn�1 or Cn�1 � R2n�2 is Lipschitz

parametrizable of codimension 1.

The set de�ned in (3) is the boundary of the set B � tz | Npzq   1u.
It is easy to see that the function maxt|z0|, . . . , |zn|u on Rn�1 or Cn�1

satis�es conditions p1q and p2q of a Lipschitz distance function. The set

tz P Rn�1 | maxt|z0|, . . . , |zn|u � 1u de�nes the boundary of the cube

r�1, 1sn�1 in Rn�1. This boundary is Lipschitz parametrizable with for

example 2n� 2 linear maps (one map for each of the 2n� 2 faces) and the

volume of the cube is 2n�1, since the sides have length 2. For example, for

n � 1 the maps

p1 : r0, 1s Ñ r�1, 1s � t�1u, x ÞÑ p2px� 1{2q,�1q
p2 : r0, 1s Ñ t�1u � r�1, 1s, y ÞÑ p�1, 2py � 1{2qq

parametrize the faces r�1, 1s � t�1u and t�1u � r�1, 1s. In the complex

case the boundary of the set B can be parametrized with for example n� 1

trigonometrical maps, e.g. for n � 1 the maps

p1 : r0, 1s3 Ñ tz | |z0| � 1, |z1| ¤ 1u, px, y, zq ÞÑ �
e2πix, ye2πiz

�
p2 : r0, 1s3 Ñ tz | |z0| ¤ 1, |z1| � 1u, px, y, zq ÞÑ �

xe2πiy, e2πiz
�

parametrize the boundary tz | maxt|z0|, |z1|u � 1u (since Cn�1 � R2pn�1q

we consider r0, 1s2pn�1q�1). The set tz | maxt|z0|, . . . , |zn|u   1u in Cn�1 has

volume πn�1, because the open unit disc tz0 | |z0|   1u has volume π in C.
Thus, maxpzq � maxt|z0|, . . . , |zn|u de�nes a Lipschitz distance function

on Rn�1 or Cn�1. Further, we have seen that B has �nite volume Vmax. In

the real case it is Vmax � 2n�1 and in the complex case we have Vmax � πn�1.

We have already seen in chapter 1 that the real embeddings and pairs of

complex embeddings lead to rK � sK in�nite places of K, and that we can

choose an identi�cation of Kv with R or C. Hence, the maximum function

maxpzq yields for all in�nite places v of K a Lipschitz distance function on

Kn�1
v .

Notation 3.5. For the rest of this chapter we will use the convention

maxpzq � maxt|z0|, . . . , |zn|u
for z in Rn�1.

Lemma 3.6. The set B � tz | maxpzq   1u is bounded in Rn�1 or Cn�1.

Further, there exists a constant c ¡ 0 such that every z satis�es

maxpzq ¥ c|z|.
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Proof. Each z in B satis�es |z| ¤ ?
n� 1. Hence, this set is bounded.

Every z in Rn�1 or Cn�1 satis�es

|z| ¤ ?
n� 1Npzq.

By choosing c ¤ 1{?n� 1, the assertion follows. �

By now we are rather close to state the main result of this chapter. We

only need to de�ne the so called Schanuel constant.

De�nition 3.7 (Schanuel's constant). For each positive integer n and any

arbitrary number �eld K de�ne

(3.2) SKpnq � pn� 1qrK�sK�1

�
2rK p2πqsKa

|dK |

�n�1
hKRK

ωKζKpn� 1q .

Theorem 3.8 (Schanuel's Theorem). Let K be a number �eld of degree

d. Then, for all real B there are only �nitely many x on PnpKq such that

HKpxq ¤ B. For B ¥ e their number is

SKpnqBdpn�1q �O
�
Bdpn�1q�1L

	
where L � 1 except that pd, nq � p1, 1q in which case L � logpBq. Thus,

NKpBq � SKpnqBdpn�1q as B Ñ8.
We will prove this theorem in the subsequent sections. But �rstly, we

show that for K � Q we receive the same result as in the previous chapter.

Remark 3.9. Choose K � Q. Then, OK � Z and ωK � 2. We have just

one real embedding, the identity, i.e. rK � 1 and sK � 0. Obviously, d � 1.

Moreover, we can choose 1 as an integral basis, and we get dK � detp1q � 1.

As OK � Z is a principal ideal domain, we deduce hK � 1. Furthermore,

RK � 1, as the determinant of a 0� 0 matrix is de�ned as 1. Thus, we get

SQpnq � 2n

ζQpn� 1q ,

and Theorem 3.8 recovers Proposition 2.5.

3.2. Counting Principles

Let S be a set and Λ be a lattice in RD. How many points of the lattice

Λ are contained in the set S? The answer to this question depends on the

structure of S. The following �gure shows a "good" and a "bad" set S.

Maybe the easiest way of counting is to say that a reasonable set S

contains about V { det Λ points of a lattice Λ where V is the volume of S and

det Λ the determinant of Λ. That means we split the set S into tV {det Λu

pieces with volume det Λ and assume that every piece of those contains one

lattice point. It becomes clear, that it might be di�cult to count the number
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R2

(a) "good" set

R2

(b) "bad" set

Figure 1. Structures of sets

of lattice points in general if S is a "bad" set. That is why we concentrate

on reasonable sets. The following Lemma gives an estimate we get by taking

V { det Λ as the number of lattice points being contained in S if S su�ces

certain properties.

Lemma 3.10. Let S in RD be a bounded set whose boundary BS can be

covered by the images of at most W maps φ from r0, 1sD�1 to RD satisfying

Lipschitz conditions

(3.3) |φpx1q � φpx2q| ¤ L|x1 � x2|.
Then, S is measurable. Moreover, let Λ in RD be a lattice with �rst successive

minimum λ1. Then, the number Z of points in S X Λ satis�es

(3.4) |Z � V {det Λ| ¤ cW

�
L

λ1
� 1


D�1

for some constant c � cpDq depending only on D.

Proof. Firstly, we show that S is measurable (based on [9, p. 294-295]).

We split the interval r0, 1s into 2N equal parts for an integer N ¥ 1. Then,

r0, 1sD�1 is split into 2NpD�1q congruent subcubes with diameter

d �
gffeD�1̧

i�1

�
1

2N


2

�
b
pD � 1q2�2N � 2�N

?
D � 1.

Each of these subcubes is mapped by any of the W maps φ into a ball of

RD of diameter 2�N
?
D � 1L, as every x1 and x2 in one of these subcubes

satisfy

|φpx1q � φpx2q| ¤ L|x1 � x2| ¤ L2�N
?
D � 1.

Thus, the boundary BS can be covered by at most 2NpD�1qW balls of radius

2�N�1
?
D � 1L. With [1, Remark 5.26b, Example 6.6c] we deduce that the
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volume of all these balls totals

2NpD�1qW
πD{2

Γ
�
D
2 � 1

�2�ND�DpD�1qD{2LD � 2�NW
ppD � 1qπqD{2

Γ
�
D
2 � 1

� �
L

2


D
.

When considering this term as a function of N , we see that it is converging

to 0 for N Ñ8. Hence, BS is a null set and therefore measurable.

To prove the estimate (3.4) we start with the case Λ � ZD. Then,

det Λ � 1 (cf. Example 1.10) and we de�ne Cy � y�r0, 1sD for every lattice

point y. Thus, we can cover the set S by taking the union of all Cy having

nonempty intersection with S as shown exemplary in the following �gure.

R2

Figure 2. Set S in R2 with Λ � Z2

It follows that the number of lattice points in S can be approximated

by taking all lattice points y with Cy X S � H. The error being made is

at most the number of lattice points y with Cy intersecting BS. Similarly

to above, the cube r0, 1sD�1 can be split into LD�1
1 subcubes of side length

1{L1 where L1 � 1� tLu. The diameter d of these subcubes is computed as

d �
gffeD�1̧

i�1

�
1

L1


2

�
d
D � 1

L2
1

�
?
D � 1

L1
.

By choosing c1pDq ¥
?
D � 1, we get d ¤ c1{L1. Hence, the images of these

subcubes under the maps φ have diameters at most c1L{L1. Consequently,

there are at most c of the Cy intersecting a single such image where c is a

constant depending on D. By assumption we have at most W functions φ

covering BS, therefore we obtain
(3.5) |Z � V {det Λ| ¤ cWLD�1

1 � cW p1� tLuqD�1 ¤ cW pL� 1qD�1.

Since λ1 equals 1 for Λ � ZD, the estimate (3.4) follows.

Now, let Λ be an arbitrary lattice in RD. Corollary 1.7 implies that

there exists a basis v1, . . . ,vD of Λ with |vi| ¤ c1λi for the successive minima
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λ1, . . . , λD of Λ where c1 is a constant depending only onD. We suppose that

η�1 is the automorphism of RD whose matrix has the columns v1, . . . ,vD. By

possibly multiplying one column with p�1q, we can assume that detpη�1q is
positive. As every y in Λ is of the form a1v1�. . .�aDvD for some a1, . . . , aD

in Z, we obtain η�1pZDq � Λ and thus, ηpΛq � ZD. Hence, we can apply

the result from above to ηpSq. It easily follows that the boundary of ηpSq
can be parametrized by at most W maps ψpxq � ηpφpxqq. From condition

(3.3) we deduce

(3.6) |ψpx1q � ψpx2q| ¤ ‖η‖ |φpx1q � φpx2q| ¤ L ‖η‖ |x1 � x2|

where ‖η‖ denotes the (Euclidean) operator norm of η, i.e.

‖η‖ � max
x�0

‖ηx‖
‖x‖

.

Now we want to �nd an upper bound for ‖η‖. We obtain the matrix of

η by generating the inverse matrix of η�1. Let ηi denote the i-th row of η

and ηj,i the matrix η omitting the j-th row and i-th column. For D ¥ 2 we

have

ηi � 1

det η�1

�
p�1qi�1 detpη�1

1,i q, . . . , p�1qi�D detpη�1
D,iq

	
and 1{ det η�1 � pdet Λq�1. Let µi be one of the minors of η�1 omitting vi,

i.e. µi is one of the terms detpη�1
j,i q in ηi. By induction on D we show that

|µi| ¤ c2
|v1| � � � |vD|

|vi|
for a constant c2 � c2pDq for every 1 ¤ i ¤ D.

For D � 1 it is η�1 � pv11q. Hence, µ1 is the determinant of a 0 � 0

matrix, which is 1, and the base case is satis�ed. For convenience let A denote

the matrix η�1
D�1,D�1, and let Aij be the matrix we obtain by removing the

i-th row and j-th column of A. Then, for D � 1 it follows���detpη�1
D�1,D�1q

��� � |detA|

�
�����
Ḑ

i�1

p�1qi�jvji detAij

�����
¤

Ḑ

i�1

��p�1qi�j �� |vji| |v1| � � � |vD|
|vj |

¤
Ḑ

i�1

|vji|
|vj |

|v1| � � � |vD�1|
|vD�1|

¤ D
|v1| � � � |vD�1|

|vD�1|
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where we used Laplace's formula in the second equation and the induction

hypotheses in the third inequation. (Caution: Note that vij denotes the

entry of column i and row j.) The same is true for every other η�1
i,D�1

(1 ¤ i ¤ D�1). And in an analogous manner one shows the expected result

for removing column i (1 ¤ i ¤ D).

We obtain

|µi| ¤ c2
|v1| � � � |vD|

|vi| ¤ c2c
D�1
1

λ1 � � �λD
λi

.

Minkowski's Second Theorem 1.11 yields λ1 � � �λD ¤ c3 det Λ for a constant

c3 � c3pDq, and as 1{λ1 ¥ . . . ¥ 1{λD, we get

det Λ�1|µi| ¤ det Λ�1c2c
D�1
1 c3

det Λ

λ1
� c2c

D�1
1 c3

λ1
.

Thus, each entry of the matrix of η has absolute value at most c2c
D�1
1 c3{λ1.

Then, there exists a constant c4 � c4pDq such that ‖η‖ ¤ c4{λ1.

Now L can be replaced by Lc4{λ1 in (3.5), as L in (3.3) has been replaced

by L‖η‖. Finally, we deduce

|Z � V {det Λ| ¤ c̃W

�
Lc4

λ1
� 1


D�1

¤ cW

�
L

λ1
� 1


D�1

for a constant c ¥ c̃cD�1
4 depending only on D. �

Remark 3.11. This is one possibility of estimating the number of points in

SXΛ. By using the concept of O-minimal structures one can show a similar

estimate with a di�erent approach, which makes the concept of Lipschitz

parametrization redundant (cf. [3, Thm. 1.3]).

3.3. Preliminaries

In this section we do preliminaries to apply Lemma 3.10. More precisely,

we de�ne and examine the sets to which the Lemma will be applied.

In the following we write q � rK � sK � 1 ¥ 0. By Σ we denote the

hyperplane in Rq�1 de�ned by x1� . . .�xq�1 � 0. We set δ � pd1, . . . , dq�1q
where di � 1 for 1 ¤ i ¤ rK (if rK ¥ 1), di � 2 for rK � 1 ¤ i ¤ q � 1 (if

sK ¥ 1). And set d � rK�2sK � d1�. . .�dq�1. By exp : Rq�1 Ñ r0,8qq�1

we denote the componentwise exponential map. Let F be a bounded subset

of Σ.

