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Introduction

During the 1960s the problem of estimating the number of points in
projective spaces, rational over a given number field K, of height at most B
was raised. Thereby, the height function lies at the basis of counting such
points [8]. It is a certain real valued function that defines the arithmetical
complexity of a point on a variety over a number field [13]. Typically, the
standard height function is defined to be the product, taken over all places
v of K, of the maximum of the v-adic absolute values of the coordinates of
the given point.

Schanuel proved in 1979 in Heights in Number Fields that the number
of rational points in the n-dimensional projective space over a number field
K of height B is given by ¢B"*! + O (B"*171/4) where d is the degree of
K over the field of rational numbers Q, and c is a constant depending on K
and n, expressed in terms of classical invariants of K. This result is known
as Schanuel’s Theorem. His basic idea was to study points with integral
coordinates in an affine (n + 1)-space, divide by the action of the units, and
then divide by the action of the principal integral ideals [13].

In 2007 Masser and Vaaler provided in their paper Counting Algebraic
Numbers with Large Height a proof of Schanuel’s Theorem, which is a sim-
plification of the original exposition of Schanuel [10]. We use this paper
as a basis to proof Schanuel’s Theorem in the third chapter. Similarly to
Schanuel we examine points with integral coordinates, and then use a fun-
damental domain of a lattice for the action of units.

It raises the question: How does the number of points with height at
most B asymptotically behave, when considering points being rational over
products of projective spaces over the field of the rational numbers, or more
generally over an arbitrary number field? For more general varieties (Fano
varieties) Manin’s conjecture predicts an answer, which was proved for toric
varieties by Batyrev and Tschinkel [4]. We answer the above question by
extending the concepts and outcomes of Masser and Vaaler [10] to products
of projective spaces over number fields. Our main result is Theorem in
chapter four where we prove that the number of rational points over products
of m projective spaces over a number field K with height bounded by B is
given by ¢B%log™ !B + O (Bd log™~2 B) where d is the degree of K over
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NOTATION 2

Q, and c¢ is a constant depending on K and the dimensions of the projective
spaces. During the writing process of this thesis, the author did not know
any source in which the proof of this result can be found in. F_]

We now give a description of the content of the chapters of this thesis.

In the first chapter we give a brief introduction to the fundamentals we
need during this thesis. We start with giving the necessary basics about
lattices, followed by a short overview of the theory of algebraic integers and
valuation theory. Further, we give an introduction into the big O notation
and prove some asymptotic equalities of functions, for example by using
Abel’s and Euler’s summation formula.

Before considering arbitrary number fields, we deal with rational points
over the n-dimensional projective space over the field of rational numbers,
and prove Schanuel’s Theorem for this special case in the second chapter.
The basic idea is to consider (n + 1)-tuples with coprime integer coordinates
divided by the action of units. By using Mdbius inversion we obtain the
desired result. Further, we prove an asymptotic formula for the number of
rational points with bounded height over products of projective spaces over
Q. Therefore, we start with products of two projective spaces and prove the
formula for arbitrary products by induction on the number of factors. The
elementary concepts are the same as in the case with just one projective
space.

In the third chapter we prove Schanuel’s Theorem for arbitrary number
fields, based on [10]. As already mentioned we use a fundamental domain of
a lattice for the action of units. Therefore, we give an estimate on counting
lattice points lying in a set, which satisfies certain conditions. Afterwards,
we introduce the sets to which this estimate is applied and pass to the proof
of the theorem.

Lastly, we extend the result for counting the number of points with
bounded height being rational over products of projective spaces over Q,
given in the second chapter, to arbitrary number fields K. This is done in
the fourth chapter. For the proof we combine the techniques of the second
chapter with the results of the third chapter for counting rational points over

projective spaces over K.

Notation

We write N for the set of natural numbers, and Ny for N including 0. The
ring of integers is denoted by Z. For the field of rational, real and complex

LAfter completing this thesis, the author was pointed to the existence of the paper
Rational Points of Bounded Height on Fano Varieties by Franke, Manin and Tschinkel.
They have already dealt with the same question in 1989 and used a similar approach to

prove this result.



NOTATION 3

numbers we write Q, R and C, respectively. We denote its positive numbers
by Q>q, R~ and C~, respectively. Bold letters always denote vectors. The
coordinates of a vector are denoted by the corresponding letter with a suffix
from 1 to the dimension of the vector. If the bold letter denoting the vector
already has a suffix, then the coordinate suffix is put behind that one, e.g.

r = (x(]vxlv s 737n)a
Iy = (931,0,561,1, .- ',l‘lm)-
The length of a vector is given by the Euclidean norm | - |, e.g.

|w|=\/x%+x%+...+m%

for real & and

|z| = \/|1’0|2 + T2+ .+ |z

for complex . If K is a field or R (rings are assumed commutative and
without divisors of 0)is a ring, K* and R*, respectively, denotes its multi-
plicative group. For an element a in a ring R we write (a) for the principal
ideal aR generated in R. We denote the algebraic closure of a field K by K.
For x € R™ and a € R we set

ax = (axg,ary,...,a%y).

The symbol # is used for the cardinality of a set. For a real number x
we write |x| for the greatest integer less than or equal to x. For a m x n

matrix A with entries a;; we use the notation A = (a;;) , which

i=1,....m,g=1,....n
sometimes is abbreviated to (a; ;) ;-



CHAPTER 1

Basics

1.1. Lattices

This section gives a short overview about lattices and the main results
we will need for later proofs. Primarily, it is based on |11} chap. 1, §4].

Definition 1.1. Let vq,..., v, be linearly independent vectors of R™*1. A
lattice A of rank n in R™ is a subgroup of the shape

AN=7Zvi+... +Zv,.
We refer to v1,...,v, as a basis of the lattice. The set
O ={rv1+...+zv, |, eR 0< 2 < 1}

is called fundamental domain of the lattice. We say the lattice A has full

rank if n = m.

Remark 1.2. Let A be a lattice with basis v1,...,v,. If we define M as

the m x n matrix with columns v, ..., v,, we see that
A={Mzx|xecZ"}.

Example 1.3. [tis A = Z" a full rank lattice in R™ and the standard vectors
in R™ form a basis of A with fundamental domain [0, 1)".

Another example of a full rank lattice are the Gaussian integers Z[i] in
R2. We can take for example v; = 1 and vy = i as well as v; = 1 and
ve = 1+ as a basis, and we see that the shape of the fundamental domain
depends on the choice of the basis.

Obviously, every lattice contains the origin. We are interested in the
length A; of the shortest nonzero vector of a lattice. Or more generally, we
are interested in the length \; of the shortest lattice vector being linearly in-
dependent to j—1 arbitrary linearly independent lattice vectors vy,...,v;_1.
These lengths are known as the successive minima of a lattice. We can also
define these minima independently of a choice of vectors vy,...,v; 1.

Definition 1.4. Let A be a lattice of rank n. For 1 < j < n we define the

J-th successive minimum as
Aj = Aj(A) = inf {r | dim(span(A n7B™)) > j}
where B™ = {x € R™ | || < 1}, and span denotes the linear span.

4



1.1. LATTICES 5
According to [5, p. 204] we have

Lemma 1.5. Let A € R™ be a lattice of rank n. Then, there exist n linearly

independent points a1, ...,a, € A with
lajl =2A;  (I<j<n)

PROOF. By definition of the successive minima, there are n linearly in-
dependent points of A in

{x e R | |z| <\ + 1}.

Clearly, this set is bounded. Hence, it contains only a finite number of
lattice points and it suffices to consider only these points in the definition of
the successive minima. Therefore, the infimum has to be achieved, i.e. for
every j there exists a point a; € A with |a;| = A;, and by definition of the

successive minima, these points are linearly independent. O
Lemma 1.6. Let aq,...,a, be n linearly independent points of a lattice A
of rank n. Then, there exists a basis v1,...,v, of A for which

1
lvj| < max{|a;l, 3 (lai] + ...+ lajl) ¢ -
If la1] < ... < |ay]|, we have
lvj| < max{l, g} laj].
Proor. [5, p. 135 Lemma 8§]. O

Corollary 1.7. Let A be a lattice of rank n. Then, there exists a basis
v1,...,Vy of A such that

il < A
for a constant ¢ depending only on n.

Proor. Lemma implies that the successive minima are achieved, i.e

there exist n linearly independent points a1, ..., a, of A such that |a;| = );
for each 1 < j < n. Obviously, it is |a1| < ... < |a,|. Thus, Lemma
yields a basis v, ..., v, of A satisfying

lv;| < max{1, g} la,|.
The corollary follows. O

According to |11, chap. 1, §4] we introduce the concept of volumes and
determinants of lattices. Let {-,-) : R™ x R"™ — R denote the scalar product
on R™.

In Example we have already seen that the shape of a fundamental
domain of a lattice A depends on the choice of the basis vectors. However,



1.1. LATTICES 6

in the following we will see that the volume of a fundamental domain is
independent of a choice of a basis of A.

Let eq,...,e, be an orthonormal basis of V. The cube
n
{inei 0z < 1}
i=1
has a volume of 1. Let vy,...,v, be a basis of a lattice A in V. With a

change of basis we receive a matrix A = (a;j)i j=1,..n in R™*" such that

n
Uj = Z aijei.
=1

Hence, the volume of the fundamental domain

® = {ixm@ 0<xi<1}
i=1
is
vol(®) = | det A.
Since
((i,v))i = A'(ei e5))i A = A'A,
we obtain

vol(®) = \/det ((<U¢, vj>)m.).

Definition 1.8. Let A be a full rank lattice with basis vq,...,v,. The
determinant of A, denoted det A, is defined as the volume of the fundamental
domain of A:

det A = \/det ((<’UZ‘, vj>)ij>'
Instead of the determinant we can also speak of the volume of A.

Remark 1.9. The determinant det A is independent of a choice of a basis of
A. Let vq,...,v, and wq,...,w, be two bases of A. We obtain a change of
basis matrix B in the general linear group of degree n over Z (i.e B € GL,(Z))
such that

({w;, 'wj>)i7j =B ((wi, 'Uj>)i7j B.
Hence,

det (Kws, wj)), ; = det B?det (v, v5)); ; = det (v, v5)), ;-
Therefore, the volumes of the fundamental domains defined by these two
bases are equal.

Example 1.10. In the case A = Z"™ we have det A = 1.
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Now, we can formulate Minkowski’s Second Theorem on successive min-

ima, which will be applied in later results. We omit the proof.

Theorem 1.11 (Minkowski’s Second Theorem). Let A be a full rank lattice

of dimension n. Then,

i 2™ det A
| | AN € ———
i=1

vol (B")
where o2
vol (B") = F&H)
ProOF. |7] and |1, Example 6.6¢]|. O

1.2. Number fields

In this section we give a brief introduction to the theory of number fields
and its main properties we will need in this thesis. This section is based on
chapters 1 and 2 in |11 as well as chapter 2 in [8], and for further reading

we refer to those ones.

1.2.1. Algebraic Integers. Let K be a finite field extension of the
rational numbers Q, i.e. the dimension d of the field K as a vector space
over Q is finite. Then, we call K a number field of degree d. We denote its
ring of integers, i.e. the set of elements of K being a root of a normalized
polynomial with coefficients over the integers Z, with Og. The ring Ok is
a Dedekind domain. Further, K equals Quot(Of), the field of fractions of
Ok. Any number field K has an integral basis w1, ..., wq, that is a basis of
Ok as a Z-module. Let dg be the discriminant of K, i.e.

dic = d(wy, . .., wg) = det ((o:(w;))ij-1,...a)°
where w1, ..., wq is an integral basis of K and
{0'1, ces ,O’d} ZHOHIQ(K, C)
={o : K — C | ¢ field homomorphism, o(z) = x Vx € Q}.
Note, that dx is independent of the choice of the integral basis wy, ..., wq.
More generally, let L be a number field and let K be a finite, separable field
extension of L. For a € K we define the field norm Ng,r(a) of a as the

determinant of the L-linearly map m, : K — K, z+> ax. Tt is Ng/r(a) € L
for every a € K. Another characterization of the norm in this situation is
Ngyola) =] [o(a)
e

where the product is taken over all o € Homg (L, K). Further, for a € Ok
we have Ng/r(a) € Of, e.g. Ngg(a) € Z for a € Z(cf. [11} chap. 1, §2,3]).
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We write rx for the number of real embeddings, and sx for the number
of complex conjugate embeddings. Then, d = rx + 2sx. We set d; = 1 for
1<i<rg(ifrg>1)andd;=2forrx +1<i<rg+sg (if sg = 1).

Proposition 1.12. Let O be a Dedekind domain. Then, every nonzero ideal
a # O factors into a product of prime ideals. This product is unique up to
the order of the factors [11, chap. 1, Thm. 3.5].

Hence, every nonzero ideal a # O has the unique (up to the order of

the factors) factorization
a= pil P ir

where py, ..., p, are pairwise distinct nonzero prime ideals in O, r > 1, and
e; €N foreach 1 <i<r.

We call a nonzero, finite generated Og-submodule of K a fractional
ideal. The fractional ideals in K generate an abelian group with respect to
the product

a-bz{z aibi|aiea, biEb},

finite

with unit Ok and inverse
o' ={reK|zaeOk}.

We denote this group by Jg. One can show that every fractional ideal a
in Ok factors unique up to the order of the factors into a = p{* ---pé for
pairwise distinct nonzero prime ideals pq,...,p,, 7 = 0, and e; € Z for each
1 < i < r. Thereby, r = 0 means a = Og. Let Pk denote the subgroup of
the fractional principal ideals of Jg. Then, the quotient group Cx = Jx/Px
is called ideal class group of K. The order hi of this group, which is finite,
is called class number of K. The size hx is a measure for the deviation of
the ring Ok from being a principal ideal domain. The ring Ok is a principal
ideal domain if and only if hx = 1 (cf. |11} chap. 1, §3, 6]).
The absolute norm of a nonzero ideal a in O is defined by

N(a) = (O : a) = # Ok/a.

By convention, the absolute norm of the zero ideal is taken to be 0. For
0 # a € Ok we have N((a)) = [Ngg(a)|. The absolute norm is multiplica-
tive and takes values in N. We can extend the absolute norm to fractional
ideals a € Jg. Let a = p{'---p¢" be the factorization of a into pairwise
distinct prime ideals. We set D(a) = N(p;)°* ---N(p,)* and get a group
homomorphism N : Jxg — Q¢ (cf. [L1} chap. 1, §6]).
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By O we denote the multiplicative group of units of Ox. We introduce
the standard logarithmic map [ from K* to R"5 5K taking 7 to

(1'1) 1(77) = (dl log |01(77)|a <o 7d7"K+SK log |UTK+SK (77)|) .

For every n e O it is

TK+SK TK+SK
> dilogloi(n)| =log| [] ei(m)™| =log|Nkg(m)| = 0.
=1 i=1

Proposition 7.3 in |11, chap. 1] yields that [(O}) is a full rank lattice in the
hyperplane ¥ = {z € R TSK | 21 + ... + 2y s, = 0} = RTETSEL et

wWK)={e K |IneN:£" =1}

be the group of roots of unity in K. We write wg for the cardinality of u(K).
It is 1(K) the kernel of the map I : O — R™*+*5 |11} chap. 1, Prop. 7.1].

Proposition 1.13 (Dirichlet). Let K be a number field. Then, the unit
group Oj; is a finite generated abelian group, more precisely

X _ ai a2 OArg+sg-1 .
OK - M(K) x {81 €2 gTK-I—SK—l a; € Z}
where the units €1,...,6r4s,—1 are called a system of fundamental units

|11, chap. 1, Thm. 7.4].

al Arpe+sp—1
We note that {51 T s

ai€ Z} = 2Kl Thus, OF has
rank rg 4+ sg — 1. Let ® be a fundamental domain of the lattice I(Of).
Then, [11, chap. 1, Thm. 7.5] implies

(1.2) vol (l ((’)IX()) =vol(®) = /rx + sk Rk

where Ry is the absolute value of the determinant of an arbitrary minor of
rank rg + sg — 1 of the matrix

|d1 log |O—1(€TK+SK—1)|dTK+SK71

log |o1(e1)
10g |UTK+SK (51)|d1 s log |JTK+SK (ST‘K+SK*1)|dTK+SK71

This absolute value of the determinant Ry is called regulator of K.

1.2.2. Valuation Theory. Let K be a field. An absolute value on K
is a real valued function | - |, : K — R satisfying
(1) |z|, = 0 for all z € K, and |z|, = 0 if and only if x = 0,
(ii) |zyly = |z|v|y|y for all z,y € K,
(iii) |z 4+ ylv < |z|o + |y|v for all z,y € K.
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If and only if the absolute value satisfies |x + y|, < max{|z|,,|y|v}, it is
called nonarchimedean. Otherwise we say the absolute value is archimedean.
The absolute value with |z|, = 1 for all z € K\{0} is called trivial. By
convention, from now on we only consider nontrivial absolute values.

Every absolute value on K defines a distance function (z,y) — |2 — yl.
Thus, K becomes a topological space. We call two absolute values | - |1,
| - |2 equivalent if they define the same topology. This is equivalent to the
existence of a A > 0 with |- |1 = |- 3.

If |-| is a nonarchimedean absolute value on K, we can define a valuation
v: K —-Ru{w}on K by

—log |z|, if  # 0,
v(z) =

o, ifx =0

This valuation satisfies the following three properties:

(i) v(z) = oo if and only if x = 0,
(ii) v(zy) = v(x) + v(y) for all z,y € K,
(iii) v(z +y) = min{v(z),v(y)} for all z,y € K.

We call two valuations wvi, vy equivalent if there exists an s € Rsg such
that v1(z) = sve(x) for all x € K. Conversely, a function v satisfying the
above properties (i)-(iii) defines a nonarchimedean absolute value on K by
|z| = ¢ V) where g € R~ is fixed (cf. |11} chap. 2, §3]).

Absolute values or valuations up to equivalence are called a place of K.
Let Qg denote the set of places of K. If an absolute value |-, is archimedean,
we say the place v is infinite. Otherwise we call v finite. We use the notation
v | oo for the infinite places, and v 4 oo for the finite places.

Let | - |, be an absolute value on K. We say K is complete with respect
to | - |, if every Cauchy sequence converges. Now, let K be an arbitrary
field with absolute value | - |,. Then, we can complete K to K, = R/m
where R is the ring of Cauchy sequences in K under |- |,, and m is the set
of null sequences, which is the only maximal ideal in R. Furthermore, we
can extend the absolute value on K uniquely to an absolute value on K,
which we denote by |- |y, too. This completion is unique up to isomorphism
(cf. [11, chap. 2, §4]).

Proposition 1.14 (Ostrowski). Let K be a complete field under an archi-
medean absolute value | - |,. Then, there is an isomorphism o, : K — R or
oy : K — C such that there exists a number s € [0, 1] with |o,(x)|5 = |z|y
for every x € K where |- | = |- | denotes the Euclidean norm [11|, chap. 2,

Prop. 4.2].
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Proposition 1.15. Let L be a complete field under a nonarchimedean abso-
lute value |- |,. Then, we can find a unique extension |- |, of |- |, on every
finite field extension K of L. Further, if the field extension K D L is finite
of degree n = [K : L], it is

lafw = [Nigr(@)|y/" for all a € K,
and K is complete under the extension |- |y (11, chap. 2, Thm. 4.8].

The latter proposition shows that we can extend the valuation v on L to
the valuation w on K by w(a) = v (NK/L(a)) if [K:L]=n< .

In this thesis, we deal with the case that K is a number field. How can
we define an absolute value or a valuation on K7 Firstly, let K = Q. On Q
we have the Euclidean norm |- | = | - |, which is an archimedean absolute
value. And for every prime number p we can define the p-adic absolute value
| - |p and the p-adic valuation v, by

[p™b/cl, =p™™, vy (P"'b/c) =m

where m is an integer and b, ¢ are nonzero integers, which are not divisible
by p. We have Qg = {p prime} u {0}. Let p be prime and let Q, be the
completion of Q under v,. We have the embedding

1:Q—->Q

aw— (a,a,a,...).

Then, for z € Q, we get by setting v,(z) = lim;_,o vp(x;) Where (z;)ien is a
Cauchy sequence representing = the unique extension of v, on Q,. Further,
2], = p~ (@) for every x € Q, (cf. [11, chap. 2, §2]).

Now, let L be a number field and let K be a finite field extension of L
(e.g. L = Q and K an arbitrary number field). For every valuation v € Qf,
we can find an extension w on K. However, this extension is not necessarily
unique. If w is an extension of v, we write w | v. For v € Qg we set
dy = |K, : L] and say d, is the local degree. Let o, denote the embedding
of K into K,,. We have (cf. [11, chap. 2, Cor. 8.4|)

Proposition 1.16. (i) [K: L] = >, dy,

w|v

(ii) Ng/p(a) = ]_‘[ Nk, /1, (0w(@)) for all a € K.

Let v € Qg be an infinite place. Then, due to Proposition K, is
isomorphic to R or C. Thus, we can choose an identification of K, with R
or C. Hence, we can choose

lo0(2)]o = [2|e0 = |2]
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for all x € K. As there are rg real embeddings and sx pairs of complex
conjugate embeddings, there are rx + sk infinite places of K. For every finite
place v we can find a prime number p such that v | p. Then, Proposition[I.15]
yields a unique extension of the standard p-adic absolute value | - |, on Q,
to |- |, on Ky, as Q, is complete. More precisely, for z € K, we have

1/d,
ol = [ Nic, s, @)
Let x € K. Then,
1/d,
ol = low(@)le = [Nk, g, (@)™
In particular,
1/d, _
[plo = |Nicu g, ()| = Ip% [ = p".

Let p be a nonzero prime ideal in Og. Due to Proposition (and the
following remarks) every fractional ideal xOk has a unique factorization into
prime ideals. Let vp(x) denote the exponent of p in the prime factorization
of xOk. We set v,(0) = 0. Then,

Izl = 9(p) =

is a unique nonarchimedean absolute value on K. We call |||, the p-adic
absolute value. In this way, we obtain every nonarchimedean value on K

(cf. |9} chap. 20.4]). For all x € K* we deduce (cf. |8, p.34-35|)
d, —vp(z
2l = ll2]ly = N(p) .

In particular, |z|, <1 for all z € O, as vy(x) > 0.

Proposition 1.17 (Product formula). Every x € K* satisfies

H |ow (@ |dv =1

UEQK

PRrROOF. Firstly, consider K = Q. Then, d, = 1 for all v € Q. By
considering the prime factorization of = we get

_ v(:t_
e=x] [ |x|oon||p Hlxlp

o0
2 PEQ

and the product formula follows.
Let K be an arbitrary number field. For all z € K it is Ng/q(r) € Q.
Hence, we deduce

=TT INejo@)], = TT TTINkws. (Gu(@)], = ] low@)

vE€QQ veQg wlv we i
where we used the already proved result over Q in the first equation, Propo-
sition in the second one, and the definition of the absolute value | - |4,
in the last one. (This proof is based on |8, p.99].) O
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1.3. Asymptotic Equality of Functions

1.3.1. Big O Notation. We will study the number of points in a set
with height less than a certain bound B. As we are mainly interested in the
behaviour of the number of these points for B — o0, we introduce the big O
notation and asymptotic equality of functions, according to |2} chap. 3].

Definition 1.18. Let g(x) be a real valued function with g(x) > 0 for every
x = a with fixed a € R. We write

f(z) = O(g(x))
for a real valued function f(z) if there exists a constant M > 0 such that
|f(x)| < Mg(x) for every x > a,
or equivalently formulated if and only if the quotient f(z)/g(z) is bounded.
We say f(z) is big O of g(x).
The notation f(x) = h(x) + O(g(x)) means that f(x) — h(z) = O(g(x)).
And for positive functions h(z) and g(z) we mean by O(h(z)) = O(g(z))

that there exists a constant M > 0 such that h(x) < Mg(x). Note, that in
general O(h(z)) = O(g(z)) is not equivalent to O(g(z)) = O(h(x)).

Remark 1.19. For positive functions g(x) and h(xz) we have

O(9(2))O(M(z)) = O(g(x)h(z)) and g(z)O(h(z)) = O(g(x)h(z)),
as well as

O(g(x)) + O(h(z)) = O (max {g(z), h(z)}).
Definition 1.20. We write
F(@) ~ glx) as 7 — o

and say f(z) is asymptotic to g(x) as x — oo if

ACIN
zlgglog(az) =1

Let us take a look at an example. Later on we will show that
1
(1.3) > - =log(x) + O(1)
k<z

where log denotes the natural logarithm. Thus,

1
2 — ~logx as x — 0.
k
k<z
We call log x the asymptotic value of the sum and O(1) represents the error
term being made by this approximation.
In the following we give some asymptotic formulas, which will be needed
for later proofs.
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Lemma 1.21. For every x = 1, m € N and r € Q~q, it is
logmaz =0 (a").
Proor. We show that there exists a constant M > 0 such that every
> 1 satisfies |log™ x| < Mz". Consider the function
log™ t
o
This function is continuous. Further, f(1) = 0, and I’Hospital’s rule implies

f:[l,0) >R, t—

log™ ¢ . mlog™ 't
= 111m

t—o0 rt’ Tt pmygr

S = g
Thus, f is bounded and we find a constant M > 0 such that |f(t)| < M for
every t > 1. It follows log™ z = O (2"). O

1.3.2. Summation Formulas. To prove the asymptotic behaviour of
sums like (1.3) or sums of the form >, k% and >, _ k° for z, s in R, it is
useful to compare the sums with integrals.