De�nition 3.12. For T P R¡0 we de�ne in Rq�1 the vector sum

(3.7) F pT q � F � p�8, log T sδ.
Lemma 3.13. It is expF pT q the set of pX1, . . . , Xq�1q P r0,8qq�1 such that

q�1¹
i�1

Xi ¤ T d.
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Proof. Let pX1, . . . , Xq�1q be in expF pT q. Then, there exists a t in

p�8, log T s and an f in F such that Xi � exppfi� tdiq where fi denotes the
i�th coordinate of f . Thus,

q�1¹
i�1

Xi �
q�1¹
i�1

exppfi � tdiq � exppf1 � . . .� fq�1q expptd1 � . . .� tdq�1q.

As F lies in the hyperplane Σ, we have f1� . . .�fq�1 � 0. Further, t ¤ log T

and the exponential function is monotonically increasing. Hence,

q�1¹
i�1

Xi ¤ exppd1 log T � . . .� dq�1 log T q � exp
�

log T d1�...�dq�1

	
� T d.

On the other hand take pX1, . . . , Xq�1q R expF pT q. Thanks to �8, the

origin is contained in expF pT q, because limxÑ�8 exppxq � 0. And as the

exponential map is monotonically increasing, we see that there is no t in

p�8, log T s such that Xi ¤ exppfi � tdiq. It follows Xi ¡ exppfi � tdiq for
every f in F and each 0 ¤ i ¤ q � 1. We get

q�1¹
i�1

Xi ¡
q�1¹
i�1

exppfi � tdiq � T d

for every f P F . �

Let n be a positive integer. Recall that the q � 1 in�nite places v of K

yield the Lipschitz distance function max on each of the factors Rr �Cs (cf.
page 41). We enumerate these places by 1, . . . , q � 1. For each place we use

corresponding coordinates zi in Rdipn�1q.

De�nition 3.14. For

D �
q�1̧

i�1

dipn� 1q � dpn� 1q

we de�ne SF pT q in RD as the set of all pz1, z2, . . . ,zq�1q with

pmaxpz1qd1 ,maxpz2qd2 , . . . ,maxpzq�1qdq�1q P expF pT q.

Lemma 3.15. The set SF pT q satis�es the following properties:

p1q SF pT1q � SF pT2q for every T1 ¤ T2.

p2q It is SF pT q � TSF p1q homogeneously expanding and bounded.

Proof. Part (1) is an immediate conclusion of Lemma 3.13. Every

element pz1, z2, . . . ,zq�1q in SF pT1q satis�es
q�1¹
i�1

maxpziqdi ¤ T d1 ¤ T d2 .
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To prove part (2) let pz1, z2, . . . ,zq�1q be in SF p1q. By using condition

p2q of De�nition 3.4 we obtain

maxpTziqdi � |T |di maxpziqdi � T di maxpziqdi for 1 ¤ i ¤ q � 1.

And as

T di � exppdi log T q for 1 ¤ i ¤ q � 1,

it follows that�
maxpTz1qd1 ,maxpTz2qd2 , . . . ,maxpTzq�1qdq�1

	
lies in

expplog Tδq exppF p1qq � exppF � p�8, 0sδ � log Tδq
� exppF � p�8, log T sδq(3.8)

where the multiplication of the vectors is to be understood componentwise.

Thus, TSF p1q is a subset of SF pT q.
Conversely, take pz1, z2, . . . ,zq�1q P SF pT q. Then (3.8) yields that�

maxpz1qd1 ,maxpz2qd2 , . . . ,maxpzq�1qdq�1

	
lies in �

T d1 , T d2 , . . . , T dq�1

	
exppF p1qq.

Consequently, there exists a vector py1,y2, . . . ,yq�1q in SF p1q with
pz1, z2, . . . ,zq�1q � T py1,y2, . . . ,yq�1q

and the assertion follows.

Finally, we need to show that SF pT q is bounded. As we have seen that

SF pT q � TSF p1q, it su�ces to show that SF p1q is bounded. The proof

of Lemma 3.13 shows that every vector pz1, . . . ,zq�1q in SF p1q satis�es

maxpziqdi ¤ exp fi for every f P F and each 1 ¤ i ¤ q � 1. As F is

bounded, we deduce with properties (1) and (2) of De�nition 3.4 that SF p1q
is bounded, too. �

This result enables us to concentrate on SF p1q in the following.

Lemma 3.16. If q ¥ 1, let the boundary BF of F be Lipschitz parametriz-

able of codimension 2 in Rq�1. Then, the boundary of SF p1q is Lipschitz

parametrizable of codimension 1 in RD.

Proof. Firstly, let q ¥ 1. Consider the boundary BF p1q of F p1q de�ned
in (3.7). As F is in the hyperplane Σ and δ obviously is not, BF p1q is

contained in two parts: the closure of F together with BF � p�8, 0sδ. We

show that these two parts are Lipschitz parametrizable of codimension 1.
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As we have assumed that F is a bounded set in Rq�1, we can project

F to any q coordinates, say x1, . . . , xq, and scale the image to a subset of

r0, 1sq. Then we can use the inverse map φ � pφ1, . . . , φq�1q, which satis�es

by construction and the boundedness of F the Lipschitz condition (3.3).

Thus, F is Lipschitz parametrizable of codimension 1 in Rq�1.

To parametrize BF � p�8, 0sδ we start with the case q ¥ 2. By as-

sumption BF is Lipschitz parametrizable of codimension 2 in Rq�1, so let

ψ � pψ1, ψ2, . . . , ψq�1q be one of the Lipschitz parametrizing maps for BF
on r0, 1sq�1. If we use ψ � tδ for �8   t ¤ 0, it follows that exp BF p1q can
be covered by the images of the maps

(3.9) Φ � expφ � peφ1 , . . . , eφq�1q

on r0, 1sq or maps

Φ � exppψ � tδq
� peψ1�td1 , . . . , eψq�1�tdq�1q
� peψ1ud1 , . . . , eψq�1udq�1q

(3.10)

on r0, 1sq�1 � r0, 1s with u � et in p0, 1s.
These maps satisfy the Lipschitz condition (3.3): It is wellknown that

the class of functions from r0, 1sq to R satisfying (3.3) is closed under addi-

tion, multiplication and exponentiation. By construction and assumption we

know that φ1, . . . , φq�1, ψ1, . . . , ψq�1 satisfy p3.3q. Thanks to the mean value

theorem, et also satis�es the Lipschitz condition (3.3) for �8   t ¤ 0, as

d{dtet � et is in p0, 1s, and thus is bounded. Hence, the images of (3.9) and

(3.10) are Lipschitz parametrizable of codimension 1 in Rq. Since exp BF p1q
is covered by these images, we obtain exp BF p1q is Lipschitz parametrizable

of codimension 1, at least if q ¥ 2.

Now let q � 1. In this case the boundary BF is just a �nite set, as δ � D

in De�nition 3.3. For every point a � pa1, a2q in BF consider a � tpd1, d2q
for �8   t ¤ 0. Similarly to the case q ¥ 2 we see that exp BF p1q can be

covered by the images of maps (3.9) on r0, 1s and maps

Φ � exppa� tpd1, d2qq � pea1etd1 , ea2etd2q � pea1ud1 , ea2ud1q(3.11)

on r0, 1s with u � et. Since BF is �nite, there are only �nitely many of these

maps, and they satisfy (3.3), as shown above.

The boundary BpexpF p1qq of expF p1q consists of exp BF p1q and the

origin, as F is bounded and exppF � δtq tends to the origin as t tends to

�8. If we extend u to r0, 1s in p3.10q and let

Φ � pΦ1ptq, . . . ,Φq�1ptqq
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be a parametrizing map as in (3.9), (3.10) or (3.11) for t in r0, 1sq, we see

that BpexpF p1qq is Lipschitz parametrizable of codimension 1 in Rq�1.

By de�nition SF p1q is the set of all pz1, . . . ,zq�1q with
(3.12) pmaxpz1qd1 , . . . ,maxpzq�1qdq�1q
in expF p1q. As max is continuous, the boundary BSF p1q is the set of all

pz1, . . . ,zq�1q such that (3.12) lies in BpexpF p1qq. As shown above, the set

BpexpF p1qq can be parametrized by maps Φ on r0, 1sq. So, if Φ is one of

these maps, there exists a t in r0, 1sq with maxpziqdi � Φiptq (1 ¤ i ¤ q� 1)

for some pz1, . . . ,zq�1q in BSF p1q. Condition (3) in De�nition 3.3 yields that

we have maps Ψiptiq for ti in r0, 1sei with ei � dipn � 1q � 1 parametrizing

the boundaries de�ned by maxpzq � 1. As maxpωzq � ωmaxpzq for every
scalar ω in R¥0 or C¥0, for ζ ¥ 0 the set of z with maxpzq � ζ is equivalent

to the the set of all ζz with maxpzq � 1. So this set can be parametrized by

ζΨi. It follows that BSF p1q can be parametrized by

pΦ1ptq1{d1Ψ1pt1q, . . . ,Φq�1ptq1{dq�1Ψq�1ptq�1qq.
We have seen in (3.9) and (3.10) that Φiptq1{di is eφi{di or eψi{diu for φi and

ψi satisfying the Lipschitz condition (3.3) (1 ¤ i ¤ q � 1). Therefore, with

the same argument as above that the class of functions satisfying the Lip-

schitz condition is closed under addition, multiplication and exponentiation,

we obtain that the above maps satisfy the Lipschitz condition. The used

variables are t in r0, 1sq and ti in r0, 1sei for 1 ¤ i ¤ q � 1. So in total the

number of variables is

q �
q�1̧

i�1

ei � q �
q�1̧

i�1

pdipn� 1q � 1q � q �D � pq � 1q � D � 1.

Thus, BSF p1q in RD is parametrizable of codimension 1 as required.

Now, let q � 0. In this case, according to Lemma 3.13 we have

SF p1q �
!
z1 P Rd1pn1�1q

��� maxpz1q ¤ 1
)
� r0, 1sd1pn1�1q.

Similarly as seen on page 41, one shows that the boundary of this set is

Lipschitz parametrizable of codimension 1. �

Lemma 3.17. Let F be measurable with volume VF . Then SF p1q is mea-

surable with volume

V � pn� 1qqpq � 1q�1{2VF 2rKpn�1qπsKpn�1q.

Proof. The set SF p1q can be equivalently de�ned as the inverse im-

age of expF p1q under the continuous map m � pmax, . . . ,maxq taking

pz1, . . . ,zq�1q to (3.12). Let ρpxq � ρpX1, . . . , Xq�1q be the measure of

the set de�ned by maxpziqdi ¤ Xi (1 ¤ i ¤ q � 1q. If pX1, . . . , Xq�1q is in
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expF p1q and maxpziqdi ¤ Xi for each 1 ¤ i ¤ q�1, the vector pz1, . . . ,zq�1q
is in SF p1q. Hence, the volume V can be computed as

»
expF p1q

dρpxq.

Part (3) of De�nition 3.4 and Lemmas 3.6 and 3.10 yield that the sets de�ned

by maxpziq ¤ 1 are measurable. We denote its volume by Vi (1 ¤ i ¤ q�1q.
We have already seen that Vi � 2n�1 if di � 1 and that Vi � πn�1 if

di � 2. If maxpziqdi ¤ 1, we have maxpX1{di
i ziqdi ¤ Xi by condition (2) in

De�nition 3.4. Thus, the volume of the set de�ned by maxpziqdi ¤ Xi is

ViX
p1{diqdipn�1q
i � ViX

n�1
i

as we get an extra factor X
1{di
i for every component of zi. In total we obtain

ρpxq � V1 � � �Vq�1X
n�1
1 � � �Xn�1

q�1 � 2rKpn�1qπsKpn�1qXn�1
1 � � �Xn�1

q�1 .

Hence,

V � 2rKpn�1qπsKpn�1q

»
expF p1q

dXn�1
1 � � � dXn�1

q�1

� pn� 1qq�12rKpn�1qπsKpn�1q

»
expF p1q

Xn
1 � � �Xn

q�1dX1 � � � dXq�1

where we used the substitution Xn�1
i � Xi in the last equation; obviously

it is

dXn�1
i

dXi
� pn� 1qXn

i

for each 1 ¤ i ¤ q � 1. And the set expF p1q does not change under the

transformation, due to Lemma 3.13 and the fact that 1 is invariant under

exponentiation.

Let us use for de�niteness x1, . . . , xq as coordinates on the set F with

xq�1 � �x1 � . . . � xq. Then we can use Xi � exi�tdi (1 ¤ i ¤ q � 1) as

corresponding coordinates on expF p1q � exppF�p�8, 0sδq for t in p�8, 0s.
We obtain the Jacobian matrix

J �

�
���

BX1
Bx1

. . . BX1
Bxq

BX1
Bt

...
...

...
BXq�1

Bx1
. . .

BXq�1

Bxq

BXq�1

Bt

�
���

�
�����

X1 d1X1

. . .
...

Xq dqXq

�Xq�1 . . . �Xq�1 dq�1Xq�1

�
����.
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We use the Gaussian elimination to determine the determinant of J . By

adding Xq�1{Xi times of row i to the last row for every 1 ¤ i ¤ q it follows

det J � det

�
�����
X1 d1X1

. . .
...