Proposition 1.22 (Abel’s summation formula). Let (a)ren be a sequence
of real or complex numbers. Define for all real numbers t
A(t) = 2 ag.
k<t
Let y < x be real numbers with x = 1, and let ¢ be a continuously differen-
tiable function on |y,x|. Then

T

S arp(k) = A@)e(x) — A)e(y) — f A/ (t)dt.

y<k<z Y
PROOF. By using a telescoping series we get
|z]—-1

2 arp(k) = Z A(k)(p(k +1) — o(k))

k<z
where the second sum is to be understood as 0 if |z]|—1 < 1. For ¢t € [k, k+1)
it is A(k) = A(t). Hence,

=]~ lz)—1 k+1
2 ok + 1) — k) = A(k)f (1)t
k=1 k=1 k
[z]—1 g+1
= A (H)dt
% Jk (1)1

Il
b
o~
N
S,
~~
o~
N
(oW
~~

Moreover,
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Therefore,

35 anp(k) =A@e(lal) = [ AWF O + A@) (pl) - pll])

k<x 1

—A@)p(x) - fA() (1)t
We deduce
D arp(k) = app(k) = Y app(k)
y<k<z k<z k<y
—A(x)e [ a

O

As a special case of this summation formula we obtain (cf. [2, Thm. 3.1]):

Proposition 1.23 (Euler’s summation formula). If f is continuously differ-
entiable on the interval [y, ] where 0 <y <z, x > 1, we have

D Sk = J f(t)dt + J (t =t f' ()dt — f@) (@ — |2]) + F)(y — L))
y<k<z Y Y
In particular, if 0 <y < 1, it is
J ft dt+f t = [thf ()dt — f(@)(z - [z]) + f(1).
k<x

PROOF. Let a; =1 for each k € N in Proposition [1.22] Then, A(t) = |¢]
for all ¢ > 0. Thus, we deduce with Proposition [I.22]

(1.4) S 4k = el f jmf

y<k<x

By partial integration we obtain

j £t )~ yf () - j L (),

which is equivalent to
| st [ erwat-ar + ) -
y y
By adding the left-hand side to (|1.4) we get

S0 = [ s+ [ erae— [ 1@t + 1) - o)

y<k<z

—ylf(y) +yf(y)
- [ rwars [ a= 1w - @ - e se)
Yy

)

+ (v —lyDf(y)-
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Now, choose 0 < y < 1. Partial integration implies

1 1
j F()dt + J (6 — [t ()t + £y — L))
Yy

Y

1 1
— f fHdt + J tf(t)dt +yf(y)

1 1
~ [ rode+ 10 - ut) - | £+t
Y Yy
=f(1)
and the assertion follows. O

1.3.3. Elementary Asymptotic Formulas. The following elemen-

tary asymptotic formulas are easy consequences of Euler’s and Abel’s sum-
mation formula.

Proposition 1.24. If x > 1, we have
(1) > % =logz + O(1),

k<w
. =48 +0@™), ifs>1
@ k:é:akfs: Z#Zﬁ:JrO(l), if0<s<1’
3) X = Ok(ji’s) if s > 1,
(4) Zim k=240 (1) if a = 0.
<o

ProOF. This proof is based on |2, Thm. 3.2|. For part (1) we use Euler’s
summation formula with f(¢) = 1/t and 0 < y < 1 to get

gizﬁx‘f+f<t—ttj> (jti)dt_x—xmﬂ

T rd1l 1
=logz + O (i + 1) + O(1)

=logz +0(1).

To prove part (2) we use Euler’s summation formula with f(¢) = ¢°
where s > 0, s # 1 and 0 < y < 1. We obtain

1 X T _ _
2—= @—8 L ltJdt—:E li—i—l
ks 1 ts ts+1
k<z

1 x®

s 1

Tt —|t] _
- — — s 1.
i SL prES] dt+ 0 (z7°) +
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Hence

(1.5) 2 1_ v S+ C(s) + O (z*)
= ks 1-—

where

c(s)zl—l—sft_mdt.

1—s ts+1

If s > 1, the left-hand side of (L.5]) converges to (g(s) as x — oo, as well as
217% and 27° both tend to 0. Therefore, C(s) = (o(s) if s > 1. If 0 < s < 1,
we deduce

O (SJ:C tts+l1jdt) O (st tii) =0 (1+:E15) =0(1)

and therefore, C(s) = O(1). Since 2'~% > 1 for every x > 1, and z~* < 1 if
0 < s < 1, we deduce from (|1.5]

—S

Z ks 1—8 +OQ).

k<x

We prove (3) by using (2) with s > 1:

1 o0 1 1 xl*S
2]{:8221\68_21{/&:@“@(5)—(1 +Ga(s) + O ( ))
k>x k=1 k<z

xlfs

since z° < a' S forall s>1and z > 1.
For the last part (4) we use Euler’s summation formula one more time,
with f(t) =t“ and 0 < y < 1. We obtain

Dk :Jf tdt +J (t —[t]) (ta) dt — (z — |z])z® + 1

k<z 1
xotl 1 T/ d
= — O —t® | dt O (z“ 1
a+1 a+1+ (L (dt) >+ (%) +
xa+1 N
—OH_l—i-O(aU)

Corollary 1.25. In particular, we have

(1) > +=0(ogz) ifz>e, and Y, 1 = O (max{logz,1}) if x > 1
k<z k<z

(2) HE=0(E"%)ifo<s<l,and Y, & =0() ifs>1,
k<z k<z

(3) X k=0 (") ifa=0.

k<z
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PROOF. Due to Proposition|1.24| we have Y, + =logz+O(1). If x > ¢
k<z

it is logz > 1 and thus, logz + O(1) = O(logz). As log1 = 0, we have to
increase the error term for x > 1 to O(max{log z, 1}).

For part (2) we note that O(1) = O (z!™*) if 0 < s < 1. If s > 1, we
have O (z'7%) = O(1). O

Lemma 1.26. Let n = 2 be natural number. Then,

3 l(;ik - 0(1).

k<z

Proor. Firstly, we prove the case n = 2, and subsequently we use this

result to prove the statement for arbitrary n > 2. Euler’s summation formula

(Proposition [1.23) with f(t) = logt/t? yields
log k logt d logt log x
= dt t— |t dt — —
s f e[t (1) ar - B e La

*1 1 1
_ Ogtdt i Ogtdt L0 ogT
1 de t2 3:'2
_logt + 1l” logm>
t

:1_loga:+1+ (logza:).
x x
(z

k<z

+ 0O

Q

Lemma shows that logz = O

1 1 1
ng+=O(1+
T T

) for all x > 1. Thus,

log
=0(1) and - =0(1).

X

Therefore, we get

Now, let n = 2 be an arbitrary natural number. It is

log k < 2 logkz.

2
k<z km k<z k
We obtain
log k
2. =00
k<zx ke
by using the result for n = 2. O

Lemma 1.27. For all z = 1 and m = 0 we have

m+1(x)

Z log™ k _ log L o)

m+1

k<z
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PRrROOF. Euler’s summation formula with f(t) = log™(t)/t yields

log™ k T logMt J“” d log™t
= dt t—|th){ — dt
) k J t + | =1 (dt t

k<z 1 1
log™ ()

(z —|x])
- Jf 1°gtmtdt +0 (Jf (i@) dt) +0 (logz($)>

T 1oo™ m
:J 08 tdt+0(log($)>‘
1 t X

To compute the integral for m > 1, we use partial integration

T 100" ¢ f T m—1 ¢
f %% Tqt = log™ | — mJ o6t log tdt
1 t 1 1 t

This equation is equivalent to

Jx logmtdt logmﬂ(x)'

1 t m+1
Together with Lemma we deduce

m m+1 m-+1
Z log™ k _ log (z) N O(x) _ log (z) L o).
m+1 T m+1

k<z

The case m = 0 immediately follows by Proposition part (1). O

Lemma 1.28. Let K be a number field of degree d over Q. Then, for every
x = 1 we have
O (xl_“) ,ifu <1,

1
Z o =< O (max{l,logz}), ifu =1,
N(a)<z o), ifu>1

and

Z ! =0 (wl_“) for all u > 1.
a

Proor. For every C in Ck set

N (2,C) = #{0 # a S O ideal | a € C, N(a) < x},
Ex(z,C) =#{0 # a S O ideal | a € C, N(a) = z}.

Due to [8, VI, §3 Theorem 3| we have

(1.6) Nk (z,C) = mx—kO(ajl_l/d) =0 (z).
wrA/|dK|
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By using Abel’s summation formula (Proposition [1.22)) we obtain

= (xluNi_ Ex(N r (2 Ex(N, c)) tHudt)

L A\n=1
S (1NK(:1:C —i—uf Nic(t, C)—— d).
=z U t1+u
With equation the sum above becomes

> (o (") + 0 U 2dt)>.
CeCx 1t
Ifu#1,itis

0 (Jx 1dt> _O0 (4 1) = 0(1), ifu> 1,

Bz O "), ifu<l

Ifu=1, we get
1
0 (L tudt) =0 (logz + 1) = O (max {1,logz}).
Since Ycec, 1 = hi by definition of the class number, we immediately
deduce the first part of the lemma.
Now, let u > 1. For each natural number n > x it is

) - 3w

a CeC acC
z<N(a)<n Kac<9?( )<n

=> > EK(N,C)%

CeCkg x<N<n

Abel’s summation formula and equation imply

Ly (NK(naC)_NK(x7C)+u J NK<t,c)t11+udt>

N(a)v de n ¥

_y (0 (1) + 0 (#17%) + 0 ( [ t{;u))

CECK z

=2, (0@ +0o@")

CeCk
=0 (xk“) )

Again we used ZCECK 1 = hg. By considering n — o0 the lemma follows. [

a
z<N(a)<n



CHAPTER 2

Rational Points on Products of Projective Spaces

over Q

Firstly, let us introduce the sets we deal with in this thesis.
Definition 2.1. For a field K we set
PU(K) = PR(K) = {(20,.. ., 2n) € K™\ (0}}/ ~
with equivalence relation
x ~ y if and only if I\ € K™ such that z; = \y; V 0 < i < n,

and say P"(K) is the set of rational points on n-dimensional projective space
over K. We denote the equivalence class of the rational point (zg, 21, ..., Ty)

by x = (zp:21:...:xy).

Remark 2.2. For the multidimensional case we have

(H P) (&) = [ [ ()
=1 i=1

where m,ny,...,n, € N, and K is a field.

In the following chapters we will consider the asymptotic behaviour of the
number of rational points with bounded height on n-dimensional projective
space over K, and on products of such projective spaces where K is an
arbitrary number field of degree d over Q. To begin with, we look at the
easiest case K = Q. Of course this case is covered by considering an arbitrary
number field K, but the number of rational points on P"(Q) can be counted

easily without any further theory, which we do not want to withhold.

2.1. Projective Spaces over Q

Let x be a rational point on P*(Q). That means x = (xg : @1 : ... : Tp)
for a choice of coordinates x; in Q.

Definition 2.3. The height Hg of x € P"(Q) is defined by

Ho(x) = 11 max{|zoly, - . ., [Zn|v}-

ve{primes}u{oo}

21
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The height Hg is independent of a choice of coordinates. If two points
x and y lie in the same equivalence class on P"(Q), there exits an a in Q*
with (yo,...,yn) = (axo,...,ax,). By using the product formula (Proposi-
tion and the properties of absolute values, we get

HQ(X) = H max{|y0|va'~7|yn|v}

ve{primes}u{oo}

= H max{|azoly, - - ., |azn|v}

ve{primes}u{oo}

= 11 |aly max{|zolv, - - ., |2n|o}

ve{primes}u{oo}

= 11 lal, 11 max{|zo|v, - . -, [Zn|o}
ve{primes}u{oo} ve{primes}u{oo}

=Ho(x).

By taking some assumptions on the choice of coordinates of x, the def-
inition of the height can be simplified. As Ax = x for all nonzero rational
A, without loss of generality we can assume z; € Z for each 0 < 7 < n
by multiplying with the least common denominator. Further, by divid-
ing out common factors we can suppose that the greatest common divisor
ged(zo, . .., xy) equals 1. Consequently, the coordinates zo,...,z, of x are
unique up to sign. And because xg,..., T, are coprime integers, we have
|zi]y < 1 for each 1 < ¢ < n and v prime. Furthermore, for every v prime
there exits at least one 0 < ¢ < n with |z;|, = 1. We get

[] max{lzols,... |z} = [] 1=1.

ve{primes} ve{primes}
Hence, we obtain an equal definition of the height of x = (z¢ : ... : z,) on
P™(Q) if the chosen coordinates x, ..., z, are coprime integers:
Ho(x) = max{|zo|,...,|znl}-

By convention, we write H instead of Hg for the rest of this chapter.
Lemma 2.4. Fvery x on P"(Q) satisfies H(x) > 1.

PRrROOF. Let zg,...,x, be a choice of coordinates of x. As seen above,
we can always assume that these coordinates are coprime integers. Thus,
at least one of these coordinates has absolute value (i.e. Euclidean norm)
greater than or equal to 1 and the claim follows immediately. O

We count the number of rational points x with H(x) < B for a real
bound B. And as B tends to infinity, we get the asymptotic number of
rational points on P"(Q). We define

Ng(B) = #{xe P"(Q) | H(x) < B}.
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With Lemma [2.4) we deduce at once that Ng(B) = 0 for all B < 1.
Proposition 2.5. For every positive B there are only finitely many rational
points x on P™(Q) with H(x) < B, and as B > 1 their number is
2an+1
 Goln+1)
where (g(n) denotes the Dedekind zeta function on Q, and Lo = 1 unless

No(B) +O(B"L)o

n = 1 in which case Lo = max{log B,1}. Thus,
2an+1
Co(n+1)

PROOF. Lemma yields that Ng(B) = 0, and hence is finite for all

B < 1. So, let B > 1. We have already mentioned that for every x € P"(Q)
there exists an (n + 1)-tuple & = (zo, ..., 7,) € Z""1\{0} unique up to sign

No(B) as B — 0.

with ged(zo, ..., x,) = 1 such that x = (¢ : ... : z,). Thus, we obtain

1
No(B) = 5# {(zo,...zn) € Z"\{0} | ged(wo, ..., an) =1,
max{|zol,...,|zs|} < B}.

Hence, Ng(B) is less than

#{(w0,...,2n) € Z"1\{0} | lzo| < B,...,|zn| < B} = (2|B| + 1
= (2B+0(1)"™ -1
— 2n+1Bn+1 + O(Bn)

It follows that Ng(B) is finite for all B > 1 and fixed n. Here we used that

there are 2| B| + 1 possible choices for every x; with |z;| < B (0 <7 < n),

and |B| = B+ O(1).

To compute Ng(B), we want to simplify the constraint of being relatively
prime. The basic idea is to take all (n + 1)-tuples in Z" "1\ {0} with |z;| < B
for each 0 < ¢ < n, and subtract the ones being not coprime, i.e. subtract
the (n + 1)-tuples for which there exists an integer k greater than 1 dividing

xz; for each 0 < 7 < n. This method is called M¢dbius inversion. We recall

the M&bius function g for each positive integer k:

) (=)™, if k= py---p, for pairwise coprime primes p1,...,Dn,
po(k) = :
0, if k£ has a squared prime factor

Using the Mébius function yields

18]
No(B) = 3 ) na(k)# {(wo, . wa) € Z\(0} | [oi] < B,
k=1

k| xzifori=0,...,n}.
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We only have to sum up to | B[, because for k greater than B the number
of the above set is zero, since on the one hand z; has to be greater than B
but on the other hand |z;| is less than or equal to B. Now, k divides each
coordinate of . So we can find an @’ in Z"*!\{0} such that = = kx'. We

obtain

_ % S ug(k)# {a € Z {0} | o] < BJk for i = 0,...,n}.
k=1

The number of z{, in Z with absolute value less than or equal to B/k totals
2 [%J + 1 for each positive integer k less than or equal to B. Since we omit
the origin, we obtain

n+1
N1 Q Z /J,Q < - 1>
k 1
[B] n+l
=3 2 ( 2— +0(1 — 1)
k=1
1 lBJ 2n+1Bn+1 B
5 Z kn+1 ?

2an+12 kn+1 +O Bn) Z IU’Q(k)

1
2"3"“2 o +1 +O B") |

HM

Here we used in the third equation that k& < B, and thus (B/k)" dominates
(B/k)® for every 0 < s < n, and |ug(k)| < 1 in the last one. To compute the
second sum, we have to separate the two cases n =1 and n > 2. Forn =1

Corollary [1.25] part (1) yields

LBl 4
Z Z 5= O (log B)
k= 1 k<B

for every B = e. If we want to allow B = 1, we need to increase the error
term to O(max{log B,1}) (cf. Corollary [1.25). For n > 2, Corollary
part (2) implies for all B

=1
B

1 1

— — =0(1).
;k = =0

To complete the proof, we write
|B]

po(k) i pg (k) o pglk)
fen+1 -
k—1 k—1 k=|B|+1
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By using the Euler product, one can show that

(2.1) o po(k) 1

2ok Cals)

for every complex number s with real part larger than 1 (here s =n+1 > 1),
see for example [2, Thm. 11.7]. Moreover, Proposition part (3) yields

> el o3 1) -0 ().

k=|B|+1 k>B

Thus,
|B]

po(k) 1 1
(2.2) L T G+ 1) +0 (B”) .

k
Hence, for every B > 1 we obtain

Ng(B) = 2"B"*! (1) +0 (1)> + O(B™Ly)

CQ(TL +1 Bn
2an+1
= ——+0(B"Ly
G vy FOEE)
with £o = 1, unless n = 1 in which case £y = max{log B, 1}. O

Remark 2.6. As we consider the height function H to the power of n + 1
in the following, let us take a look on how the number of points x in P"(Q)
with H"*1(x) < B for B — o0 behaves. Set

Nig(B) = #{xeP"(Q) | H""'(x) < B}.
Since H™"1(x) < B is equivalent to H(x) < BY/("+1) we get
Nig(B) = Ng (Bl/(”H))

and Proposition [2.5] yields
2"B
Co(n +1)

2.2. Products of Two Projective Spaces over )

Ni(B) as B — 0.

The next aim is to count the number of rational points on the product
of two projective spaces before we pass to rational points on [[;~, P"(Q)
where m and nq, ..., n, are positive integers.

Firstly, we need to define a height on [, P"(Q). Let x = (xq,.-.,X,,)
be a point in [[;*, P"(Q), i.e. x; lies in P"(Q) for each 1 < i < m. With
the same arguments as in section we can assume that the coordinates
Z;0,-- -, Tin,; Oof X; are coprime integers for each 1 <4 < m. Then, the choice
of coordinates for a point x is unique up to sign and we can define the height
as follows.
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Definition 2.7. The height Hy, g of x = (x; : ... : x,,,) in [ 2, P"(Q) is
defined by

m

Hyox) =] [H" " (x;)
i=1
m
= [ Jmax{laiol, .., zin [}

i=1

for a choice of coprime integer coordinates x; 0, ..., Z;,, for each 1 <i < m.

Since the choice of coordinates of x is unique up to sign, it is easy to see
that the height H,, @ is welldefined. Analogously to Lemma [2.4] we obtain

Lemma 2.8. Every x in | [~ P"(Q) satisfies
Hpofx) 2 1.

For each 0 < ¢ < m and every choice of coprime integer coordinates
Zi0,- -, Tin, of x; in P"(Q) let &; = (240, ...,%in,) denote the correspond-
ing vector in Z™*1\{0}. Further, by j | x; we mean that j divides each
coordinate of x;. For every positive B we set

Nmg(B) = # {X e[ [P@ ‘ Hinq(x) < B} -
i=1

Firstly, we are interested in its asymptotic behaviour for m = 2 as B — o0.
Instead of ny and ny we will write @ and b to provide a better overview.
Lemma [2.8 shows that Ny, o(B) = 0 for all B < 1. Hence, let B > 1.

In the first place we notice that, thanks to Lemma it is

2

NoalB) < (umx # {5 PH(Q) | 370 < B )
<tsm

Proposition implies that N, o(B) is finite.

Let x = (y,z) be a rational point on (P* x P} (Q) with a choice of co-
prime integer coordinates yg,...,y, and zg, ..., 2y, with corresponding vec-
tors y and z in Z**1\{0} and Z'*1\{0}, respectively. For symmetry reasons
the number of rational points on (P* x P*) (Q) and (P x P%) (Q) does not
differ. So, without loss of generality we can assume a < b.

The same type of argument as in the proof of Proposition implies

Noo(B) {y e 20\ {0, = € ZP*N\{0} | ged(yon .. va) = 1,

1
T2

_ a+1 b+1<
gl 20) = 1, g ()7 o 12+ < 5.
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To count Ny g(B) we use Mébius inversion for both vectors y and z to get
rid of the greatest common divisor condition. We obtain

1/(b+1)
| BVt [WJ
Nao) =gz X mel) X melhi#{yez ok
j=1 k=1

b+1 . a+1 b+l
2 ZPNO |7 gk | g ) e 1) < B

Since maxo<p<a|p|} < BY(@+1) " due to Lemma , we only have to sum
up to |BY@*+D| for j. The condition j | y yields maxo<p<a{|yp|} = 7, and

thus, we deuce

b+1< ca+1
ma {[z[}"*! < B/,

Hence, it suffices to sum up to [(B/j““)l/(bH)J for k. In addition, the

condition j | y yields that there exists a unique gy’ in Z%"1\{0} such that
y = jy'. Analogously we find a unique 2’ in Z**1\{0} with z = kz’. We get

1/(b+1)
| L |5 |
Mo =g X mel) Y uol#{y <z o)
j=1 k=1
max [y} maxe ) <
<p<a''’P 0<q<b = ja+1kb+1 :

As maxg<g<p{] 2}

is at least 1, the term maxo<p<a{|y,|} can take integer

values between 1 and (B/(jaﬂkb“))l/(aﬂ)

by summing over these integers. We obtain

. So we can split the above set

Bl/(b+1) 1/(a+1)
X | B/ @t D/GFT) jk@FD/(a+1)
NQ’Q(B) :? Z :U'@(]) Z H@(k) Z
j=1 k=1 N=1
#{v ) =]
\p\
B
b+1
#{z € Jnax {lzg]} <WHNG+1}-

By using the Binomial Theorem, the cardinality of the first set becomes

(2N + 1)1 —1) — (2N — 1)t —1)

atl o oakl g s .
- 2 ( ) (2N)aF1=ii ;( jl) (2N)aF1=i(—1)
a+1

—2 ) (a + 1) (2N)at1-i

=0
2}

=(a+1)2°"'N* + O (N“?),
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because there are ((2N + 1)*™! — 1) points in Z**\{0} whose coordinates
have absolute value less than or equal to N, and there are ((2N — 1)**! —1)
points whose coordinates have absolute value less than N. The error term
only occurs if @ = 2. The number of the second set totals

B 1/b+1 b+1
(2 {(jaﬂkaNaJrl) ‘ + 1) -1

B 1/b+1 b+1
= (2 <ja+1kb+1Na+1) + O(l)> —1
ob+1p BY/(b+1)
TGt Nt 0 S DB b N (@t Db |

Note that by construction we have B/ (j%*'kb*1N?*1) > 1 and hence,
(B/ (jaﬂkaN“H))r > 1 for every r € Q~¢. We deduce

Bl/(b+1) pl/(a+1)
. | BY/(a+D)| @I D/GFD HOTDarD
N2o(B) =53 Dowel) YL ek D)
j=1 k=1 N=1

((a+1)2¢" N + O (N*?))

ob+1p BbY/(b+1)
"\ jerggriyart T 0 @t DB/ 1) b N (et DB/ 1)

1/(b+1) 1/(a+1)
| B/ {](EM%J [M{@%J
= > wel) D, metk) )
j=1 k=1 N=1
) (a +1)20ttB o BY/(b+1) e
(23) Ty O\ @ D e Db )

B Bb/(b+1)Na—2
+0 Garigering ) T 0 @t B+ 1) b N (et DB/(61)

where O (N “_2), and thus the last two error terms only occur if a > 2.

2.2.1. The Main Term. Firstly, consider the leading term in ([2.3).
By using Proposition and logarithmic identities, we get

BL/(b+1)
[Bl/(aH)J | @D+

a+b po(J po(k)
(a+1)2"""B Z:l ja+ ; b+
j= =1

1 . b+1
-(a+1logB—logj—a+1logkz+0(1))
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Bl/(b+1)
| B/ |y

_oa+b po(d) polk)
=2""Blog B E Gatl kE T
—1

j=1

pl/(b+1)
lBl/(a+1)J @D+

+b po(d)log j
k=1

po(k)
kb+1

Jj=1

gl/(b+1)
[Bl/(aH)J | @D+

ath (7 po(k)logk
— (b+1)2°**RB 21 o 3 R
j= k=1

pl/(b+1)
| B+ | | jlaroreEny

k
vom)| ¥ kel oy ael)
j=1 k=1

It is pg(k) = O(1) for each k in N. Hence, Lemma and Corollary
show that the last three summands in the term above are dominated by

O(B). Equation (2.1)) yields
{ gl/(b+1) J

lBl/(a+l)J ( ) ;@ D/+1) (k)
2*'Blog B ) ot >
j=1 k=1
1 - 1o(j) po(k)
=2""Blog B — .
Cola +1)Co(b+1) ja+1kb§>[BJ+1 gatl  fb+1
By using Corollary one more time we obtain
0
1 1
0 Z ra+1 kb+1
jotlkb+iz|Bl+1 J
[Bl/(ﬂ'+1)J © 1
1
=0 Z ja+l Z kb1
j=1 k:[(B/ja+1)1/(b+1)J+1
a0 oo
1 1
+ Z ja+1 Z b+l
j:[Bl/(a+1)J+1 k=1
B Bty B/ 1) & 1
=0 Z jatl jf(a+1)b/(b+1) + Z jat1
j=1 j=|BY(@+1)|+1
| B+
1
_ —b/(b+1) o —a/(a+1)
=0 | B Z j(a+1)/(b+1) +B
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Note that

(a+1)b (a+1)(b+1)—(a+1)b a+1
2.4 1— - _ .
24) ot b+1 b+1 b+1

If a < b, Corollary implies that the error term above becomes
(0] (B*“/(“H)), since

b 1—(a+1)/(b+1) 1 —a
2. — = —1= .
(2:5) b—|—1+ a+1 a+1 a+1

If a = b, the error term is dominated by O (B*“/(“H) max{log B,1}) .
Lemma yields that log B as well as log? B lie in O (B“/(‘”l)). By
combining these results, we obtain for the first summand in (2.3)

20t Blog B
Cola +1)Co(b +1)
20+ Blog B

~Golat DG T OB

This holds for every B = 1

40 (B log B - B~¥@+1) max{log B, 1}) +O(B)

2.2.2. The Error Term. By comparing the first and the third error
term in (2.3]), we see that the latter one is contained in the first one, since

- 1
2 a+1)b/(b+1) —a+2 < 2 N (a+1)b/(b+1)—a

for all z > 1. Thus, it suffices to consider the first and the second error term.
Corollary [1.25| shows that

1/(b+1) 1/(a+1)
| Bl/a+D) N EGHIGE] PRCRV(CEa)
polJ 2 po(k 2 1
ja-‘rl kb+1 N3
j=1 k=1 N=1

ol ¥ 25 Y mw X l|-ow

J
j<Ba+) pl) gty
ks @rnreen NS GrDasD

Hence, the second error term in (2.3) simplifies to O(B). Now, consider the
first error term in (2.3). We have
Bl/(a+1)
k(d+1)/(a+1) 1

Bl/(a+1)
lijkwm/(aﬂ)J
Na
“ N+ Dp/(b+1) 1\{21 NO-a)/bt1)
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Firstly, consider the case a < b. Then 0 < (b—a)/(b+1) <b/(b+1) < 1.
Hence, Corollary part (2) yields
{ gl/(a+1) J

je(+1)/(a+1) 1 pl/a+1) 1—(b—a)/(b+1)
2 woaw = O\ |\ e
= N (b—a)/(b+1) (]k(b+1)/( +1)>

BU/(b+1)
=0 jla+ D/t |-

If a = b, we have

l pBl/(a+1) J

K@D/ (aF1) 1 BY/(a+1) BL/(b+1)
N21 NG/t ~ pbiDfarn) — 7\ jarD/erDg |

So the results of both cases coincide. According to Corollary part (2),
the first error term in (2.3) reduces to

{ gl/(b+1) J

lB1/(a+1)J ; ;@ D/+1) 1
o(B) )| i > m =0(B),
j=1 k=1

as
(a+1)b a+1 a+1
= b 1 = 1.
br1 Toyl ppiletb=aet

Finally, in total we obtain

20+ Blog B
Cola+1)¢o(b +1)

Nog(B) = + O(B).
We have shown:

Proposition 2.9. For all positive B there are only finitely many rational
points x on (P* x P?) (Q) with Hag(x) < B, and as B > 1 their number is

20+t Blog B
Noo(B) = +0(B).
2B = v g+ TOWP
Thus,
20+ Blog B
No(B) ~ o8 as B — o0.