Xq dqXq

0 . . . 0 dq�1Xq�1 � d1Xq�1 � . . .� dqXq�1

�
����

� pd1 � . . .� dq�1qX1 � � �Xq�1

� dX1 � � �Xq�1.

We deduce

V �dpn� 1qq�12rKpn�1qπsKpn�1q

» 0

�8

»
F

epx1�td1q
n�1 � � � epxq�tdqqn�1

ep�px1�...�xqq�tdq�1qn�1
dtdx1 � � � dxq

�dpn� 1qq�12rKpn�1qπsKpn�1q

» 0

�8
etdpn�1qdt

»
F

dx1 � � � dxq.

It is » 0

�8
etdpn�1qdt � 1

dpn� 1qe
tdpn�1q

����0
�8

� 1

dpn� 1q .

To compute the above integral over F we need a parametrizing map for F .

It is easy to see that the map φ : Rq Ñ Rq�1, y ÞÑ Ay with matrix

A �

�
�����

1 0
. . .

0 1

�1 . . . �1

�
����

is a parametrizing map for Σ. So there is a set P in Rq such that φpP q � F .

On the one hand, the transformation formula for integrals shows that

(3.13)

»
F

dx1 � � � dxq �
»
P

dy1 � � � dyq.

On the other hand, computing the surface integral yields

(3.14) VF �
»
P

1 � φpyq
b

detpGφpyqqdy1 � � � dyq

where Gφ is the Gramian matrix of φ, i.e.

Gφpyq � AtA �

�
������

2 1 . . . 1

1
. . .

...
...

. . . 1

1 . . . 1 2

�
�����.
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We show by induction on q that the determinant of this Gramian matrix

equals q � 1. The base case for q � 0 is trivial, because the determinant of

a 0 � 0 matrix is 1. For convenience de�ne Aq � Gφpyq where the index q

denotes the dimension of the matrix. Let Bq
ij denote the submatrix of Aq

removing the i-th row and j-th column. Laplace's formula yields

detAq � 2 detAq�1 �
q̧

j�2

p�1q1�j detBq
1j .

By permuting the �rst j � 1 rows of the matrix Bq
1j for j ¥ 3, we achieve a

matrix of the shape

Bq
12 �

�
������

1 1 . . . 1

1 2
...

...
. . . 1

1 . . . 1 2

�
�����.

It is easy to see that the matrix Bq
12 has determinant 1 by subtracting row

1 from each of the rows 2, . . . , q � 1. Therefore, by using the induction

hypotheses we get

detAq � 2q �
q̧

j�2

p�1q1�jp�1qj�2 detBq
12 � 2q � pq � 1q � q � 1.

Comparing the equations (3.13) and (3.14) shows that»
F

dx1 � � � dxq � VF?
q � 1

and �nally, the lemma follows. �

3.4. Proof of the Theorem

Now we get back to number �elds. Let K be a number �eld of de-

gree d. We use the same notation as introduced in chapter 1. We denote

σ � pσ1, . . . , σr�sq : K Ñ Rd. As in section 3.3 we use the conventions

q � rK � sK � 1 and D � dpn� 1q. Let a be a nonzero ideal in the ring of

integers OK .

Lemma 3.18. The product Λpaq � σpaq � � � � � σpaq � σpaqn�1 is a lattice

in RD with determinant

det Λ �
�

2�sKNpaq
a
|dK |

	n�1
,

and its �rst successive minimum is λ1 ¥ Npaq1{d.
Proof. For example in [8, Lemma 2, p. 115] it can be seen that Λpaq

is a lattice with the desired determinant.
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The de�nition of the �rst successive minimum yields that λ1 is the mini-

mum of the nonzero elements of the lattice Λpaq with respect to the Euclidean
norm. As Λpaq is the pn � 1q-times product of σpaq, which is also a lattice,

λ1 is also the minimum of the lattice σpaq. So it su�ces to show that every

nonzero element σpxq of σpaq satis�es |σpxq| ¥ Npaq1{d. The squared length

of σpxq is

|σpxq|2 �
q�1̧

i�1

|σipxq|2.

By using d1, . . . , dq�1 as in section 3.3 we obtain

q�1̧

i�1

|σipxq|2 ¥ 1

2

q�1̧

i�1

di|σipxq|2

with equality if di � 2 for each 1 ¤ i ¤ q � 1, and the factor 1{2 can be

omitted if di � 1 for each 1 ¤ i ¤ q�1. Now we need the weighted inequality

of arithmetic and geometric means (brie�y AM-GM). The weighted AM-GM

states that if a1, . . . , an are nonnegative real numbers and λ1, . . . , λn are

nonnegative real numbers summing up to 1, then

ņ

i�1

λiai ¥
n¹
i�1

aλii .

For the proof see Appendix A. Here the weighted AM-GM inequality yields

q�1̧

i�1

di
d
|σipxq|2 ¥

q�1¹
i�1

|σipxq|2di{d,

since the di sum up to d, which is equivalent to

1

2

q�1̧

i�1

di|σipxq|2 ¥ d

2

q�1¹
i�1

|σipxq|2di{d.

As |σipxq| � |σ̄ipxq| for every complex embedding σi, it is

q�1¹
i�1

|σipxq|di � |NK{Qpxq| � Nppxqq.(3.15)

Because x is an element of a, the absolute norm of pxq is at least Npaq. In

total we get

|σpxq|2 ¥ d

2

�
q�1¹
i�1

|σpxq|di
�2{d

¥ d

2
Npaq2{d.

If d{2 ¥ 1, the assertion follows. It is d{2   1 if and only if rK � 1 and

sK � 0, i.e. d1 � 1 and q � 0. Hence, we can omit the factor 1{2 as

mentioned above, and the claim follows. �
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As in the previous section let Σ be the hyperplane in Rq�1 de�ned by

x1�. . .�xq�1 � 0, and let F be a bounded subset in Σ. We also use T , δ and

SF pT q as de�ned in the previous section and Λpaq as introduced in the lemma

above. Lemma 3.15 part (2) shows that SF pT q is bounded and the previous

lemma yields that Λpaq is a lattice. Hence, the intersection SF pT q X Λpaq is
a �nite set. We denote the number of its nonzero points with ZF pa, T q. To
provide a better overview, we will write ZF,npa, T q when dealing with more

than one projective space. The next lemma gives an estimate on this number

by using the counting principle of section 3.2.

Lemma 3.19. Let F be bounded measurable with volume VF such that BF is

Lipschitz parametrizable of codimension 2 (at least if q ¥ 1q. If T   Npaq1{d,
we have ZF pa, T q � 0. If T ¥ Npaq1{d, it is����ZF pa, T q � CF

T dpn�1q

Npaqn�1

���� ¤ cF
T dpn�1q�1

Npaqn�1�1{d

for a constant cF depending only on K and F , and

(3.16) CF � CF,n � pn� 1qq?
q � 1

2sKpn�1qa
|dK |n�1

VF 2rKpn�1qπsKpn�1q.

Proof. Recall that SF pT q is the set of all pz1, . . . ,zq�1q such that (3.12)
lies in expF pT q where zi P Rdipn�1q (1 ¤ i ¤ q�1). Lemma 3.13 shows that

(3.17)

q�1¹
i�1

maxpziqdi ¤ T d.

Moreover, in the proof of Lemma 3.16 we have seen that, due to �8, the

origin lies in SF pT q, which we exclude from the counting.

The lattice points in Λpaq have the shape
pz1, . . . ,zq�1q � pσ1pxq, . . . , σq�1pxqq

� ppσ1px0q, . . . , σ1pxnqq, . . . , pσq�1px0q, . . . , σq�1pxnqqq
for some x � px0, . . . , xnq in an�1. If x is nonzero, there is at least one j

with xj � 0. We have

q�1¹
i�1

maxpziqdi �
q�1¹
i�1

maxt|σipx0q|, . . . , |σipxnq|udi

¥
q�1¹
i�1

|σipxjq|di

¥ Npaq,
as

q�1¹
i�1

|σipxjq|di � NK{Qpxjq � Nppxjqq
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and pxjq � a. Together with (3.17) we obtain T d ¥ Npaq. Thus, the assump-

tion T   Npaq1{d leads to x � 0. So apart from the origin there is no lattice

point of Λpaq lying in SF pT q, i.e. ZF pa, T q � 0.

For the second case recall from Lemma 3.15 part (2) that SF pT q is equal
to TSF p1q and bounded. In Lemma 3.17 we have shown that the volume of

SF p1q is
V � pn� 1qqpq � 1q�1{2VF 2rKpn�1qπsKpn�1q.

Thus, SF pT q has a volume of

V � pn� 1qqpq � 1q�1{2VF 2rKpn�1qπsKpn�1qT dpn�1q,

since we get an extra factor T for each of the dpn � 1q dimensions. Next,

Lemma 3.16 yields that BSF p1q is Lipschitz parametrizable of codimension

1, and so we deduce the same for BSF pT q � TBSF p1q (it follows immediately

from Lemma 3.13, and the fact that the number W of maps only depends

on K and F ). Moreover, we �nd a constant c1F with L ¤ c1FNpaq1{d, which
also depends only on K and F . Thus, L ¤ c1FT . By Lemma 3.18 the lattice

Λpaq has discriminant

det Λ �
�

2�sNpaq
a
|dK |

	n�1

with �rst successive minimum λ1 ¥ Npaq1{d. Thus,
V

det Λ
� pn� 1qqpq � 1q�1{2VF 2rKpn�1qπsKpn�1qT dpn�1q

2�sKpn�1qNpaqn�1
a
|dK |n�1 � CFT

dpn�1q
Npaqn�1 .

Therefore, we obtain by applying Lemma 3.10 with S � SF pT q�����pZF pa, T q � 1q � CFT
dpn�1q

Npaqn�1

����� ¤ c̃W

�
L

λ1
� 1


D�1

¤ c̃W

�
c1FT

Npaq1{d
� 1

�dpn�1q�1

,

and hence,�����ZF pa, T q � CFT
dpn�1q

Npaqn�1

����� ¤ c̃W

�
c1FT

Npaq1{d
� 1

�dpn�1q�1

� 1

where c̃ is a constant depending only on D. Since T {Npaq1{d ¥ 1, there is a

constant cF depending on K and F with the property that

c̃W

�
c1FT

Npaq1{d
� 1

�dpn�1q�1

� 1 ¤ cF
T dpn�1q�1

Npaqpn�1q�1{d

and the Lemma follows. �
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As seen in this proof, the points of SF pT q X Λpaq correspond to points

x � px0, . . . , xnq in an�1 or equivalently formulated these points correspond

to x0, . . . , xn in OK with

(3.18) x0OK � . . .� xnOK � a.

We write Z�F pa, T q for the number of points x with x0OK � . . .�xnOK � a.

Lemma 3.20. Let F be bounded measurable with volume VF such that BF
is Lipschitz parametrizable of codimension 2 (at least if q ¥ 1). Then, for

all T ¥ e we have����Z�F pa, T q � C�
F

T dpn�1q

Npaqn�1

���� ¤ c�FT
dpn�1q�1L0

for c�F depending only on K and F and C�
F � CF {ζKpn�1q with CF as in the

previous lemma. And L0 � 1 unless pd, nq � p1, 1q in which case L0 � log T .

Proof. Firstly, we notice that for nonzero x P On�1
K the inclusion (3.18)

is equivalent to x0OK � . . .� xnOK � ab for some nonzero integral ideal b.

We want to use Möbius inversion to count the number of points Z�F pa, T q.
Therefore, we need to generalize the Möbius function for integral ideals.

According to Proposition 1.12, every integral ideal in OK has a unique fac-

torization into prime ideals. Thus, we can de�ne the Möbius function for

integral ideals a as follows

µKpaq �
$&
%p�1qr, if a is a product of r distinct prime ideals ,

0, if a is divided by square of a prime ideal
.(3.19)

With a similar argument as in the proof of Proposition 2.5 we obtain by

using the Möbius function µK for integral ideals

Z�F pa, T q �
¸
b

µKpbqZF pab, T q.

For b � OK we obtain any subset in (3.18) and then we subtract the proper

ones. We may restrict b to Npbq ¤ T d, because Npabq � NpaqNpbq ¥ Npbq
and Lemma 3.19 shows that ZF pab, T q � 0 for Npabq ¡ T d.

By applying equation (4.9) and Lemma 3.19, we obtain�����Z�F pa, T q � C�
F

T dpn�1q

Npaqn�1

�����
�

��������
¸
b

Npbq¤T d

µKpbqZF pab, T q � CF
¸
b

µKpbq
Npbqn�1

T dpn�1q

Npaqn�1

��������
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�

��������
¸
b

Npbq¤T d

µKpbq
�
ZF pab, T q � CF

T dpn�1q

Npabqn�1

�

�
¸
b

Npbq¡T d

CFµKpbq T
dpn�1q

Npabqn�1

��������
¤

¸
b

Npbq¤T d

�����ZF pab, T q � CF
T dpn�1q

Npabqn�1

������
¸
b

Npbq¡T d

CF
T dpn�1q

Npabqn�1

¤
¸
b

Npbq¤T d

cF
T dpn�1q�1

Npabqn�1�1{d
�

¸
b

Npbq¡T d

CF
T dpn�1q

Npabqn�1 .