Cola+1)¢o(b+1)
2.3. Arbitrary Products of Projective Spaces over Q

The next step is to consider products of more than two projective spaces.
By using induction on the number of factors, we will see that basically one
only needs an idea of how to prove an asymptotic behaviour of the number
of rational points on (P™ x P2 x P"8)(Q) to obtain the general case. The
previous proposition will serve as the base case.
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Let x = (Xq,...,X,,) be a rational point on [[;", P"(Q). Again, due
to the arguments in section we can assume that the chosen coordinates
Zi0---,Tin, for X; are coprime integers for each 1 <7 < m. So the choice
of coordinates for a point x is unique up to sign. By x; = (zi0,...,in,) we
denote the corresponding vector to x; in Z%*1\{0} (1 <i < m).

Proposition 2.10. For all positive B and natural numbers m,ny, ..., Ny,
with m > 2 there are only finitely many rational points x on [[;~, P"(Q)
with Hy, o(x) < B. And if B > e, their number is

22i=1"i Blog™ ™! B

@) m=2 By
(= DI, Gl + 1) T O B1s™ " B)

Nmo(B) =

Thus,
221" Blog™ ' B
(m =L, Colni + 1)
PROOF. We have already shown on page 26| that N, o(B) is finite. We
prove the rest of this proposition by induction on m. Proposition yields

N(B)m,g ~ as B — o0.

the base case for m = 2. Let m > 3. We assume that the above formula for
Ny—1,0(B) is true, and we show that the formula holds for N, o(B), too.
Again by j | x; we mean j divides each coordinate of ; (1 <i < m). Thus,

Nmo(B) %# {:1:1 e Z" N0}, (x5....%,) € [ [P"TH(Q) ‘
1=2

m
ged(z1,0, .- T1y) = 1, I_IH(&-)”Z’Jr1 < B} .
i=1

By using M6bius inversion for the vector 1 and the fact that

< mtl
Ls max {loy,[}" " < B,

due to Lemma [2.8, we obtain

, |BY/e+)|
Nimo(B) =3 2 po(d)# {ml e ZM*\{o},
=1

(§2a s ’Xm) € HPM-H(Q)
=2

m
jlay, [JHE)" < B} :
=1

For each of these j in the above formula we find a unique 2} in Z™+1\{0}
such that @1 = ja}. Therefore,

[Bl/(n1+1)J
Nin,o(B) Z% Z no(f)# {af:’l € ZM IO}, (x0..x.)
mJ:1 -
€ Q}P’"HI(Q) og&’il“xﬁ,pwl“ QH(XZ-)"M < B/j’““} .
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Similarly to the proof of the previous proposition, we split the above set by

summing over all integer values that maxo<p<n, {|71 |} can take. Hence,

, |B1/en )| | B+ 4]
Nmno(B) =5 Do) D # {wﬁ e ZM*\{0} ‘
j=1 N=1

0<p<ny

max {|z} [} = N} i {(X2,~.-7Xm) e[ [P (@ ‘
1=2

m B

i+1
QH(’%)" < ]n+1Nn+1} :
1=

For the number of the elements the first set we obtain
(nl + 1)2n1+1Nn1 + O (Nn172)

where the error term only occurs if n; > 2 (cf. proof of Proposition .
By taking a closer look at the second cardinality, we see that this number
equals N, 1,0 (B/ (j™ 7' N™*1)). As the induction hypothesis for Ny, _1g
only holds if B/ (j™* ™' N™*%1) > e, we split the sums into the following parts

pl/(n1+1) gl/(n1+1) gl/(n1+1)
[Bl/(nﬁl)J 5 /(i FT) | | e/ +1)
)P NS D) DI

j=1 N=1 j=1 N=1

5l/(n1+1)
lBl/(n1+1)J e

+ > 1

j=[31/(n1+1)J 1 N=1

el/(n1+1)

A A1) 7

+ ) > 1.

Jj=1 | BY/(n1+1)
N Lel/<n1+1)J !

[31/("1+1)J {Bl/("ﬁ'l)J

In the first summand the indexes j and N satisfy B/ (j" ' N™*!) > e and
for the remaining two summands it is 1 < B/ ("' N™*1) < e. Obviously,
in the latter case it is

B
Nm-1,0 <jnl+1an+1> < Nm-1,0(€).

By using the induction hypothesis we deduce
Np-1,0(e) = em—relog™ 2 e+ O (elog™ ?e) = O(1)

where
2n2+..‘+nm

(m — 2)!CQ(TL2 + 1) s C@(nm + 1) ’

Cm—1 =
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B
jn1+1Nn1+1

If B/ (j"*IN™*1) > e, the induction hypothesis implies
Blog™™* ( T AT )
j”l +1Nni+1

> =Cm—1
B B

m—3
+ O (jn1+1Nn1+1 log (jn1+1Nn1+1)) :

Otherwise, we notice that the error term dominates the main term. That is
why we consider the case 1 < B/ (j™ ! N™*1) < e separately. We obtain

Np—1,0 <

[Bl/(n1+1)J [Bl/("l+1) J
1/(ny+1) jel/(n1+1)
Nm.o(B) =3 1o (j) ((ng + 1)2mHIN™ 4+ O (N™72))
j=1 N=1
Blogm_2 (B/ (jn1+1Nn1+1))
Cm—1 il N
B m—3 n1+1 arni+1
+O jn1+1Nn1+1 log (B/ (] N ))
[Bl/(n1+1)J [781/(?1H)J
+ > pe(i) >, O(N™)0()
. 1/(ny+1) N=1
32{4}:1/(7111:1*) J‘H
[Bl/(n1+1)J 731/(7;1“)
+ > ugl(j) > O (N™)O(1)
Jj=1 1/(nq+1)
N{%J“
lBll//((m +11))J {311/((”1 +11>) J
e niy+ i iel(ng+ _ n
=cm_1B Z 1o (d) ’ log™ 2(B/ (J 1+1Nm+1))
j=1 Jm N=1 N
][] s
I/(n+1 o L | g gm= (
/“I“Q(-] jn1+1Nn1+1
+O(B) 2 jn1+1 Z N
j=1 N=1
BN
el/(n+1 . jel ni+1 m—2
po(F) O (log™~* (B))
+O(B) Z jn1+1 Z N3
j=1 N=1
(2.6)
] ]
61 ni+ . je ni+ logmf (
HQ(] jn1+1Nn1+1
+0(B)| Y] T 7
j=1 N=1
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| BY(m1+1) | [MJ

rom| 3 ml) ) N
| BY/(m+1) | {WJ

+0(M)| > ugl) 3 .

where the second and the third error term only occur if ny > 2. The last

two error terms are dominated by

| BV [w | BVt 0] B
> YooNmi=| Y o0 (,nﬁl) = 0 (B)
j=1 N=1 j=1 J

where we used Corollary [1.25] Clearly, the third error term is dominated by
the first one. So we can omit it. For B/ (j™ I N™*1) > e it is

B
m—2 — m—2
log <]n+1Nn+1> =0 (log™ " B).

Hence, by using Corollary the second error term in (2.6 is dominated
by O (Blog™™? B). Further, it is

logm (B/ (jn1+1Nn1+1)) — (log (B/jnl-‘rl) . IOg (an-i-l))m )
Thus, by using the Binomial Theorem we obtain for the leading term in
{Bl/(nﬁ-l)J

el/(n1+1)

Npmo(B) =tm-12"(m +1)B )]
j=1

m—2
) Z <mk— 2> logmf2fk (B/jn1+1) (_1)k logk (Nn1+l)
k=0

Bl/(n1+1)
G+ 1)

X v

N=1

o(j)

]‘nl-‘rl

We note that

e (m\ (=D G (m+ 1) i (m+l i
(m+1)2(j)j+1 ZZ(j+1)!(m_j)!(—1) _2(j+1>(—1)

=0 =0 j=0
(2.7) = jél (mj 1)(—1)j‘1 =1- g <mj+ 1) (-1’
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and that z — log® z is monotonically increasing for z > e and k = 0. Then,
logarithmic identities and Lemma - yield for 1 < j < B B/(nmi+1) /el/("lﬂ)

Bl/(n1+1)
PRYCTESY:

m—2
1 (m—2) _2_k< B ) k. k 1
—- log™ — | (=1)"log (N™MH
= N Lk gy

i M1

[Bléinlﬂ))J
2 jel n1+1 k
. { B log™ (V)
m—2—k k k

= - —1)"(n1+1
3 ( ) (]m+1)< Fowrnt 5y

" B

k=0

1/(n1+1)
IngJrl (jBeu(nllﬂ))
k+1 o)
_ k+1 B

N (M2 moek (B ) D log™* (J) +0(1)

= e}
k & gmtl g +1 k+1

Il
3
|
/N Y
3
|
N———
<3
o
3
;
e
/N
Sy
N——— N——"
T
—_
~—
x>

_log™ (B S (m - 2) (—1)*

ni +1 o

+ 0 (logmﬂ(B/j”lH)) -

B lOgm_l(B/jn1+1)
 (m—=1)(n1 +1)
Analogously we obtain that the first error term in (2.6 is dominated by

pl/(n1+1)
1/(ni+1)

+0 (logm_z(B)) :

O(B) O (log™ ? B)| =0 (Blog™ *B).

jn1+1

<.
Il
—_

Here we used Corollary [[.25] in the last equation and the fact that
log™ 2 (B/j™+1') <log™ 2 (B) for each 1 < j < BY(m+) fel/(mi+1),
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In total we obtain

1/(n1+1)

Nimo(B) =cm 12" (m +1)B >
j=1

{31/(n1+1)J

()
jn1+1

<logm_1(B/jm+1)
(m—1)(ny +1)

{Bl/(nlﬂ)J

+0 (log™™ B)> +0 (Blog™ ™ B)

A A

cm-12"B o(j) & m—1 1k
m—1 jZ:l gmtl kZ:() k 8

=

- (=1)Flog"(j™ ™) + O (Blog™ 2 B)
em—12MB " (m—1 —1-k k
—m—s = log™ % B(~1
12 ;( . ) o8 (-1)

B1/(n1+1)
el/("l +1)

pQ(J 4 _
2 ]'7(?1(+1) logk(jm“) +0 (B log™ 2 B)
j=1

{Bl/(nlﬂ)J

1 YGRS .
_¢m—12"'Blog™™ " B 2 po(J)
o — in1+1
m—1 ] gm
-1
cm-12"B" & (m—1 k 1k
_ —1)%log™ B
+= ) (D) og
k=1
{Bl/(nlﬂ)J
RYCTESY)

j -1 m—
Z ;LSI(H) logF(;™m*1) + O (Blog 2 B).
j=1

Equation (2.2) yields

pl/(ng+1)
BYCrES

' 1 ni/(ni+1)
Z MQ(]) _ 0 € >

i ol + 1) O\ Bty

=1

1
— O B*’nl/(nl‘#l) )
CQ(nl + 1) + < )

By using Lemma we obtain
log™~! B = log™ ™ BO (B™/( 1)
and thereby

Blog"~' BO (B~ 4D} — 0 (Blog" 2 B).
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Moreover, logarithmic identities, monotony of the logarithm and Lemmal[l.26
show that

B1/(n1+1)
YTy

m—1 .
m—1 m—1— noly n
S (" e sty B e
k=1 Jj=1
m—1
—1
=0(1) Z (mk ) log™ 1=k B(=1)*(ny + 1)k
k=1
=0 (logm_2 B) :

Finally, we obtain the expected result

2n1+...+nt logmfl B
(TTL — 1)!(@(’/11 + 1) - CQ(TLm + 1)
Thereby, the proposition is proven. O

Npo(B) = + 0O (Blog™?B).