From Lemma 1.28 we deduce�����Z�F pa, T q � C�
F

T dpn�1q

Npaqn�1

����� ¤cF T dpn�1q�1

Npaqn�1�1{d
L0 � CF

T dpn�1q

Npaqn�1T
�dn

� cF
T dpn�1q�1

Npaqn�1�1{d
L0 � CF

T d

Npaqn�1

where L0 � 1 unless pd, nq � p1, 1q in which case L0 � log T .

In the case pd, nq � p1, 1q we have T dpn�1q�1L0 � T log T . If T ¥ e, it

follows T log T ¥ T � T d. If pd, nq � p1, 1q and T ¥ 1, we get

T dpn�1q�1L0 � T dpn�1q�1 ¥ T d.

Consequently,

cFT
dpn�1q�1

Npaqn�1�1{d
L0 � CFT

d

Npaqn�1 ¤
�

cF

Npaqn�1�1{d
� CF

Npaqn�1

�
T dpn�1q�1L0

¤ c�FT
dpn�1q�1L0

for a constant c�F depending on K and F , and the lemma is proven. �

As already mentioned on page 40, for every point x � px0 : . . . : xnq on
PnpKq we can assume that the coordinates xi lie in OK . So, every point

px0, . . . , xnq generates an integral ideal a in OK , namely

a � x0OK � . . .� xnOK .

We de�ne

Dpxq � Dpx0, . . . , xnq �

�
��

±
v�8

p|σvpx0q| � . . .� |σvpxnq|qdv

Npaq

�
�

1{d

.
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Since
±
v�8 |σvpaq|dvv � Nppaqq for all a in K� and since the absolute norm

is multiplicative, we easily see that this de�nition is independent of a choice

of coordinates of xi for x. By Qpxq we mean the �eld Q with all the ratios

xi{xj adjoined if xj � 0. As the xi are elements of K, we have Qpxq � K.

Proposition 3.21 (Northcott). The number of points x on PnpKq with

rQpxq : Qs � N and Dpxq ¤ S for N P N and S P R¡0 is �nite.

Proof. [12, Thm. 1]. �

Lemma 3.22. For every x P Kn�1zt0u with a � x0OK � . . .� xnOK it is

(3.20)
¹
v�8

max
0¤i¤n

t|σvpxiq|dvv u � Npaq�1.

Proof. Consider the factorization of the integral ideals px0q, . . . , pxnq
into prime ideals in OK , which is unique, due to Proposition 1.12. We have

px0q � p
e0,1
1 � � � pe0,rr , . . . , pxnq � p

en,1
1 � � � pen,rr

with ei,j in N0, and nonzero prime ideals p1, . . . , pr in OK , r ¥ 1. Then, it is

p
min0¤i¤ntei,1u
1 � � � pmin0¤i¤ntei,nu

r

the prime factorization of a � x0OK � . . . � xnOK in OK . By using the

de�nition of the nonarchimedian absolute value and the multiplicity of the

norm, we obtain¹
v�8

max
0¤i¤n

!
|σvpxiq|dvv

)
�

r¹
j�1

max
0¤i¤n

!
Nppjq�νpj pxiq

)
�

r¹
j�1

Nppjq�min0¤i¤ntei,ju

�N
�

r¹
j�1

p
min0¤i¤ntei,ju
j

��1

� Npaq�1.

�

Now we can already prove the �rst part of Theorem 3.8.

Proof of Theorem 3.8, part I. The theorem states that there are

only �nitely many rational points x on PnpKq with HKpxq ¤ B. As there

are q � 1 � rK � sK in�nite places of K, we get by applying Lemma 3.22±
v�8

p|σvpx0q| � . . .� |σvpxnq|qdv

Npaq ¤

±
v�8

pn� 1qdv max
0¤i¤n

t|σvpxiq|dvu

Npaq
¤ pn� 1q2pq�1q

¹
vPΩK

max
0¤i¤n

t|σvpxiq|dvu

� pn� 1q2pq�1qHd
Kpxq.

Hence, every x P PnpKq with HKpxq ¤ B satis�es Dpxq ¤ Bpn� 1q2pq�1q{d.

Due to Northcott's Theorem and the fact that there are only d�ϕpdq�1   8
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possible degrees for rQpxq : Qs where ϕ denotes Euler's totient function, the

number of these rational points x is �nite. �

We write ZpBq for the cardinality of the set of x in Kn�1zt0u with

HKpx0, . . . , xnq ¤ B. We have just seen that this set is �nite. Now, we get

to the �nal lemma until we can complete the proof of the theorem. Therefore,

we need the standard logarithmic map l : K� Ñ Rq�1 introduced as in (1.1).

We have seen that lpO�
Kq is a full rank lattice in Σ and that the group of

roots of unity µpKq is the kernel of l : O�
K Ñ Rq�1.

Lemma 3.23. Suppose that F is a bounded measurable fundamental domain

for lpO�
Kq with volume VF and BF is Lipschitz parametrizable of codimension

2 (at least if q ¥ 1). Then, for all B ¥ e we have

(3.21) ZpBq � ω�1
K

¸
aPCK

Z�F pa,Npaq1{dBq.

Proof. Without loss of generality we can assume that the coordinates

xi of every x � px0, . . . , xnq in Kn�1 are in OK by multiplying with the

least common denominator. Every point x in On�1
K zt0u corresponds to the

ideal a � x0OK � . . . � xnOK in OK . As a � x de�nes the same point as x

on PnpKq for all a in K�, this ideal is unique up to principal ideals. Hence,

every x on PnpKq corresponds to a unique ideal class, and we �nd an integral

ideal class representative a P CK with

(3.22) x0OK � . . .� xnOK � a

for a representative x of x in On�1
K . This representative x is unique up to

multiplication with units, since xiηOK � xiOK for every η P O�
K .

Because of condition p2q of the de�nition of a Lipschitz distance function

3.4, for every 1 ¤ i ¤ q � 1 and η P O�
K the following identities hold

log
�

maxpσipηxqqdi
	
� log

�
|σipηq|di maxpσipxqqdi

	
� di log |σipηq| � di log maxpσipxqq.

(3.23)

By assumption F is a fundamental domain for lpO�
Kq. Hence, due to Proposi-

tion 1.13, there exists a system of fundamental units ε1, . . . , εq in O�
K unique

up to roots of unity such that lpε1q, . . . , lpεqq lie in F . Moreover, these lpεiq
build a basis of the lattice lpO�

Kq in Σ.

We see that the set F p8q � F�δR is a fundamental domain for Rq�1 un-

der the additive action of lpO�
Kq. Thus, there are unique integers y1, . . . , yq,

a unique element β in F and a unique real number t such that

β � tδ � di log maxpσipxqq � y1lpε1q � . . .� yqlpεqq � log
�

maxpσipηxqqdi
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where we used the identities (3.23) in the last equation, and the fact that

η � εy11 � � � εyqq x is unique up to roots of unity. So, there is only one repre-

sentative x unique up to roots of unity with the property that

plog maxpσ1pxqqd1 , . . . , log maxpσq�1pxqqdq�1q

lies in F p8q. This is equivalent to

pmaxpσ1pxqqd1 , . . . ,maxpσq�1pxqqdq�1q

lying in expF p8q. This yields the factor ω�1
K .

We have already seen that the inequation
±q�1
i�1 Xi ¤ T d holds for every

pX1, . . . , Xq�1q in expF pT q (cf. Lemma 3.13). By taking Xi � maxpσipxqqdi
for 1 ¤ i ¤ q � 1, i.e. σpxq P SF pT q, we obtain

q�1¹
i�1

maxpσipxqqdi{d ¤ T,

which is equivalent to

HKpxq ¤ TNpaq�1{d,

due to Lemma 3.22. Here x denotes the corresponding rational point of x on

PnpKq. As we are interested in the points x in Kn�1zt0u with HKpxq ¤ B

we set B � TNpaq�1{d or equivalently T � Npaq1{dB.
To sum up, for every rational point x P PnpKq we choose a representative

x P On�1
K zt0u with HKpxq ¤ B satisfying equation (3.22) for an integral

ideal class representative a. Using SF pT q we can choose the representative

x unique up to roots of unity and Z�F pa,Npaq1{dBqω�1
K yields the desired

number of points corresponding to the integral ideal class a. Then, we obtain

ZpBq by summing over any set of integral ideal class representatives. �

Finally, we can complete the proof of our Theorem.

Proof of Theorem 3.8, part II. Let F be a fundamental domain for

the lattice lpO�
Kq � Rq�1 (at least if q ¥ 1). For example F can be taken

as a parallelepiped. Then, the boundary of F consists of the faces of this

parallelepiped, i.e. the boundary of F is pq � 1q-dimensional and can be

parametrized, for example, by continuously di�erentiable maps. Hence, the

boundary BF is Lipschitz parametrizable of codimension 2, and we can apply

the previous Lemma. Since Npaq ¥ 1 for every nonzero integral ideal a, we

get Npaq1{dB ¥ e for all B ¥ e. Therefore, we deuce by using Lemma 3.20

and Lemma 3.23
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ZpBq �ω�1
K

¸
aPCK

Z�F pa,Npaq1{dBq

�ω�1
K

¸
aPCK

�
CFNpaqn�1Bdpn�1q

ζKpn� 1qNpaqn�1 �O
�
Npaqn�1�1{dBdpn�1q�1L0

	�

�ω�1
K

pn� 1qq?
q � 1

2sKpn�1qa
|dK |n�1

VF 2rKpn�1qπsKpn�1qBdpn�1q

ζKpn� 1q
¸
aPCK

1

�O
�
Npaqn�1�1{dBdpn�1q�1L0

	
where L0 � 1 unless pd, nq � p1, 1q in which case L0 � logB. Thanks to

equation (1.2), the regulator RK is equal to VF {
?
q � 1. The sum taken over

any set of integral ideal class representatives of K is the class number hK ,

by de�nition. And as hK is �nite, there is a constant c0 ¡ 0 with Npaq ¤ c0

for every a P CK . Hence, we can omit the factor Npaq in the above error

term. Thus, together with De�nition 3.7 the equation becomes

ZpBq � SKpnqBdpn�1q �O
�
Bdpn�1q�1L0

	
.

This completes the proof. �

Remark 3.24. Similarly to Remark 2.6, let us consider the asymptotic

behaviour of

N1,KpBq � #
 
x P PnpKq �� Hn�1

K pxq ¤ B
(

as B Ñ 8, since we consider the height function to the power of n � 1 in

the following chapter. Theorem 3.8 implies

N1,KpBq � NK

�
B1{pn�1q

	
� SKpnqBd �O

�
Bd�1{pn�1qL0

	
for all B ¥ e where L0 � 1 unless pd, nq � p1, 1q in which case L0 � logB.

Thus, N1,KpBq � SKpnqBd as B Ñ8.



CHAPTER 4

Rational Points on Products of Projective Spaces

over Number Fields

In this chapter we use the same notation and assumptions as in the

previous chapter. After considering the asymptotic behaviour of the number

of rational points with bounded height on PnpKq, we want to generalize the

theory to the asymptotic behaviour of the number of rational points with

bounded height on products of projective spaces overK, that is
±m
i�1 PnipKq

for m,n1, . . . , nm P N.

De�nition 4.1. For x � px1, . . . , xmq in
±m
i�1 PnipKq the height Hm,K of x

is de�ned by

Hm,Kpxq �
m¹
i�1

HKpxiqni�1

where HKpxiq denotes the height of xi on PnipKq (cf. De�nition 3.1).

Lemma 4.2. The height Hm,K is wellde�ned on
±m
i�1 PnipKq and satis�es

Hm,Kpxq ¥ 1 for every rational point x in
±m
i�1 PnipKq.

Proof. We have seen in Lemma 3.2 that the standard height HK on

PnipKq is wellde�ned for each 1 ¤ i ¤ m. So we easily see that the above

de�ned height is wellde�ned, too. Further, Lemma 3.2 gives us HKpxiq ¥ 1

for every xi P PnipKq. Hence, immediately we deduce the same forHm,K . �

For all real numbers B we set

Nm,KpBq � #

#
x � px1, . . . , xmq P

m¹
i�1

PnipKq
����� Hm,Kpxq ¤ B

+
.

Theorem 4.3. For all real B and m,n1, . . . , nm in N with m ¥ 2 there are

only �nitely many rational points x in
±m
i�1 PnipKq with Hm,Kpxq ¤ B. For

B ¥ e their number is

Nm,KpBq �
±m
i�1 SKpniqdm�1

pm� 1q! Bd logm�1B �O
�
Bd logm�2B

	
.

Thus,

Nm,KpBq �
±m
i�1 SKpniqdm�1

pm� 1q! Bd logm�1B as B Ñ8.

63
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Similarly to chapter 2 we proof this theorem by induction on m. There-

fore, we use the case m � 2 as the base case. But before starting, let us note

that Nm,KpBq � 0 for all B   1, due to Lemma 4.2. With the same lemma

we deduce

Nm,KpBq ¤
�

max
nPtn1,...,nmu

 
x P PnpKq �� Hn�1

K pxq ¤ B
(
m

.

Theorem 3.8 implies that 
x P PnpKq �� Hn�1

K pxq ¤ B
(

is �nite for each n P tn1, . . . , nmu. Hence, Nm,KpBq is �nite, too.

4.1. Products of Two Projective Spaces over Number Fields

Let m � 2 and set a � n1, b � n2. Let x � py, zq be a rational

point on
�
Pa � Pb

� pKq. For reasons of symmetry we can assume a ¤ b

without loss of generality. We write y � py0 : . . . : yaq and z � pz0 : . . . : zbq
with corresponding vectors y and z in Ka�1zt0u and Kb�1zt0u, respectively.
With the same type of argument as in the previous chapter, we can assume

that y and z have coordinates in the ring of integers OK . Also, we have

already discussed that xyyOK � y0OK � . . .�yaOK is an ideal in OK , which

is unique up to principal ideals (cf. proof of Lemma 3.23). Hence, we can �nd

a unique a in CK such that y0OK� . . .�yaOK lies in the ideal class of a. By

multiplying with a suitable element of K�, we can choose a representative

y P Oa�1
K zt0u for y with y0OK�. . .�yaOK � a. This representative is unique

up to scalar multiplication by units in O�
K . Analogously we can choose a

representative z P Ob�1
K zt0u for z unique up to scalar multiplication by units

in O�
K satisfying z0OK � . . . � zbOK � b for an ideal class representative b

in CK . Again we note that the cardinality of O�
K might me in�nite.

Let F be a bounded measurable fundamental domain for lpO�
Kq with

volume VF and let BF be Lipschitz parametrizable of codimension 2 (at

least if q ¥ 1). We have seen in the proof of Lemma 3.23 that we can choose

the representative y unique up to roots of unity by requiring σpyq P SF p8q.
The same is true for z. Hence, we obtain

N2,KpBq �#
!
x � py, zq P

�
Pa � Pb

	
pKq

��� Ha�1
K pyqHb�1

K pzq ¤ B
)

� 1

ω2
K

¸
pa,bqPC2

K

#
!
y P Oa�1

K zt0u, z P Ob�1
K zt0u

��� xyyOK � a,

xzyOK � b, σpyq P SF p8q, σpzq P SF p8q, Ha�1
K pyqHb�1

K pzq ¤ B
)
.

Recall that q � rK � sK � 1. Set

H̃Kpyq �
q�1¹
i�1

max
0¤j¤a

t|σipyjq|udi{d.(4.1)
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With Lemma 3.22 we obtain

N2,KpBq � 1

ω2
K

¸
pa,bqPC2

K

#
!
y P Oa�1

K zt0u, z P Ob�1
K zt0u

���
xyyOK � a, xzyOK � b, σpyq P SF p8q, σpzq P SF p8q,
H̃a�1
K pyqH̃b�1

K pzq ¤ BNpaqpa�1q{dNpbqpb�1q{d
)
.

Let us recall that in the caseK � Q we got rid of the greatest common divisor

condition for y and z by using Möbius inversion. Therefore, we summed

over the natural numbers, added the factor µQpkq and the greatest common

divisor condition was replaced by k � y. The latter can be formulated

equivalently by using ideals. It is k � y equivalent to y0Z� . . .� yaZ � kZ,
i.e. xyyZ � pkq. Thus, equivalently we could have summed over the principal

ideals a in Z, added the factor µQpaq and replaced the greatest common

divisor condition by xyyZ � pkq. Thereby, we use the generalized Möbius

function for integral ideals, de�ned as in (3.19). Thus, by modifying the

Möbius inversion to the general situation for arbitrary number �elds K we

obtain

N2,KpBq � 1

ω2
K

¸
pa,bqPC2

K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

#
!
y P Oa�1

K zt0u, z P Ob�1
K zt0u

��� xyyOK � ac, xzyOK � bd,

σpyq P SF p8q, σpzq P SF p8q,
H̃a�1
K pyqH̃b�1

K pzq ¤ BNpaqpa�1q{dNpbqpb�1q{d
)

where the sums are taken over all integral ideals c respectively d in OK . We

may restrict c to Npcq ¤ Bd{pa�1q and d to Npdq ¤ Bd{pb�1q{Npcqpa�1q{pb�1q.

We have xzyOK � bd and thus Npbdq ¤ NpxzyOK q. Moreover, pzjq � xzyOK ,
i.e. NpxzyOK q ¤ Nppzjqq (0 ¤ j ¤ b). With equation (3.15) for zj we obtain

Npbq ¤ Npbdq ¤ NpxzyOK q ¤ H̃d
Kpzq.

Analogously, we get

Npacq ¤ H̃d
Kpyq.

Therefore,

Npcq ¤ H̃d
Kpyq
Npaq ¤ Bd{pa�1qNpaqNpbqpb�1q{pa�1q

H̃
dpb�1q{pa�1q
K pzqNpaq

¤ Bd{pa�1q(4.2)

and

Npdq ¤ H̃d
Kpzq
Npbq ¤ Bd{pb�1qNpaqpa�1q{pb�1qNpbq

H̃
dpa�1q{pb�1q
K pyqNpbq

¤ Bd{pb�1q

Npcqpa�1q{pb�1q
.(4.3)
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4.1.1. Upper and Lower Bound. Take a closer look at H̃Kpyq for
y P Oa�1

K zt0u. Without loss of generality let y0 be unequal to 0. We have

H̃Kpyq �
q�1¹
i�1

max
0¤j¤a

t|σipyjq|udi{d ¥
q�1¹
i�1

|σipy0q|di{d �
��NK{Qpy0q

��1{d ¥ 1,

because NK{Qpy0q P Zzt0u, since y0 P OKzt0u. Thus, H̃Kpyq takes values
between 1 and B̄ � B1{pa�1qNpaq1{dNpbqpb�1q{pdpa�1qq. De�ne for N P N

aN,1 �#
!
y P Oa�1

K zt0u
��� xyyOK � ac, σpyq P SF p8q,

N ¤ H̃Kpyq   N � 1
)
,

aN,2 �#
!
y P Oa�1

K zt0u
��� xyyOK � ac, σpyq P SF p8q,

N � 1   H̃Kpyq ¤ N
)
.

Clearly, aN,1 ¤ ZF,a pac, N � 1q and aN,2 ¤ ZF,a pac, Nq (cf. p. 55 for the

de�nition of ZF ). Thus, we deduce with Lemma 3.19

aN,1 � 0 if N   Npacq1{d � 1 and aN,2 � 0 if N   Npacq1{d.

Set mac � max
!

1,Npacq1{d � 1
)
. By de�nition of ZF,b it is

#

#
z P Ob�1

K zt0u
����� xzyOK � bd, σpzq P SF p8q, H̃Kpzq ¤ B̄pa�1q{pb�1q

N pa�1q{pb�1q

+

� ZF,b

�
bd,

B̄pa�1q{pb�1q

N pa�1q{pb�1q

�
.(4.4)

This vanishes if

B̄pa�1q{pb�1q

N pa�1q{pb�1q
� B1{pb�1qNpaqpa�1q{pdpb�1qqNpbq1{d

N pa�1q{pb�1q
  Npbdq1{d,

which is equivalent to

N ¡ B1{pa�1qNpaq1{d
Npdqpb�1q{pdpa�1qq

� B̄d.

Further, H̃Kpyq is bounded by B̄. As B̄d ¤ B̄, due to NpdqNpbq ¥ 1, and

Npacq1{d ¤ B̄d, thanks to equation (4.3), we can narrow N to the interval

rmac, B̄ds and rNpacq1{d, B̄ds, respectively. We �nd an upper and a lower

bound for N2,KpBq by splitting the set in the formula for N2,KpBq into a set
of vectors y and a set of vectors z

N2,KpBq ¤ 1

ω2
K

¸
pa,bqPC2

K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

¸
mac¤N¤B̄d

aN,1 � ZF,b
�
bd,

B̄pa�1q{pb�1q

N pa�1q{pb�1q

�
,
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N2,KpBq ¥ 1

ω2
K

¸
pa,bqPC2

K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

¸
Npacq1{d¤N¤B̄d

aN,2 � ZF,b
�
bd,

B̄pa�1q{pb�1q

N pa�1q{pb�1q

�
.

Lemma 3.19 implies

N2,KpBq ¤ 1

ω2
K

¸
pa,bqPC2

K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

¸
mac¤N¤B̄d

aN,1

�
CF,b

B̄dpa�1q

Ndpa�1qNpbdqb�1

�O
�

B̄dpa�1q�pa�1q{pb�1q

Ndpa�1q�pa�1q{pb�1qNpbdqb�1�1{d

��

�
¸

pa,bqPC2
K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

�
� ¸
mac¤N¤B̄d

aN,1
CF,b
ω2
K

BdNpaqa�1

Ndpa�1qNpdqb�1

�O
�
� ¸
mac¤N¤B̄d

aN,1
Bd�1{pb�1qNpaqa�1�pa�1q{pdpb�1qq

Ndpa�1q�pa�1q{pb�1qNpdqb�1�1{d

�

�
.

Using Abel's summation formula (Proposition 1.22) to compute the sums

over N yields

N2,KpBq ¤
¸

pa,bqPC2
K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

�
�CF,b
ω2
K

¸
N¤B̄d

aN,1 � CF,b
ω2
K

» B̄d

mac

¸
N¤t

aN,1 � d

dt

BdNpaqa�1

tdpa�1qNpdqb�1
dt

�O

�
� ¸
N¤B̄d

aN,1 �
» B̄d

mac

¸
N¤t

aN,1

� d

dt

Bd�1{pb�1qNpaqa�1�pa�1q{pdpb�1qq

tdpa�1q�pa�1q{pb�1qNpdqb�1�1{d
dt

�

�
.
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We note that ¸
N mac

aN,1 � 0 and
¸

N Npacq

aN,2 � 0,

according to Lemma 3.19. Furthermore, we have¸
N¤t

aN,1 �
!
y P Oa�1

K zt0u
��� xyyOK � ac, σpyq P SF p8q, H̃Kpyq   t� 1

)
¤ZF,a pac, t� 1q(4.5)

as well as¸
N¤t

aN,2 �
!
y P Oa�1

K zt0u
��� xyyOK � ac, σpyq P SF p8q, H̃Kpyq ¤ t

)
�ZF,a pac, tq .(4.6)

These results and the chain rule imply

N2,KpBq ¤CF,b
ω2
K

¸
pa,bqPC2

K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

�
ZF,a

�
ac, B̄d � 1

�� dpa� 1qBdNpaqa�1

Npdqb�1

» B̄d

mac

ZF,a pac, t� 1q
tdpa�1q�1

dt

�O

�
ZF,a

�
ac, B̄d � 1

�� Bd�1{pb�1qNpaqa�1�pa�1q{pdpb�1qq

Npdqb�1�1{d

�
» B̄d

mac

ZF,a pac, t� 1q
tdpa�1q�1�pa�1q{pb�1q

dt

��
.

To estimate ZF,a we apply Lemma 3.19 again. It is Bd ¥ 1, according to

equation (4.3) and Npacq ¥ 1. We obtain

N2,KpBq ¤CF,b
ω2
K

¸
pa,bqPC2

K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

�
O

�
Bd

Npdqb�1Npcqa�1

�
� dpa� 1qBdNpaqa�1

Npdqb�1

�
» B̄d

mac

�
CF,apt� 1qdpa�1q

Npacqa�1 �O

�
pt� 1qdpa�1q�1

Npacqa�1�1{d

��
dt

tdpa�1q�1

�O

�
O

�
Bd

Npdqb�1Npcqa�1

�
� Bd�1{pb�1qNpaqa�1�pa�1q{pdpb�1qq

Npdqb�1�1{d

�
» B̄d

mac

O

�
pt� 1qdpa�1q

Npacqa�1

�
dt

tdpa�1q�1�pa�1q{pb�1q

��
.
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For t ¥ 1 it is t� 1 � Optq and

pt� 1qdpa�1q 1

tdpa�1q�1
� 1

t
�O

�
1

t2



.

Hence,

N2,KpBq ¤
¸

pa,bqPC2
K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

�
dpa� 1qCF,aCF,bBd

ω2
KNpcqa�1Npdqb�1

» B̄d

mac

1

t
dt

�O

�
Bd

Npcqa�1Npdqb�1

» B̄d

mac

1

t2
dt

�

�O
�

BdNpaq1{d
Npcqa�1�1{dNpdqb�1

» B̄d

mac

1

t2
dt

�(4.7)

�O
�

Bd

Npcqa�1Npdqb�1

�

�O
�
Bd�1{pb�1qNpaq�pa�1q{pdpb�1qq

Npcqa�1Npdqb�1�1{d

» B̄d

mac

1

t1�pa�1q{pb�1q
dt

��
.

As hK is �nite, there is a constant c0 ¡ 0 such that Npaq ¤ c0 for every

a P CK . Hence, we can omit the factor Npaq1{d in the above error terms, and

we see that the �rst error term is dominated by the second one.