CHAPTER 3

Rational Points on Projective Spaces over Number
Fields

Let us return to an arbitrary number field K of degree d with ring of
integers Ox. We use the same notation introduced as in Chapter [I] Based
on [10| we study the number of rational points of bounded height on P"(K)
where n € N. Take 2 = (zg : ... : x,) € P*"(K). The height Hg on P"(Q)
(cf. Definition can be generalised for arbitrary number fields K.

Definition 3.1. The height Hi of x € P(K) is defined by
Hg(z) = H max{|o(z0)v, - - - |0 (@n) o} 7.

UEQK

Lemma 3.2. The height Hi satisfies Hi(z) = 1 for every z € P*(K) and
is welldefined on P™(K).

PRrROOF. By using the product formula we get
Hi() = [ max{lou@olos -, lou@a)l}®* = [T lou(zo)l5/* =1
vEQ K vEQ K

for every z € P"(K) where we assumed xo # 0 without loss of generality.
Analogously to the case K = Q one can show that the height Hx on P"(K)
is welldefined, by using the product formula. OJ

Let us note that this definition coincides with the one for K = Q, as
d, = d =1 for every v € Qg. We can further show if we have two number
fields K1 ¢ Ks and a point z in P*(K7), and consequently z in P"(K>),
that Hg, (z) = Hg,(z). Let K;, and Ky, denote the completions of K7,
K relating to v in Qg,, Qg,, respectively. We write d;, = [Kip @ Qy],
d; = |K; : Q] for each 1 <4 < 2. Then, we have

Hpg,(z) = H max{|ow (20)w, - - - |Tw(@n ) } 2/

wGQK2

H H max{|ow (z0)|w, - - -, |Uw(xn)|w}d2,w/d2

vEQK, wlv

[T T]max{low@o)le, .-, low(zn)} /%

vEQ K, wlv

[T max{lou(@o)lu, ... o () o} ol d2m/d2

’UEQKl

39
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and

Zwldeaw _ dl,v Zw\v[KZw : Kl,v] _ dl,v
d2 d1 [K2 : Kl] d1 ’

due to Proposition [1.16] Hence, Hg,(z) = Hg, (z).

Now, our aim is to count the number

Nk (B) = #{z e P(K) | Hx(z) < B}

for a real bound B.

Similarly to the case K = Q, by multiplying with the least common
denominator we can assume that z; € Ok, as K = Quot(Of) is the field
of fractions of Ok. However, when trying to use the same approach as for
K = Q two problems arise. Firstly, the greatest common divisor of zg, ..., z,
is the ideal generated by xq,...,x,. If and only if the class number hg of
K is greater than 1, this ideal is not necessarily principal, i.e. we cannot
assume the greatest common divisor to be the ring of integers Op. Thus,
it is difficult to normalize the coordinates of z. Secondly, if we can assume
the greatest common divisor to be the ring of integers, z is unique up to
Oj-factors. Dirichlet’s Unit Theorem (Proposition yields that the
group of units O is isomorphic to p(K) x Z'= &=L If the rank rx +sx — 1
is at least 1, it is easy to see that O is not necessarily finite. Take for
example K = Q(+/2). Here we have two real embeddings and therefore O
has rank 1. Clearly, Of = {£(vV2—-1)"|neZ} = {x1} x Z is infinite.
Thus, we cannot divide out the number of units in O.

That is why we need to do some preliminaries and generalizations to
count the number of rational points of bounded height on P"*(K). To achieve
the number of these rational points we will use the concept of lattices and
fundamental domains. For that purpose we need to introduce the concept
of Lipschitz parametrizable sets and Lipschitz distance functions.

3.1. A Generalization

Definition 3.3. Let 6 be an integer with 0 < § < D. We say a set in RP
is Lipschitz parametrizable of codimension § if there exists a constant L and
finitely many maps ¢ from the cube [0, 1]D_(S to RP, whose images cover the
set, each satisfying

(3.1) (1) — ¢(@2)| < L|z1 — 22|

If 6 = D, this is to be interpreted as the finiteness of the set.

Definition 3.4. Let n be a positive integer. We call a continuous function
N from R™"! or C"*! to the real interval [0,00) Lipschitz distance function

(of dimension n) if it satisfies the following three conditions:
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(1) N(z) =0 if and only if z is the zero vector,
(2) N(az) = |a|N(z) for every scalar a in R or C,
(3) the set {z | N(z) = 1} in R*"*! or C"*! =~ R2?"*2 is Lipschitz

parametrizable of codimension 1.

The set defined in (3) is the boundary of the set B = {z | N(z) < 1}.

It is easy to see that the function max{|zg|,...,|z,|} on R**! or C**!
satisfies conditions (1) and (2) of a Lipschitz distance function. The set
{z € R | max{|z0|,...,|2n|]} = 1} defines the boundary of the cube
[—1,1]""! in R™"!. This boundary is Lipschitz parametrizable with for
example 2n + 2 linear maps (one map for each of the 2n + 2 faces) and the
volume of the cube is 2"*1 since the sides have length 2. For example, for
n = 1 the maps

p1:[0,1] = [=1,1] x {1}, 2~ (2(z —1/2), 1)
p2:[0,1] = {=1} x[-1,1], y = (=1,2(y = 1/2))

parametrize the faces [—1,1] x {—1} and {—1} x [—1,1]. In the complex
case the boundary of the set B can be parametrized with for example n + 1
trigonometrical maps, e.g. for n = 1 the maps

p1 [0, 1]5 — {z | |ZO| =1, |Zl| < 1}’ (-T,y, Z) . (627Tix’y€27riz)
p2: 0,1 = {z] |20] < 1, |21 = 1}, (2,9,2) > (2e®™Y, 2™2)

parametrize the boundary {z | max{|zo|,|z1|} = 1} (since C**1 =~ R2(+1)
we consider [0, 1]2*D=1) The set {z | max{|z|, ..., |za|} < 1} in C**! has
volume 7"*1 because the open unit disc {2 | |20| < 1} has volume 7 in C.

Thus, max(z) = max{|zg|,..., |2n|} defines a Lipschitz distance function
on R**! or C**1. Further, we have seen that B has finite volume Viyay. In
the real case it is Vinax = 271! and in the complex case we have Vipax = 771,
We have already seen in chapter [I| that the real embeddings and pairs of
complex embeddings lead to rx + sk infinite places of K, and that we can
choose an identification of K, with R or C. Hence, the maximum function
max(z) yields for all infinite places v of K a Lipschitz distance function on
K+l

Notation 3.5. For the rest of this chapter we will use the convention
max(z) = max{|2o|,...,|zn|}
for z in R**1.

Lemma 3.6. The set B = {z | max(z) < 1} is bounded in R"*1 or C"+1.

Further, there exists a constant ¢ > 0 such that every z satisfies

max(z) = c|z|.
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PRrROOF. Each z in B satisfies |z| < 4/n + 1. Hence, this set is bounded.
Every z in R**! or C"*! satisfies

|z| < vn+1N(z).
By choosing ¢ < 1/4/n + 1, the assertion follows. O

By now we are rather close to state the main result of this chapter. We
only need to define the so called Schanuel constant.

Definition 3.7 (Schanuel’s constant). For each positive integer n and any
arbitrary number field K define

) rrctox—1 27=K(27T)5K n+1 hKRK
(3.2) Sk(n) =(n+1) ( Vx| ) wrCkx(n+1)

Theorem 3.8 (Schanuel’s Theorem). Let K be a number field of degree
d. Then, for all real B there are only finitely many x on P"(K) such that
Hy(z) < B. For B = e their number is

SK(n)Bd(n—H) +0 (Bd(n—kl)flﬁ)
where L =1 except that (d,n) = (1,1) in which case L = log(B). Thus,
Ng(B) ~ Sg(n)B¥™Y) 45 B — 0.

We will prove this theorem in the subsequent sections. But firstly, we
show that for K = Q we receive the same result as in the previous chapter.

Remark 3.9. Choose K = Q. Then, O = Z and wig = 2. We have just
one real embedding, the identity, i.e. rx =1 and sg = 0. Obviously, d = 1.
Moreover, we can choose 1 as an integral basis, and we get dg = det(1) = 1.
As Ok = 7 is a principal ideal domain, we deduce hxg = 1. Furthermore,
Ry =1, as the determinant of a 0 x 0 matrix is defined as 1. Thus, we get

2n

Sg(n) = my

and Theorem recovers Proposition [2.5]

3.2. Counting Principles

Let S be a set and A be a lattice in R”. How many points of the lattice
A are contained in the set S? The answer to this question depends on the
structure of S. The following figure shows a "good" and a "bad" set S.

Maybe the easiest way of counting is to say that a reasonable set S
contains about V/det A points of a lattice A where V' is the volume of S and
det A the determinant of A. That means we split the set S into |V /det A|
pieces with volume det A and assume that every piece of those contains one
lattice point. It becomes clear, that it might be difficult to count the number
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R2 R2

(A) "good" set (B) "bad" set

FIGURE 1. Structures of sets

of lattice points in general if S is a "bad" set. That is why we concentrate
on reasonable sets. The following Lemma gives an estimate we get by taking
V/det A as the number of lattice points being contained in S if S suffices
certain properties.

Lemma 3.10. Let S in RP be a bounded set whose boundary 0S can be
covered by the images of at most W maps ¢ from [0,1]°~1 to RP satisfying
Lipschitz conditions

(3.3) |0(x1) — ¢(2)| < Llzs — 22|

Then, S is measurable. Moreover, let A in RP be a lattice with first successive

minimum A1. Then, the number Z of points in S n A satisfies

L D—1
(3.4) |Z —V/det A < cW ()\ —i—l)
1
for some constant ¢ = ¢(D) depending only on D.

PROOF. Firstly, we show that S is measurable (based on |9} p. 294-295]).
We split the interval [0, 1] into 2V equal parts for an integer N > 1. Then,
[0, 1P~ is split into 2V(P~1 congruent subcubes with diameter

A/(D—1)272N =27Ny/D 1.

Fach of these subcubes is mapped by any of the W maps ¢ into a ball of
RP of diameter 2=N+/D — 1L, as every x1 and @« in one of these subcubes
satisfy

|¢(z1) — ¢(z2)| < Llzg — 22| < L2 ¥/D — 1.

Thus, the boundary 85 can be covered by at most 2V(P~DW balls of radius
2-N=1/D —1L. With |1, Remark 5.26b, Example 6.6c| we deduce that the
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volume of all these balls totals

oN(D-1)1y7 w D/ 27ND7D(D_1)D/2LD _ 27NW((D - 1)77)D/2 (L>D
rZ+1) rZ+1) \2

When considering this term as a function of N, we see that it is converging

to 0 for N — oo. Hence, 05 is a null set and therefore measurable.

To prove the estimate we start with the case A = ZP. Then,
det A =1 (cf. Example and we define Cy = y +[0, 1] for every lattice
point y. Thus, we can cover the set S by taking the union of all Cy having
nonempty intersection with S as shown exemplary in the following figure.

RQ

I

FIGURE 2. Set S in R? with A = Z2

It follows that the number of lattice points in S can be approximated
by taking all lattice points y with Cy NS # ¢J. The error being made is
at most the number of lattice points y with Cy intersecting ¢S. Similarly
to above, the cube [0,1]”~! can be split into L?_l subcubes of side length
1/L; where L1 = 14 |L|. The diameter d of these subcubes is computed as

_ [D-1 D-1
N 2 L

By choosing ¢1(D) = +/D — 1, we get d < ¢1/L1. Hence, the images of these
subcubes under the maps ¢ have diameters at most ¢;L/L;. Consequently,
there are at most ¢ of the Uy intersecting a single such image where c is a
constant depending on D. By assumption we have at most W functions ¢
covering 05, therefore we obtain

(35) |Z—-V/detA| < WLP™' =W +|L)P ! < eW(L+1)P L

Since A1 equals 1 for A = ZP, the estimate 1’ follows.
Now, let A be an arbitrary lattice in R”. Corollary implies that
there exists a basis v1,...,vp of A with |v;| < ¢1A; for the successive minima
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A1, ..., Ap of A where ¢ is a constant depending only on D. We suppose that
n~!is the automorphism of RP whose matrix has the columns v1,...,vp. By
possibly multiplying one column with (—1), we can assume that det(n™!) is
positive. Asevery y in A is of the form a1v1+...+apvp for some aq,...,ap
in Z, we obtain 71(ZP) = A and thus, n(A) = ZP. Hence, we can apply
the result from above to n(S). It easily follows that the boundary of n(S)
can be parametrized by at most W maps ¢ (x) = n(¢(x)). From condition

we deduce
(3.6) [h(x1) — Y(22)| < [Inll |¢(z1) — @(x2)| < Lnll [x1 — 22|

where ||7|| denotes the (Euclidean) operator norm of 7, i.e.

]|

Il =
20 [af|

Now we want to find an upper bound for ||n||. We obtain the matrix of

—1. Let n; denote the i-th row of n

7 by generating the inverse matrix of n
and 7;; the matrix 7 omitting the j-th row and i-th column. For D > 2 we
have

1

detn—!

i = (1 det()). .. (-1 det(n))

and 1/detn ! = (det A) 1. Let u; be one of the minors of 7! omitting v;,
i.e. u; is one of the terms det(n;il) in 7;. By induction on D we show that

1] -+ op|
|| < cp———7—
for a constant ¢y = co(D) for every 1 < ¢ < D.