Firstly, we take a look at the leading term in the above formula. It is

mac � O
�
Npacq1{d

	
� O

�
Npcq1{d

	
, as Npacq ¥ 1. Thus, by using logarith-

mic identities in the second equation and Lemma 1.21 with r � 1{2 in the

last one, we obtain for the main term in (4.7)

dpa� 1qCF,aCF,bBd

ω2
KNpcqa�1Npdqb�1

» B̄d

mac

1

t
dt

�dpa� 1qCF,aCF,bBd

ω2
KNpcqa�1Npdqb�1

�
log

�
B1{pa�1qNpaq1{d
Npdqpb�1q{pdpa�1qq

�
� log pmacq

�

� dCF,aCF,bB
d

ω2
KNpcqa�1Npdqb�1

logB

�O

�
Bd

Npcqa�1Npdqb�1
log

�
Npcq1{d

Npdqpb�1q{pdpa�1qq

��

� dCF,aCF,bB
d

ω2
KNpcqa�1Npdqb�1

logB �O

�
Bd

Npcqa�1�1{p2dqNpdqb�1



.
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Next, consider the error terms in (4.7). It is pa � 1q{pb � 1q ¡ 0 and

hence, we have

O

�
Bd�1{pb�1q

Npcqa�1Npdqb�1�1{d

�» B̄d

mac

tpa�1q{pb�1q�1dt

�O
�

Bd�1{pb�1q

Npcqa�1Npdqb�1�1{d

�

�
�
��

B1{pa�1qNpaq1{d
Npdqpb�1q{pdpa�1qq

�pa�1q{pb�1q

�O
�
Npcqpa�1q{pdpb�1qq

	�

�O
�

Bd

Npcqa�1Npdqb�1



�O

�
Bd�1{pb�1q

Npcqa�1�pa�1q{pdpb�1qqNpdqb�1�1{d

�
.

For the second error term we obtain

O

�
Bd

Npcqa�1�1{dNpdqb�1


» B̄d

mac

t�2dt

�O
�

Bd

Npcqa�1�1{dNpdqb�1


�
Npdqpb�1q{pdpa�1qq

B1{pa�1qNpaq1{d �O

�
1

Npcq1{d

�

�O
�

Bd

Npcqa�1Npdqb�1



�O

�
Bd�1{pa�1q

Npcqa�1�1{dNpdqb�1�pb�1q{pdpa�1qq

�
.

By combining these results we get

N2,KpBq ¤
¸

pa,bqPC2
K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

�
dCF,aCF,bB

d

ω2
KNpcqa�1Npdqb�1

logB

�O

�
Bd

Npcqa�1�1{p2dqNpdqb�1




�O

�
Bd

Npcqa�1Npdqb�1


(4.8)

�O

�
Bd�1{pa�1q

Npcqa�1�1{dNpdqb�1�pb�1q{pdpa�1qq

�

� O

�
Bd�1{pb�1q

Npcqa�1�pa�1q{pdpb�1qqNpdqb�1�1{d

��
.

We see that the second error term is dominated by the �rst one, because

Npcqa�1�1{p2dq ¤ Npcqa�1.
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The same arguments show that

N2,KpBq ¥
¸

pa,bqPC2
K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

�
O

�
Bd

Npdqb�1Npcqa�1

�
� CF,b

ω2
K

dpa� 1qBdNpaqa�1

Npdqb�1

�
» B̄d

Npacq1{d

�
CF,at

dpa�1q

Npacqa�1 �O

�
tdpa�1q�1

Npacqa�1�1{d

��
dt

tdpa�1q�1

�O

�
O

�
Bd

Npdqb�1Npcqa�1

�
� Bd�1{pb�1qNpaqa�1�pa�1q{pdpb�1qq

Npdqb�1�1{d

�
» B̄d

Npacq1{d
O

�
tdpa�1q

Npacqa�1

�
dt

tdpa�1q�1�pa�1q{pb�1q

��

�
¸

pa,bqPC2
K

¸
c

Npcq¤Bd{pa�1q

µKpcq
¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq

�
dpa� 1qBdCF,aCF,b

ω2
KNpcqa�1Npdqb�1

» B̄d

Npacq1{d

dt

t
�O

�
Bd

Npcqa�1Npdqb�1

�

�O

�
Bd

Npcqa�1�1{dNpdqb�1

» B̄d

Npacq1{d

dt

t2

�

�O

�
Bd�1{pb�1qNpaq�pa�1q{pdpb�1qq

Npcqa�1Npdqb�1�1{d

» B̄d

Npacq1{d

dt

t1�pa�1q{pdpb�1qq

��
.

As Npacq1{d � O
�
Npcq1{d

	
, we obtain with similar calculations, as made for

(4.7), that N2,KpBq is less than (4.8). For real valued functions f, g with

gpBq ¡ 0 it is

fpBq �OpgpBqq ¤ N2,KpBq ¤ fpBq �OpgpBqq
equivalent to

|N2,KpBq � fpBq| ¤ O pgpBqq ,
which implies N2,KpBq � fpBq � O pgpBqq. Thus, N2,KpBq is equal to the

computed main and error terms in (4.8).

4.1.2. The Main Term. Firstly, we notice that the two inner sums

in the main term in (4.8) do not depend on a or b. Thus, the sum over

pa, bq P C2
K yields the factor h2

K , since CK has cardinality hK . For s with

real part larger than 1 we de�ne the Dedekind zeta function over K by

ζKpsq �
¹
p

1

1� 1
Nppqs
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where the product is taken over every nonzero prime ideal p of K. The

Dedekind zeta function has the additive expression

ζKpsq �
¸
a

1

Npaqs

(cf. [8, p. 160]). Hence, by using Proposition 1.12 we see that

1

ζKpsq �
¹
p

�
1� 1

Nppqs


�

¸
a

µKpaq
Npaqs .(4.9)

Further, it is ¸
c

Npcq¤Bd{pa�1q

µKpcq
Npcqa�1

¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq
Npdqb�1

�
¸
c

µKpcq
Npcqa�1

¸
d

µKpdq
Npdqb�1

�
¸
c

Npcq¤Bd{pa�1q

µKpcq
Npcqa�1

¸
d

Npdq¡ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq
Npdqb�1

�
¸
c

Npcq¡Bd{pa�1q

µKpcq
Npcqa�1

¸
d

µKpdq
Npdqb�1

.

Thus, Lemma 1.28 and equation (4.9) imply¸
c

Npcq¤Bd{pa�1q

µKpcq
Npcqa�1

¸
d

Npdq¤ Bd{pb�1q

Npcqpa�1q{pb�1q

µKpdq
Npdqb�1

� 1

ζKpa� 1qζKpb� 1q �O

�
��B�db{pb�1q

¸
c

Npcq¤Bd{pa�1q

1

Npcqa�1�pa�1qb{pb�1q

�
�

�O
�
B�da{pa�1q

	
.

Recall equation (2.4). It is pa � 1q{pb � 1q � 1 if and only if a � b, and

otherwise it is 0   pa � 1q{pb � 1q   1, as a ¤ b by assumption. Thus, if

a   b, Lemma 1.28 and equation (2.5) show that

O

�
��B�db{pb�1q

¸
c

Npcq¤Bd{pa�1q

1

Npcqpa�1q{pb�1q

�
�

�O
�
B�db{pb�1qBd{pa�1qp1�pa�1q{pb�1qq

	
�O

�
B�da{pa�1q

	
.
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If a � b, Lemma 1.28 yields

O

�
��B�db{pb�1q

¸
c

Npcq¤Bd{pa�1q

1

Npcqpa�1q{pb�1q

�
�

�O
�
B�da{pa�1q max

!
log

�
Bd{pa�1q

	
, 1
)	

�O
�
B�da{pa�1q logB

	
.

In the last equation we used logarithmic identities and the fact that B ¥ e.

Hence, we obtain for the main term in (4.8)

dCF,aCF,bh
2
KB

d logB

ω2
K

�
1

ζKpa� 1qζKpb� 1q �O
�
B�da{pa�1q logB

	


� CF,aCF,bh
2
K

ω2
KζKpa� 1qζKpb� 1qdB

d logB �O
�
Bd

	
,

since O
�
log2B

� � O
�
Bda{pa�1q

�
, due to Lemma 1.21. Finally, consider the

factor CF,ahK{pωKζKpa�1qq. With the de�nition of CF,a (cf. Lemma 3.19),

Schanuel's constant (cf. De�nition 3.7) and equation (1.2) we get

CF,ahK
ωKζKpa� 1q �

hK
ωKζKpa� 1q

pa� 1qq?
q � 1

2sKpa�1qb
|dK |a�1

VF 2rKpa�1qπsKpa�1q

�pa� 1qq
�

2rK p2πqsKa
|dK |

�a�1
hKRK

ωKζKpa� 1q
�SKpaq.

(4.10)

Finally, the main term in the formula for N2,KpBq becomes

SKpaqSKpbqdBd logB �O
�
Bd

	
.

4.1.3. The Error Terms. Analogously to The Main Term, we see that

the sum taken over pa, bq P C2
K , occurring in each error term, yields the factor

h2
K , as the inner sums do not depend on a or b. As hK is �nite, we can omit

this factor in all error terms.

Clearly, the �rst and the second error term in (4.8) lie in O
�
Bd

�
, thanks

to Lemma 1.28. To compute the third error term, we examine for which

a, b, d the exponent of Npdq is greater than, equal to or less than 1. It is

b� 1� b� 1

dpa� 1q ¡ 1

if and only if

b ¡ 1

dpa� 1q � 1
.
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As dpa � 1q � 1 is greater than or equal to 1 with equality if and only if

pa, dq � p1, 1q, we see that the above inequality holds for all natural numbers
a, b, d unless a � b � d � 1. In the latter case we have

b� 1� b� 1

dpa� 1q � 1.

If pa, dq � p1, 1q, we have a � 1 � 1{d ¡ 1, and Lemma 1.28 yields that the

third error term is in O
�
Bd�1{pa�1q

�
. If pa, dq � p1, 1q and b � 1, we obtain

O
�
Bd�1{pa�1q max

!
log

�
Bd{pa�1q

	
, 1
)	

� O
�
Bd

	
with Lemma 1.21. If pa, b, dq � p1, 1, 1q, Lemma 1.21 and 1.28 imply

O
�
Bd�1{pa�1q

	 �������
¸
c

Npcq¤Bd{pa�1q

µKpcq
Npcqa�1�1{d

O

�
max

#
log

�
Bd{pb�1q

Npcqpa�1q{pb�1q

�
, 1

+� �������
�O

�
B1{2 logB

	 ¸
c

Npcq¤B1{2

1

Npcq

�O
�
B1{2 log2B

	
�O

�
Bd

	

(4.11)

for the third error term. Finally, consider the fourth error term in (4.8).

It is b � 1 � 1{d ¡ 1 if and only if pb, dq � p1, 1q, and b � 1 � 1{d � 1 if

pb, dq � p1, 1q. Hence, if pb, dq � p1, 1q, the last error term becomes

O
�
Bd�1{pb�1q

	 �������
¸
c

Npcq¤Bd{pa�1q

1

Npcqa�1�pa�1q{pdpb�1qq
Op1q

�������
and

pa� 1q � a� 1

dpb� 1q � pa� 1q
�

1� 1

dpb� 1q


¡ a� 1

2
¥ 1,

since dpb�1q ¡ 2. Therefore, according to Lemma 1.28, the error term above

reduces to O
�
Bd�1{pb�1q

�
, which is contained in O

�
Bd

�
. If pb, dq � p1, 1q,

we also have a � 1. Thus, Lemma 1.28 and 1.21 yield for the last error term

O
�
Bd�1{pb�1q

	 �������
¸
c

Npcq¤Bd{pa�1q

max
!

log
�

Bd{pb�1q

Npcqpa�1q{pb�1q

	
, 1
)

Npcqa�1�pa�1q{pdpb�1qq

������� .
Analogously to (4.11) this term becomes O

�
Bd

�
.
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We deduce that the error terms sum up to O
�
Bd

�
. So in total, we obtain

N2,KpBq � dSKpaqSKpbqBd logB �O
�
Bd

	
for all B ¥ e, and Theorem 4.3 is proven for m � 2.

4.2. Arbitrary Products of Projective Spaces over Number Fields

Now, let m ¥ 3. To prove the induction step, we use the same idea as in

the case K � Q (cf. Section 2.3). That means, we use Möbius inversion for

the �rst vector and apply the induction hypothesis to the remaining m � 1

vectors. To do so, we use the same approach as in the previous section.

Again, without loss of generality we can assume n1 ¤ . . . ¤ nm for rea-

sons of symmetry. Let x � px1, . . . , xmq be a rational point in
±m
i�1 PnipKq.

We write xi for the corresponding vector of xi in K
ni�1zt0u (1 ¤ i ¤ m).

Recall that CK denotes a set of integral ideal class representatives of OK . Let

F be a bounded measurable fundamental domain for lpO�
Kq with volume VF

and let BF be Lipschitz parametrizable of codimension 2 (at least if q ¥ 1).

Then, for every xi we can choose a representative xi in Oni�1
K zt0u unique up

to roots of unity such that σpxiq P SF p8q and xi,0OK � . . . � xi,niOK � a

for an a in CK (1 ¤ i ¤ m) (cf. Section 4.1). Therefore, we obtain

Nm,KpBq � 1

ωK

¸
aPCK

#

#
x1 P On1�1

K zt0u, px2, . . . , xmq P
m¹
i�2

PnipKq
�����

xx1yOK � a, σpx1q P SF p8q,
m¹
i�1

Hni�1
K pxiq ¤ B

+
.

Equation (4.1) and Lemma 3.22 yield

Nm,KpBq � 1

ωK

¸
aPCK

#

#
x1 P On1�1

K zt0u, px2, . . . , xmq P
m¹
i�2

PnipKq
�����

xx1yOK � a, σpx1q P SF p8q,

H̃n1�1
K px1q

m¹
i�2

Hni�1
K pxiq ¤ BNpaqpn1�1q{d

+
.