For D = 1it is 7! = (v11). Hence, p; is the determinant of a 0 x 0
matrix, which is 1, and the base case is satisfied. For convenience let A denote
the matrix 77511,D+17 and let A;; be the matrix we obtain by removing the
i-th row and j-th column of A. Then, for D + 1 it follows

det(ngiLDH)‘ — |det A

'L+'
]Uji det Aij

D
Z+j |U1| |’UD|
Z\ [ojil ==
P v
D
Z |ng| lvi] - |[vp4]
4 vi| |vpa]
’l] . e v
\D| 1] [vpya|

|’UD+1|
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where we used Laplace’s formula in the second equation and the induction
hypotheses in the third inequation. (Caution: Note that v;; denotes the
entry of column ¢ and row j.) The same is true for every other n;i. 11) 41
(1<i< D+1). And in an analogous manner one shows the expected result
for removing column ¢ (1 < i < D).
We obtain
[v1] -+ - [vp] D1AL" " AD

| i|\C2T< 2C IRV
Minkowski’s Second Theorem yields A1 --- Ap < cgdet A for a constant
c3 =c3(D),and as 1/A\1 > ... = 1/Ap, we get

detA  cpcPle
det A7 | < det A™LegeP ey =21 3
A1 A1

Thus, each entry of the matrix of n has absolute value at most 0201D 7163/ AL

Then, there exists a constant ¢4 = c4(D) such that ||| < ca/A1.
Now L can be replaced by Leg/Aq in (3.5)), as L in (3.3]) has been replaced
by L||n||. Finally, we deduce

LC4 D—-1 D—1
1Z — V/det A| < éW <A+1> < W (+1)
1

for a constant ¢ > 5cf -1 depending only on D. O

Remark 3.11. This is one possibility of estimating the number of points in
S nA. By using the concept of O-minimal structures one can show a similar
estimate with a different approach, which makes the concept of Lipschitz
parametrization redundant (cf. [3, Thm. 1.3]).

3.3. Preliminaries

In this section we do preliminaries to apply Lemma [3.10] More precisely,
we define and examine the sets to which the Lemma will be applied.

In the following we write ¢ = rx + sk —1 = 0. By X we denote the
hyperplane in RY*! defined by 21 +...+x441 = 0. Weset § = (dy,...,dg41)
where d; = 1for 1 <i<rg (ifrg>1),d;=2forrg +1<i<qg+1(if
sk >1). Andsetd =1 +2s = d1+...+dg1. By exp : RITL — [0, 00)7H!
we denote the componentwise exponential map. Let F' be a bounded subset
of 3.

Definition 3.12. For T € R-( we define in R?*! the vector sum

(3.7) F(T)=F + (—o0,logT]é.

Lemma 3.13. It is exp F(T) the set of (X1,..., Xg41) € [0,00)7" such that
q+1
[[xi<1?
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PrOOF. Let (X1,...,X44+1) be in exp F(T). Then, there exists a ¢ in
(—o0,logT] and an f in F such that X; = exp(f; +td;) where f; denotes the
i—th coordinate of f. Thus,

q+1 q+1
H X; = H exp(fi +td;) = exp(fi + ... + fog1) exp(tdi + ... + tdg41).
i=1 i=1

As F lies in the hyperplane ¥, we have f1+...+ f;41 = 0. Further, ¢t <logT
and the exponential function is monotonically increasing. Hence,

q+1

[T <exp(dilogT + ...+ dgirlog T) = exp <1og Td1+---+dq+1) =7

i=1
On the other hand take (X1,...,X,11) ¢ exp F(T). Thanks to —oo, the
origin is contained in exp F(T'), because lim,_,_ o exp(z) = 0. And as the
exponential map is monotonically increasing, we see that there is no ¢ in
(—o0,log T such that X; < exp(f; +td;). It follows X; > exp(f; + td;) for
every fin F and each 0 < i < g+ 1. We get

qg+1 q+1

H X; > H exp(fi + td;) = T
i=1 i=1
for every f € F. O

Let n be a positive integer. Recall that the ¢ + 1 infinite places v of K
yield the Lipschitz distance function max on each of the factors R" x C*® (cf.
page . We enumerate these places by 1,...,¢ + 1. For each place we use

corresponding coordinates z; in R%(m+1).

Definition 3.14. For

q+1
D=>di(n+1)=d(n+1)
i=1
we define Sp(T) in RP as the set of all (21, 22,...,24+1) with

da

(max(z1)%, max(z2)®, ..., max(z,;1)%+) € exp F(T).

Lemma 3.15. The set Sp(T) satisfies the following properties:

(1) Sp(Th) € Sp(Ty) for every Ty < Th.
(2) It is Sp(T) = T'Sp(1) homogeneously expanding and bounded.

PrOOF. Part (1) is an immediate conclusion of Lemma [3.13] Every
element (21,22,...,2¢+1) in Sp(T1) satisfies

g+1
H max(z;)% < T¢ < T,
i=1
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To prove part (2) let (21, 22,...,2¢+1) be in Sp(1). By using condition
(2) of Definition we obtain
max(Tz;)% = |T|% max(z;)% = T% max(z;)% for 1 <i < q+ 1.
And as
T% = exp(d;logT) for 1 <i < q+ 1,
it follows that
<1rnaX(Tz1)d1 ,max(Tz2)%, ... ,max(Tzq+1)dq+1>
lies in
exp(log T'0) exp(F (1)) = exp(F + (—0,0]d + log T'9)
(3.8 = exp(F + (—o0,logT]9)

where the multiplication of the vectors is to be understood componentwise.
Thus, T'Sp(1) is a subset of Sp(T).
Conversely, take (21, 22,...,2¢+1) € Sp(T). Then (3.8) yields that

da

(max(zl)dl ,max(z9)%, ... ,max(zqﬂ)dq“)

lies in
(le,Td2, . ,wa) exp(F(1)).
Consequently, there exists a vector (Y1,Ys,- -, Yg41) in Sk(1) with

(Zb 225y Zq+1) = T(ylayQa ve 7yq+1)

and the assertion follows.

Finally, we need to show that Sp(T') is bounded. As we have seen that
Sp(T) = TSr(1), it suffices to show that Sp(1) is bounded. The proof
of Lemma shows that every vector (zi,...,zq41) in Sp(1) satisfies
max(z;)% < exp f; for every f € F and each 1 < i < ¢+ 1. As F is
bounded, we deduce with properties (1) and (2) of Definition [3.4) that Sg(1)
is bounded, too. O

This result enables us to concentrate on Sg(1) in the following.

Lemma 3.16. If ¢ = 1, let the boundary 0F of F be Lipschitz parametriz-
able of codimension 2 in RI*1. Then, the boundary of Sp(1) is Lipschilz
parametrizable of codimension 1 in RP.

PRrOOF. Firstly, let ¢ = 1. Consider the boundary 0F (1) of F'(1) defined
in (3.7). As F is in the hyperplane ¥ and & obviously is not, dF(1) is
contained in two parts: the closure of F' together with 0F + (—o0,0]d. We
show that these two parts are Lipschitz parametrizable of codimension 1.
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As we have assumed that F is a bounded set in RYT!, we can project
F to any g coordinates, say x1,...,x4, and scale the image to a subset of
[0,1]9. Then we can use the inverse map ¢ = (¢1, ..., ¢q+1), which satisfies
by construction and the boundedness of F' the Lipschitz condition (3.3]).
Thus, F' is Lipschitz parametrizable of codimension 1 in R*+!,

To parametrize 0F + (—o0,0]d we start with the case ¢ > 2. By as-
sumption dF is Lipschitz parametrizable of codimension 2 in RI*!, so let
¥ = (1,%2,...,9%¢4+1) be one of the Lipschitz parametrizing maps for 0F
on [0,1]97 L. If we use ¢ + 8 for —oo < t < 0, it follows that exp dF (1) can
be covered by the images of the maps

(3.9) D =expo = (e?,...,ebar1)
on [0,1]¢ or maps

¢ = exp(y) + td)
(310) = (ew1+td1’ . 7e'¢)q+l+tdq+l)

- (e1lf1ud17 o 761/1q+1udq+1)

on [0,1]771 x [0,1] with u = €’ in (0,1].

These maps satisfy the Lipschitz condition : It is wellknown that
the class of functions from [0,1]9 to R satisfying is closed under addi-
tion, multiplication and exponentiation. By construction and assumption we
know that ¢1, ..., ¢g4+1, %1, ..., Yg41 satisfy . Thanks to the mean value
theorem, e! also satisfies the Lipschitz condition for —0 <t <0, as
d/dte’ = et is in (0,1], and thus is bounded. Hence, the images of and
are Lipschitz parametrizable of codimension 1 in RY. Since exp 0F(1)
is covered by these images, we obtain exp 0F(1) is Lipschitz parametrizable
of codimension 1, at least if ¢ > 2.

Now let ¢ = 1. In this case the boundary 0F is just a finite set, as § = D
in Definition For every point a = (a1,a9) in ¢F consider a + t(dy,d2)
for —oo < t < 0. Similarly to the case ¢ > 2 we see that exp dF(1) can be
covered by the images of maps on [0, 1] and maps

(3.11) ® = exp(a + t(dy, do)) = (eMe!®, e2e!2) = (eMyh ®2q%)

on [0,1] with u = e!. Since dF is finite, there are only finitely many of these
maps, and they satisfy , as shown above.

The boundary d(exp F'(1)) of exp F(1) consists of expdF(1) and the
origin, as F' is bounded and exp(F + dt) tends to the origin as t tends to
—oo. If we extend u to [0,1] in and let

O = (Dy(t),..., Dge1(t))
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be a parametrizing map as in (3.9)), (3.10) or (3.11) for ¢ in [0, 1]%, we see
that d(exp F(1)) is Lipschitz parametrizable of codimension 1 in RI*1,

By definition Sg(1) is the set of all (21,...,2¢41) with
(3.12) (max(z1)%, ... max(z41)%+)

in exp F(1). As max is continuous, the boundary 0Sp(1) is the set of all
(21,...,2¢+1) such that lies in d(exp F'(1)). As shown above, the set
d(exp F(1)) can be parametrized by maps ® on [0,1]?. So, if ® is one of
these maps, there exists a t in [0, 1] with max(z;)% = ®;(t) (1 <i < q+1)
for some (21, ..., zq+1) in dSp(1). Condition (3) in Definition [3.3]yields that
we have maps ¥;(¢;) for ¢; in [0,1]¢ with e; = d;j(n + 1) — 1 parametrizing
the boundaries defined by max(z) = 1. As max(wz) = wmax(z) for every
scalar w in R>g or Cso, for ¢ = 0 the set of z with max(z) = ( is equivalent
to the the set of all (z with max(z) = 1. So this set can be parametrized by
CW,;. Tt follows that dSg(1) can be parametrized by

(@11 (t1), ..., Pgra (B) /P Wy (Bg21).

We have seen in (3.9) and that ®;(t)Y/% is e/% or e¥i/diqy for ¢; and
1; satisfying the Lipschitz condition (1 <i < q+1). Therefore, with
the same argument as above that the class of functions satisfying the Lip-
schitz condition is closed under addition, multiplication and exponentiation,
we obtain that the above maps satisfy the Lipschitz condition. The used
variables are ¢ in [0,1]¢ and ¢; in [0,1]% for 1 <4 < ¢+ 1. So in total the
number of variables is
q+1 q+1

q+Zez—q+Z i(n+1)—1)=q+D—(¢+1)=D—-1.

Thus, 0Sr(1) in RP is parametrizable of codimension 1 as required.
Now, let ¢ = 0. In this case, according to Lemma we have

Sp(1) = {zl c R (nai+1) ‘ max(z1) < 1} = [0, 1]A(m+D),

Similarly as seen on page {41 one shows that the boundary of this set is
Lipschitz parametrizable of codimension 1. O

Lemma 3.17. Let F' be measurable with volume Vi. Then Sp(1) is mea-

surable with volume
V = (n+1)9(q + 1) Y2Vt gsx(ntl)

PrROOF. The set Sp(l) can be equivalently defined as the inverse im-
age of exp F'(1) under the continuous map m = (max,...,max) taking

(21,...,2¢+1) to Let p(x) = p(X1,...,Xq41) be the measure of
the set defined by max( 0% < XZ- (1<i<qg+1). If (Xq,...,X441) isin
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exp F(1) and max(z;)% < X; for each 1 < i < ¢+1, the vector (zq, ..., Zg+1)
is in Sp(1). Hence, the volume V' can be computed as

J dp(x).
exp F(1)

Part (3) of Definition [3.4)and Lemmas [3.6]and [3.10] yield that the sets defined
by max(z;) < 1 are measurable. We denote its volume by V; (1 <1i < g+1).
We have already seen that V; = 27! if d; = 1 and that V; = #"*! if
d; = 2. If max(z;)% < 1, we have maX(Xil/dizi)di < X; by condition (2) in
Definition Thus, the volume of the set defined by max(z;)% < X; is

V;X'(l/di)di(n"rl) _ ‘/;;Xp—i-l

as we get an extra factor Xil/ i for every component of z;. In total we obtain

p(m) — Vl . ‘/;1+1X{L+1 . Xn+1 — 2T‘K(TL+1)7TSK(’H+1)XIL+1 . Xn+1

qg+1 g+l
Hence,
V= ZTK("+1)7T8K(n+1) J dXiH_l .. -dX;‘i‘ll
exp F(1)
— (n 4 1)THLgra () psxc(n1) J X7 X d Xy - dX g
exp F(1)

where we used the substitution XZ-"Jrl = X; in the last equation; obviously
it is
an-‘rl
1
dX;

=(n+1)X"

for each 1 < ¢ < ¢+ 1. And the set exp F'(1) does not change under the
transformation, due to Lemma [3.13] and the fact that 1 is invariant under

exponentiation.
Let us use for definiteness x1,...,x, as coordinates on the set F' with
Tq41 = —T1 — ... — ¥4 Then we can use X; = %t (1 <i<qg+1)as

corresponding coordinates on exp F'(1) = exp(F' + (—0,0]d) for ¢ in (—o0, 0].
We obtain the Jacobian matrix

e e 20X, X1 d1 X1
0z te O0xq ot
J = : : : = '
6Xq+1 6Xq+1 5Xq+1 Xq quq
ox1 T Oxq ot

—Agt+l - T AgH] dq+1Xq+1
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We use the Gaussian elimination to determine the determinant of J. By
adding X,.1/X; times of row 7 to the last row for every 1 < ¢ < ¢ it follows

X1 d1X1
det J = det :
Xq deXg
O e 0 dq+1Xq+1 + leq+1 +...+ quq+1
= (d1 + ...+ dq_H)Xl o -Xq+1
—dX; - X1,
We deduce

0
174 :d(n + 1)q+12r1<(n+1)7_rs;((n+1) J J
—o0 JF

e(@+td)" (@ ttde)"H (—(@1 et wa) Ftdg )" qpq g -dz,

0
—d(n + 1)9t 1ot psx(ntD) J

—0

etd(nt1) q¢ JF dzy -+ - dzg.