Analogously to the case m � 2, Möbius inversion for the vector x1 implies

NmpBq � 1

ωK

¸
aPCK

¸
b

Npbq¤Bd{pn1�1q

µKpbq#
#
x1 P On1�1

K zt0u,

px2, . . . , xmq P
m¹
i�2

PnipKq
����� xx1yOK � ab, σpx1q P SF p8q,

H̃n1�1
K px1q

m¹
i�2

Hni�1
K pxiq ¤ BNpaqpn1�1q{d

+
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where we can restrict b to Npbq ¤ Bd{pn1�1q, due to equation (4.2).

4.2.1. Upper and Lower Bound. Similarly to the case m � 2 we set

aN,1 � #
!
x1 P On1�1

K zt0u
��� xx1yOK � ab, σpx1q P SF p8q,

N ¤ H̃Kpx1q   N � 1
)
,

aN,2 � #
!
x1 P On1�1

K zt0u
��� xx1yOK � ab, σpx1q P SF p8q,

N � 1   H̃Kpx1q ¤ N
)
.

De�ne mab � max
!

1,Npabq1{d � 1
)
. Analogously to the previous section,

we can �nd an upper and a lower bound for Nm,KpBq by splitting the set in

the formula for Nm,KpBq

Nm,KpBq ¤ 1

ωK

¸
aPCK

¸
b

Npbq¤Bd{pn1�1q

µKpbq
¸

mab¤N¤B
1{pn1�1qNpaq1{d

aN,1

�Nm�1,K

�
BNpaqpn1�1q{d

Nn1�1

�
,

Nm,KpBq ¥ 1

ωK

¸
aPCK

¸
b

Npbq¤Bd{pn1�1q

µKpbq
¸

Npabq1{d¤N¤B1{pn1�1qNpaq1{d

aN,2

�Nm�1,K

�
BNpaqpn1�1q{d

Nn1�1

�
.

If the argument of Nm�1,K is at least e, i.e. if

N ¤ B1{pn1�1qNpaq1{d
e1{pn1�1q

� B̃,

the induction hypothesis gives us

Nm�1,K

�
BNpaqpn1�1q{d

Nn1�1

�
�cm�1

Npaqn1�1Bd logm�2
�
BNpaqpn1�1q{d

Nn1�1

	
Ndpn1�1q

�O

�
Bd

Ndpn1�1q
logm�3

�
BNpaqpn1�1q{d

Nn1�1

��

where we can omit the factor Npaq in the error term, due to Npaq ¤ c0, and

cm�1 � dm�2
±m
i�2 SKpniq

pm� 2q! .

Now, we show that for every B   e and m ¥ 3 it is

Nm�1,KpBq � O p1q .(4.12)
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Obviously, Nm�1,K is increasing, i.e. Nm�1,KpBq ¤ Nm�1,Kpeq for all B   e.

The induction hypothesis implies

Nm�1,Kpeq � cm�1e
d logm�2peq �O

�
ed logm�3peq

	
� Op1q.

It is Npabq1{d � 1 ¤ B̃ if and only if

Npbq ¤
�
B1{pn1�1q

e1{pn1�1q
� 1

Npaq1{d

�d

� Bea.

De�ne Bmin � min
 
Bd{pn1�1q, Bea

(
. Furthermore, Npabq1{d ¤ B̃ is equiva-

lent to Npbq ¤ pB{eqd{pn1�1q. We get

Nm,KpBq ¤ 1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbq
�
� ¸
mab¤N¤B̃

aN,1

�
cm�1Npaqn1�1Bd logm�2

�
BNpaqpn1�1q{d

Nn1�1

	
Ndpn1�1q

� O

�
� ¸
mab¤N¤B̃

aN,1
NpBd

Ndpn1�1q
logm�3

�
BNpaqpn1�1q{d

Nn1�1

��
�


�O

�
��� ¸

aPCK

¸
b

Npbq¤Bmin

|µKpbq|
¸

B̃ N¤B1{pn1�1qNpaq1{d

aN,1

�
��

�O

�
��� ¸

aPCK

¸
b

Bmin Npbq¤Bd{pn1�1q

|µKpbq|
¸

mab N¤B
1{pn1�1qNpaq1{d

aN,1

�
��.

The last two error terms are dominated by

O

�
��� ¸

aPCK

¸
b

Npbq¤Bd{pn1�1q

¸
N¤B1{pn1�1qNpaq1{d

aN,1

�
��.

Moreover, we note that Lemma 3.19 shows

¸
N mab

aN,1 � 0 and
¸

N Npabq1{d

aN,2 � 0.
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Hence, Abel's summation formula (Proposition 1.22) yields

Nm,KpBq ¤ 1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbq
�
�cm�1 logm�2 peq ed

¸
N¤B̃

aN,1

�
» B̃
mab

¸
N¤t

aN,1
d

dt

cm�1Npaqn1�1Bd logm�2
�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q

dt

�O

�
�logm�3peqed

¸
N¤B̃

aN,1 �
» B̃
mab

¸
N¤t

aN,1

d

dt

Bd

tdpn1�1q
logm�3

�
BNpaqpn1�1q{d

tn1�1

�
dt

�

�


�O

�
��� ¸

aPCK

¸
b

Npbq¤Bd{pn1�1q

¸
N¤B1{pn1�1qNpaq1{d

aN,1

�
��.

Similarly to (4.5) we have¸
N¤t

aN,1 ¤ZF,n1 pab, t� 1q and
¸
N¤t

aN,2 � ZF,n1 pab, tq .

Moreover, for t ¤ B̃ we get by using the product and chain rule as well as

the increasing monotony of the logarithm

d

dt

logm�2
�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q

�
�dpn1 � 1q logm�2

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

�
pm� 2q logm�3

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q

� tn1�1

BNpaqpn1�1q{d

BNpaqpn1�1q{dp�pn1 � 1qq
tn1�2

��
pn1 � 1qd logm�2

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

�O

�
� logm�3

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

�


and

d

dt

logm�3
�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q

�O
�
� logm�3

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

�
.
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Hence, we deduce by inserting the computed derivations and subsequent

combining of equal error terms

Nm,KpBq ¤ 1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbq

�
cm�1e

dZF,a

�
ab, B̃ � 1

	
�
» B̃
mab

ZF,a pab, t� 1q

�
�
�pn1 � 1qdcm�1Npaqn1�1Bd logm�2

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

� O

�
�BdNpaqn1�1 logm�3

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

�
dt

�


�O

�
edZF,a

�
ab, B̃ � 1

	
�
» B̃
mab

ZF,a pab, t� 1q

�O
�
BdNpaqn1�1

tdpn1�1q�1
logm�3

�
BNpaqpn1�1q{d

tn1�1

��
dt

��

�O

�
��� ¸

aPCK

¸
b

Npbq¤Bd{pn1�1q

ZF,a

�
ab, B1{pn1�1qNpaq1{d

	���

� 1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbq
�» B̃

mab

ZF,a pab, t� 1q

�
pn1 � 1qdcm�1Npaqn1�1Bd logm�2

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

dt

�O

�
�» B̃

mab

ZF,a pab, t� 1q

BdNpaqn1�1 logm�3
�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

dt

�


� O
�
ZF,a

�
ab, B̃ � 1

		�

�O

�
��� ¸

aPCK

¸
b

Npbq¤Bd{pn1�1q

ZF,a

�
ab, B1{pn1�1qNpaq1{d

	���.
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The preparations that have already been made, Lemma 3.19 and the fact

that B̃ ¥ 1, due to B ¥ e by assumption, imply

Nm,KpBq ¤ 1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbq

�
�» B̃

mab

�
CF

pt� 1qdpn1�1q

Npabqn1�1
�O

�
pt� 1qdpn1�1q�1

Npabqn1�1�1{d

��

�
pn1 � 1qdcm�1Npaqn1�1Bd logm�2

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

dt

�O

�
�» B̃

mab

O

�
pt� 1qdpn1�1q

Npabqn1�1

�

�
BdNpaqn1�1 logm�3

�
BNpaqpn1�1q{d

tn1�1

	
tdpn1�1q�1

dt

�

�
�

�O

�
��� ¸

aPCK

¸
b

Npbq¤Bmin

O

�
BdNpaqn1�1

Npabqn1�1ed

����

�O

�
��� ¸

aPCK

¸
b

Npbq¤Bd{pn1�1q

O

�
BdNpaqn1�1

Npabqn1�1

����.

By de�nition of Bd it is straightforward that the penultimate error term is

contained in the last one. The expansion the products above, and t�1 � Optq
for t ¥ 1 yield

Nm,KpBq ¤ 1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbq
�
�CF pn1 � 1qdcm�1B

d

Npbqn1�1

�
» B̃
mab

logm�2
�
BNpaqpn1�1q{d

tn1�1

	
t

dt

�O

�
�� Bd

Npbqn1�1

» B̃
mab

logm�2
�
BNpaqpn1�1q{d

tn1�1

	
t2

dt

�
�

�O

�
� BdNpaq1{d
Npbqn1�1�1{d

» B̃
mab

logm�2
�
BNpaqpn1�1q{d

tn1�1

	
t2

dt

�
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� O

�
� Bd

Npbqn1�1

» B̃
mab

logm�3
�
BNpaqpn1�1q{d

tn1�1

	
t

dt

�

�
�

�O

�
���Bd

¸
aPCK

¸
b

Npbq¤Bd{pn1�1q

1

Npbqn1�1

�
��.

As Npaq ¤ c0 for every a P CK for a constant c0, the �rst error term is

dominated by the second one. Lemma 1.28 implies

O

�
���Bd

¸
aPCK

¸
b

Npbq¤Bd{pn1�1q

1

Npbqn1�1

�
��� O

�
hKB

dOp1q
	
� O

�
Bd

	
.

By adjusting the sum and integral limits we obtain in an analogous way

Nm,KpBq ¥ 1

ωK

¸
aPCK

¸
b

Npbq¤pB{eqd{pn1�1q

µKpbq
�
�CF pn1 � 1qdcm�1B

d

Npbqn1�1

�
» B̃
Npabq1{d

logm�2
�
BNpaqpn1�1q{d

tn1�1

	
t

dt

�O

�
�� Bd

Npbqn1�1�1{d

» B̃
Npabq1{d

logm�2
�
BNpaqpn1�1q{d

tn1�1

	
t2

dt

�
�

� O

�
� Bd

Npbqn1�1

» B̃
Npabq1{d

logm�3
�
BNpaqpn1�1q{d

tn1�1

	
t

dt

�

�
�

�O
�
Bd

	
.

Note that the numbers ZF

�
ab, B̃ � 1

	
and ZF

�
ab, B̃

	
both are dominated

by O
�
Bd{Npbqn1�1

	
.

Now, we calculate the main term and the remaining two error terms of

the upper and lower bound of Nm,KpBq.

4.2.2. The Main Term. Our leading term for the upper bound of

Nm,KpBq arises out of
1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbqCF pn1 � 1qdcm�1B
d

Npbqn1�1

�
» B̃
mab

logm�2
�
BNpaqpn1�1q{d

tn1�1

	
t

dt.

(4.13)
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To obtain the leading term for the lower bound, we have to change the limits

Bmin and mab to pB{eqd{pn1�1q and Npabq1{d, respectively. The Binomial

Theorem and logarithmic identities show that

logm�2

�
BNpaqpn1�1q{d

tn1�1

�

�
�

log
�
BNpaqpn1�1q{d

	
� log

�
tn1�1

�	m�2

�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
BNpaqpn1�1q{d

	
p�pn1 � 1qqk logkptq.

Hence,

» B̃
mab

logm�2
�
BNpaqpn1�1q{d

tn1�1

	
t

dt

�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
BNpaqpn1�1q{d

	
p�pn1 � 1qqk

» B̃
mab

logkptq
t

dt.

It is logk�1ptq{pk � 1q a primitive of logkptq{t. By inserting B̃, the above

equation reduces to

m�2̧

k�0

�
m� 2

k



logm�2�k

�
BNpaqpn1�1q{d

	 p�pn1 � 1qqk
pk � 1q

�
�

logk�1

�
B1{pn1�1qNpaq1{d

e1{pn1�1q

�
� logk�1 pmabq

�
.

Again, by using the Binomial Theorem the term becomes

m�2̧

k�0

�
m� 2

k



logm�2�k

�
BNpaqpn1�1q{d

	 p�pn1 � 1qqk
pk � 1q

�
�

logk�1
�
B1{pn1�1q

	

�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
BNpaqpn1�1q{d

	 p�pn1 � 1qqk
k � 1

k�1̧

i�1

�
k � 1

i



logk�1�i

�
B1{pn1�1q

	
logi

�
Npaq1{d
e1{pn1�1q

��

�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
BNpaqpn1�1q{d

	 p�pn1 � 1qqk
k � 1

logk�1 pmabq .

(4.14)
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By using the Binomial Theorem one more time, we obtain for the �rst sum-

mand in (4.14)

1

n1 � 1

m�2̧

k�0

�
m� 2

k


p�1qk
k � 1

logk�1B
m�2�k¸
j�0

�
m� 2� k

j




� logm�2�k�jpBqpn1 � 1qj
dj

logj pNpaqq

� 1

n1 � 1

m�2̧

k�0

�
m� 2

k


p�1qk
k � 1

logm�1B

� 1

n1 � 1

m�3̧

k�0

�
m� 2

k


p�1qk
k � 1

m�2�k¸
j�1

�
m� 2� k

j




logm�1�jpBqpn1 � 1qj
dj

logj pNpaqq .
In the last equation we split the sum over j into the summand for j � 0 and

the remaining summands. By setting 1 as the lower limit for the sum over

j, we have to decrease the upper limit for the sum over k to m � 3. Since

Npaq ¤ c0 and the logarithm to the power of j is monotonically increasing,

we have

logjpNpaqq � O
�
logjpc0q

� � Op1q(4.15)

for each 1 ¤ j ¤ m� 2. Therefore, the equation above reduces to

1

n1 � 1
logm�1pBq

m�2̧

k�0

�
m� 2

k


p�1qk
k � 1

�O p1q
�����
m�3̧

k�0

�
m� 2

k


p�1qk
k � 1

m�2�k¸
j�1

�
m� 2� k

j



logm�1�jpBqpn1 � 1qj

dj

���� .
By assumption we have B ¥ e. Then, again by the increasing monotony of

the logarithm and equation (2.7), we deduce for the �rst summand in (4.14)

logm�1B

pn1 � 1qpm� 1q �O
�
logm�2B

�
.

Next, consider the second summand in (4.14). Similarly to equation (4.15)

we have

logi

�
Npaq1{d
e1{pn1�1q

�
� O

�
logi

�
c

1{d
0

e1{pn1�1q

��
� Op1q

for each 1 ¤ i ¤ m� 1, and

logm�2�k
�
BNpaqpn1�1q{d

	
�O

��
logB � log

�
c
pn1�1q{d
0

		m�2�k



�O
�

logm�2�k B
	(4.16)
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for each 0 ¤ k ¤ m� 2. Hence, the second summand becomes

O

�
m�2̧

k�0

�
m� 2

k



logm�2�kpBq |p�pn1 � 1qqk|

k � 1

k�1̧

i�1

�
k � 1

i



1

pn1 � 1qk�1�i
logk�1�ipBq

�

�O �
logm�2B

�
.

It is mab � max
!

1,Npabq1{d � 1
)
� O

�
Npabq1{d

	
� O pNpbqq. Analo-

gously, Npabq1{d � O pNpbqq. Since the logarithm is monotonically increas-

ing, the third summand in (4.14) lies in

O

�
m�2̧

k�0

�
m� 2

k



logm�2�k

�
BNpaqpn1�1q{d

	 pn1 � 1qk
k � 1

logk�1 pNpbqq
�
.

Together with equation (4.16) this error term becomes

O

�
m�2̧

k�0

�
m� 2

k


pn1 � 1qk
k � 1

logm�2�kpBq logk�1 pNpbqq
�

�O �
logm�2B �maxt1, logm�1 pNpbqqu� ,

as each 0 ¤ k ¤ m� 2 satis�es

logk�1pNpbqq ¤ logm�1pNpbqq or logk�1pNpbqq ¤ 1.

Now, we bring the results together and (4.13) sums up to

1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbqCF pn1 � 1qdcm�1B
d

Npbqn1�1

�
�

logm�1B

pn1 � 1qpm� 1q �O
�
logm�2B �max

 
1, logm�1 pNpbqq(�


�cm�1
CFhKd

ωKpm� 1qB
d logm�1B

¸
b

Npbq¤Bmin

µKpbq
Npbqn1�1

�O

�
���Bd logm�2B

¸
b

Npbq¤Bmin

max
 
1, logm�1 pNpbqq(
Npbqn1�1

�
��.

Here we used that the cardinality of CK equals hK . Lemma 1.28 and 1.21

imply

¸
b

Npbq¤Bmin

µKpbq
Npbqn1�1

� Op1q
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and

O

�
��� ¸

b
Npbq¤Bmin

logm�1 pNpbqq
Npbqn1�1

�
���O

�
��� ¸

b
Npbq¤Bmin

Npbq1{2
Npbqn1�1

�
��� Op1q.(4.17)

The same is true for pB{eqd{pn1�1q instead of Bmin. In addition to that,

analogously to (2.2) we deduce with Lemma 1.28 and equation (4.9)

¸
b

Npbq¤Bmin

µKpbq
Npbqn1�1

� 1

ζKpn1 � 1q �O

�
��� ¸

b
Npbq¡Bmin

1

Npbqn1�1

�
��

� 1

ζKpn1 � 1q �O
�
B�n1

min

�
.

Moreover, ¸
b

Npbq¤pB{eqd{pn1�1q

µKpbq
Npbqn1�1

� 1

ζKpn1 � 1q �O
�
B�n1d{pn1�1q

	
.

We note that

O
�
B�n1
ea

� � O

�
��

B1{pn1�1q

e1{pn1�1q
� 1

Npaq1{d

��dn1
�
� O

�
B�dn1{pn1�1q

	
.

Therefore, the main term for both bounds of Nm,KpBq becomes

cm�1CFhKd

ωKζKpn1 � 1qpm� 1qB
d logm�1B

�Bd logm�1pBqO
�
B�dn1{pn1�1q

	
�O

�
Bd logm�2pBq

	
.

Lemma 1.21 yields

O
�
B�dn1{pn1�1q logm�1B

	
�O

�
B�dn1{pn1�1q logm�2pBqBdn1{pn1�1q

	
�O �

logm�2B
�
.

Hence, together with equation (4.10) we get for the main term

dm�1
±m
i�1 SKpniqBd logm�1B

pm� 1q! �O
�
Bd logm�2B

	
.

4.2.3. The Error Terms. It remains to consider

1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbqO
�

Bd

Npbqn1�1

» B̃
mab

1

t
logm�3

�
BNpaqpn1�1q{d

tn1�1

�
dt

�

and

1

ωK

¸
aPCK

¸
b

Npbq¤Bmin

µKpbqO
�

BdNpaq1{d
Npbqn1�1�1{d

» B̃
mab

1

t2
logm�2

�
B

tn1�1



dt

�
,
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and the two error terms of the lower bound of Nm,KpBq, which are identical

to the error terms above, up to the limit of the sum over b and the lower

integral limit. Exactly the same calculations as in The Main Term yield

logm�2B

pn1 � 1qpm� 2q �O
�
logm�3B �max

 
1, logm�2 pNpbqq(�

for the integral in the �rst error term. Thus, the �rst error term for both

bounds is dominated by

O

�
���Bd logm�2B

¸
b

Npbq¤Bd{pn1�1q

max
 
1, logm�2 pNpbqq(
Npbqn1�1

�
��,

which is equivalent to O
�
Bd logm�2pBq�, according to equation (4.17) and

Lemma 1.28.

For t ¥ 1 it is

logm�2

�
BNpaqpn1�1q{d

tn1�1

�
� O

�
logm�2pBq� ,

because the logarithm to the power of m � 2 is monotonically increasing

and Npaq ¤ c0. Further, B̃ � O
�
B1{pn1�1q

�
and mab � O

�
Npbq1{d

	
, as

Npabq1{d � O
�
Npbq1{d

	
. We obtain

» B̃
mab

1

t2
logm�2

�
BNpaqpn1�1q{d

tn1�1

�
dt �O

�
logm�2

�
BNpaqpn�1q{d

		 » B̃
mab

dt

t2

�O �
logm�2pBq�� 1

B̃
� 1

mab




�O
�

logm�2B

B1{pn1�1q
� logm�2B

Npbq1{d

�
,

and we obtain the same value with lower integral limit Npabq1{d, instead of

mab, because Npabq1{d � O
�
Npbq1{d

	
. Thus, the second error terms become

O

�
���Bd logm�2B

B1{pn1�1q

¸
b

Npbq¤Bd{pn1�1q

1

Npbqn1�1�1{d

�Bd logm�2pBq
¸
b

Npbq¤Bd{pn1�1q

µKpbq
Npbqn1�1

�
��,
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because Bmin and pB{eqd{pn1�1q are less than or equal to Bd{pn1�1q. If

pn1, dq � p1, 1q, we have n1 � 1� 1{d ¡ 1. Hence, Lemma 1.28 implies

O
�
Bd logm�2B

	
for the second error term. For pn1, dq � p1, 1q the same lemma together with

Lemma 1.21 yield

1

B1{pn1�1q

¸
b

Npbq¤Bd{pn1�1q

µKpbq
Npbqn1�1�1{d

�O
�

log
�
Bd{pn1�1q

�
B1{pn1�1q

�
� O p1q .

Hence, the second error term becomes

O
�
Bd logm�2B

	
.

Since the main and error term for the upper and lower bound of Nm,KpBq
are equal, we �nally get

Nm,KpBq � dm�1
±m
i�1 SKpniqBd logm�1B

pm� 1q! �O
�
Bd logm�2B

	
.

by using the same arguments as on page 71. Thereby, Theorem 4.3 is proven.

Remark 4.4. Similarly to Remark 3.9 we see that Theorem 4.3 recovers

Proposition 2.10 by choosing K � Q.



APPENDIX A

Proof of the Weighted AM-GM

It is wellknown that the map x ÞÑ logpxq for x P R¡0 is strictly concave,

that is

logpλx� p1� λqyq ¥ λ log x� p1� λq log y

for every 0 ¤ λ ¤ 1, x, y P R¡0. Thus, for n � 2 the assertion is clear. Let

λ1 � . . .� λn � 1. Then, we also have 1{p1� λ1q
°n
i�2 λi � 1. By induction

we get

log

�
ņ

i�1

λiai

�
� log

�
λ1a1 � p1� λ1q

ņ

i�2

λi
1� λ1

ai

�

¥λ1 log ai � p1� λ1q log

�
ņ

i�2

λi
1� λ1

ai

�

¥
ņ

i�1

λi logpaiq � log

�
n¹
i�1

aλii

�
,

also known as the Jensen inequality. Since x ÞÑ logpxq for x P R¡0 is strictly

increasing, the desired inequality follows.

88



Bibliography

[1] H. Amann and J. Escher. Analysis III. Basel: Birkhäuser, 2008.

[2] T. M. Apostol. Introduction to Analytic Number Theory. Springer, New York, 1976.

[3] F. Barroero and M. Widmer. Counting Lattice Points and O-Minimal Structures.

International Mathematics Research Notices, 2014(18):4932�4957, 2014.

[4] V. V. Batyrev and Y. Tschinkel. Manin's Conjecture for Toric Varieties. Journal of

Algebraic Geometry, 7(1):15�53, 1998.

[5] J. W. S. Cassels. An Introductin to the Geometry of Numbers, volume 99. Springer,

Berlin, 1959.

[6] J. Franke, Y. I. Manin, and Y. Tschinkel. Rational Points of Bounded Height on Fano

Varieties. Inventiones mathematicae, 95:421�435, 1989.

[7] M. Henk. Successive Minima and Lattice Points. In IV international conference on

�Stochastic geometry, convex bodies, empirical measures and applications to engineer-

ing science�, Tropea, Italy, September 24�29, 2001. Vol. I. Palermo: Circolo Matem-

atico di Palermo, 2002.

[8] S. Lang. Algebraic Number Theory, volume 110. Springer, New York, 1986.

[9] A. Leutbecher. Zahlentheorie. Eine Einführung in die Algebra. Springer, Berlin, 1996.

[10] D. Masser and J. D. Vaaler. Counting Algebraic Numbers with Large Height II.

Transactions of the American Mathematical Society, 359(1):427�445, 2007.

[11] J. Neukirch. Algebraische Zahlentheorie. Springer, Berlin, reprint of the 1992 original

edition, 2007.

[12] D. G. Northcott. An Inequality in the Theory of Arithmetic on Algebraic Vari-

eties. Mathematical Proceedings of the Cambridge Philosophical Society, 45(4):502�

509, 1949.

[13] S. Schanuel. On Heights in Number Fields. Bulletin of the American Mathematical

Society, 107:433�449, 1979.

89



List of Symbols 90

List of Symbols

N Natural numbers

N0 Natural numbers including 0

Z Integer numbers

Q Rational numbers

Q¡0 Positive rational numbers

R Real numbers

R¡0 Positive real numbers

C Complex numbers

# Cardinality

| � | Euclidean norm

R� Unit group of the ring R

txu Floor function

pai,jqi,j m� n matrix with entries ai,j

B Closed unit ball in R
x�, �y Scalar product

vol Volume

K Number �eld

d Degree of the number �eld K

OK Ring of Integers of the number �eld K

Quot Field of fractions

ΩK Places of the number �eld K

Kv Completion of K relating to v

dv Local degree

σv Canonical embedding of K into Kv

| � |v Standard v-adic absoulte value

| � |8 Euclidean norm

rK Number of real embeddings of K

sK Number of complex embeddings of K

µpKq Group of roots of unity of K

ωK Number of roots of unity of K

v � 8 Finite places v in ΩK

v � 8 In�nite places v in ΩK

dK Discriminant of K

CK Ideal class group of K

hK Class number of K

RK Regulator of K

l Standard logarithmic map
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NK{L Field norm

N Absolute norm

O Big O Notation

� Asymptotic behaviour of functions

e Euler's number

log Natural logarithm

PnpKq Rational points in n dimensional projective space over K

x Rational point in PnpKq
gcd Greates common divisor

HK (Standard) height function on PnpKq
Hm,K Height function on the product ofm projective spaces over

K

ζ Dedekind zeta function

µ Moebius function

Γ Gamma function

SK Schanuel's constant

B Boundary of a set

Σ Hyperplane in Rq�1
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