It is
0 1

0
1
€td(n+1)dt _ etd(n-‘rl) _ .
J_OO d( —w  dn+1)

n+1)

To compute the above integral over F' we need a parametrizing map for F'
It is easy to see that the map ¢ : RY — RIT! 41> Ay with matrix

is a parametrizing map for 3. So there is a set P in R? such that ¢(P) = F.
On the one hand, the transformation formula for integrals shows that

(3.13) J dzy---dzy = f dy - - - dyq.
F P
On the other hand, computing the surface integral yields
(3.14) Ve = | 100ty /aet(Gatw)dn -y,
where G is the Gramian matrix of ¢, i.e.
2 1 1
¢ 1
Gyly) = A'A =
1
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We show by induction on ¢ that the determinant of this Gramian matrix
equals ¢ + 1. The base case for ¢ = 0 is trivial, because the determinant of
a 0 x 0 matrix is 1. For convenience define A, = G4(y) where the index ¢
denotes the dimension of the matrix. Let ij denote the submatrix of A,

removing the i-th row and j-th column. Laplace’s formula yields
q
det Ag =2det Ag_1 + 2 (=) det Bi;.
j=2

By permuting the first j — 1 rows of the matrix B‘fj for j = 3, we achieve a
matrix of the shape

1 1 1
1 2

B§12:
: 1
1 ... 1 2

It is easy to see that the matrix B, has determinant 1 by subtracting row
1 from each of the rows 2,...,q — 1. Therefore, by using the induction
hypotheses we get

q
det A, = 2¢ + Z(_l)lﬂ(_l)j_Q det By =2¢—(¢—1)=q+1.

j=2
Comparing the equations (3.13) and (3.14) shows that
Vi
dey -+ -dz, =
J F o ta q+1
and finally, the lemma follows. O

3.4. Proof of the Theorem

Now we get back to number fields. Let K be a number field of de-
gree d. We use the same notation as introduced in chapter |1, We denote
o = (01,...,0045) : K — R% As in section we use the conventions
g=rKx+sxk—1and D =d(n+1). Let a be a nonzero ideal in the ring of
integers O.

Lemma 3.18. The product A(a) = o(a) x --- x o(a) = o(a)""! is a lattice
in RP with determinant

det A = (2—8Km(a)m)"“,

and its first successive minimum is Ay = s)”i(a)l/d.

PROOF. For example in |8, Lemma 2, p. 115] it can be seen that A(a)
is a lattice with the desired determinant.
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The definition of the first successive minimum yields that A; is the mini-
mum of the nonzero elements of the lattice A(a) with respect to the Euclidean
norm. As A(a) is the (n + 1)-times product of o(a), which is also a lattice,
A1 is also the minimum of the lattice o(a). So it suffices to show that every

nonzero element o(z) of o(a) satisfies |o(z)| = N(a)

. The squared length
of o(x) is
q+1

lo(@)? = ) loi()|*.
i=1

By using di, ..., dg41 as in section [3.3] we obtain

q+1 qg+1

1
(2> = dilo: ()2
;:1 loi(@)” = 5 ;:1 iloi(@)|

with equality if d; = 2 for each 1 < i < ¢ + 1, and the factor 1/2 can be
omitted if d; = 1 for each 1 < ¢ < ¢+1. Now we need the weighted inequality
of arithmetic and geometric means (briefly AM-GM). The weighted AM-GM
states that if ai,...,a, are nonnegative real numbers and Aq,..., A\, are
nonnegative real numbers summing up to 1, then

n

n
S vz [ o
=1

i=1

For the proof see Appendix [A] Here the weighted AM-GM inequality yields

q+1 d: q+1
Y, Soi@)P = [ ] lou(a) P4,
i=1 =1

since the d; sum up to d, which is equivalent to

q+1 q+1

1 d .
5 D@ = 5[] loia) P44,
=1 =1

As |oi(z)| = |oi(x)| for every complex embedding o, it is
g+1

(3.15) [ [loi@) = [Nk g ()] = N((@)).
i=1

Because z is an element of a, the absolute norm of (x) is at least 91(a). In
total we get

U

d q+1 2/d
wwﬁ>2ﬁlwmﬁ> > SN(a)¥".
i=1

If d/2 = 1, the assertion follows. It is d/2 < 1 if and only if rx = 1 and
sg = 0,1ie. dy =1 and ¢ = 0. Hence, we can omit the factor 1/2 as
mentioned above, and the claim follows. O
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As in the previous section let ¥ be the hyperplane in R4T! defined by
z1+...+x441 = 0, and let F' be a bounded subset in 2. We also use T, 4 and
Sr(T) as defined in the previous section and A(a) as introduced in the lemma
above. Lemma part (2) shows that Sp(7T') is bounded and the previous
lemma yields that A(a) is a lattice. Hence, the intersection Sgp(T) n A(a) is
a finite set. We denote the number of its nonzero points with Zp(a,T). To
provide a better overview, we will write Zp,(a,T) when dealing with more
than one projective space. The next lemma gives an estimate on this number

by using the counting principle of section

Lemma 3.19. Let F' be bounded measurable with volume Vi such that 0F is

Lipschitz parametrizable of codimension 2 (at least if ¢ > 1). If T < ‘)“((a)l/d,

we have Zp(a,T) =0. If T > ‘)T(a)l/d, it is

Td(n+1) Td(n+1)—1

for a constant cp depending only on K and F', and

(n+1)7 2D

VAT \fJdg "
PRrOOF. Recall that Sp(T) is the set of all (21, ..., z441) such that

lies in exp F(T') where z; € R“("+1D (1 <i < g +1). Lemma shows that

Zp(a,T) - CF

(316) CF = CF,n = 27'K(7l+1)7TSK(TL+1).

(3.17) H max(z;)% < T9.

Moreover, in the proof of Lemma we have seen that, due to —o0, the
origin lies in Sp(7T'), which we exclude from the counting.
The lattice points in A(a) have the shape

(zl,...,zq+¢) ::(01(10,...,aq+1(m))
= ((01(20), - - -, 01(@n)), -, (Fg11(20), - -, 0g11(Tn)))
for some x = (z0,...,2,) in a®*!. If z is nonzero, there is at least one j
with z; # 0. We have
q+1 q+1
H max(z;)% = H max{|o; (o), . . ., |oi(zn) |}
i=1 i=1
q+1
d;
> [ [loi(ay)]
i=1
= N(a),
as
q+1

[ Tloi@p|® = Nijg(z;) = N()))

i=1
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and (z;) € a. Together with we obtain 7¢ > MN(a). Thus, the assump-
tion T' < ‘ﬁ(a)l/d leads to = 0. So apart from the origin there is no lattice
point of A(a) lying in Sp(T), i.e. Zp(a,T) = 0.

For the second case recall from Lemma part (2) that Sp(T) is equal
to T'Sp(1) and bounded. In Lemma we have shown that the volume of
Sr(1) is

V = (n+1)9(q + 1) YV2Vprxth)gsx(ntl)
Thus, Sp(T) has a volume of
V = (n + 1)q(q + 1)_1/2VF2TK(n+1)7TSK(n+1)Td(n+l)7

since we get an extra factor T for each of the d(n + 1) dimensions. Next,
Lemma yields that 0Sp(1) is Lipschitz parametrizable of codimension
1, and so we deduce the same for 0Sp(T") = T'0Sr(1) (it follows immediately
from Lemma [3.13] and the fact that the number W of maps only depends
on K and F'). Moreover, we find a constant ¢ with L < ¢x0(a) Y4 \which
also depends only on K and F. Thus, L < ¢»T. By Lemma the lattice
A(a) has discriminant

n+1
det A = (Q’S‘Jt(a)«/|dK|>
with first successive minimum A; = 9(a) Y Thus,
174 (’I’L + 1)q(q + 1)f1/2VFQTK(n+1)ﬂ.sK(n+1)Td(n+1) CFTd(nJrl)
det A 2,8K(n+1)m(a)n+l\/mn+l B m(a)n-H .
Therefore, we obtain by applying Lemma with S = Sp(T)

CFTd(n—H) 3 <L >D1

Zr(@,T)+1) — ——F—= | <cW | — +1

Zr(e. D) +1) = L "
, d(n+1)—1
cow [ =4y :
M(a)"
and hence,
d(n+1)—1
C«FTd(n+1) ) c};T
Zp(a,T) — ————— Wl ——+1 +1

F( ) m(a)nJrl m(a)l/d

1/d

where ¢ is a constant depending only on D. Since T/(a)/® > 1, there is a

constant cp depending on K and F' with the property that

d(n+1)—1
~ CIFT Td(n+1)—1
cw (m(a)l/d T ) +1 Cr m(a)(n-i-l)—l/d

and the Lemma follows. O
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As seen in this proof, the points of Sp(T) n A(a) correspond to points

n+1

= (xgy...,Tp) in @ or equivalently formulated these points correspond

to xg,...,x, in O with
(3.18) 200 + ...+ 2,0 C a.
We write Z3(a,T') for the number of points & with 20Ok +... + 2,0k = a.

Lemma 3.20. Let F be bounded measurable with volume Vi such that OF
is Lipschitz parametrizable of codimension 2 (at least if ¢ = 1). Then, for
all T > e we have

Td(n+1)

< ot Td(nJrl)flE
m(a)nJrl F 0

Z;;(Cl, T) - C;’
for ¢, depending only on K and F' and C}, = Cp/Cx(n+1) with Cf as in the
previous lemma. And Lo = 1 unless (d,n) = (1,1) in which case Lo = logT.

PrOOF. Firstly, we notice that for nonzero x € (’)}?’1 the inclusion ([3.18))
is equivalent to xgOk + ...+ 2,0k = ab for some nonzero integral ideal b.
We want to use Mobius inversion to count the number of points Zz(a,T').
Therefore, we need to generalize the Mébius function for integral ideals.
According to Proposition [I.12] every integral ideal in Ok has a unique fac-
torization into prime ideals. Thus, we can define the Md&bius function for
integral ideals a as follows

(—=1)", if ais a product of r distinct prime ideals ,

(3.19)  px(a) = e o
0, if a is divided by square of a prime ideal

With a similar argument as in the proof of Proposition we obtain by
using the Mobius function pg for integral ideals

Zi(a,T) ZNK )Zr(ab, T).

For b = Ok we obtain any subset in and then we subtract the proper
ones. We may restrict b to 91(b) < T, because M(ab) = N(a)d(b) = N(b)
and Lemma shows that Zp(ab, T) = 0 for M(ab) > T¢.

By applying equation and Lemma we obtain

Td(n+1)

Z;;(Cl, T) CFin
m( ) +1

B - ,UK([]) Td(n+1)
_ 1 (6)Zr(ab, T) szhjm(b)nﬂm(a)nﬂ

N

N(b)<T?
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Td(n+1)
= Zb] frc (b) (Zp(ava)—CFW>

N(b)<T?

Td(n+1)

- Zb: CFMK(b)W

N(b)>T1

Td(n+1) Td(n+1)
< Zp(ab, T) — Cp—— | + Cp—
N(b)y<T MN(b)>T
Td(n+1)—1 Td(n+1)
P — Cp—.
Zb: Fm(ab)n-i-l—l/d Zb: Fm(ﬂb)nJrl

N(b)y<T MN(0)>T?
From Lemma [[.28 we deduce
Td(n-i—l)

;ﬂ(a)nJrl

Td(n+1)—1 Td(n+l)
Z;(a7 T) - C;

<c Lo+ Cpro— "
Fm(a)n—&-l—l/d 0 Fm(a)n+1
Td(n+1)—1 Td
m(a)nJrlfl/d

where Ly = 1 unless (d,n) = (1,1) in which case Ly = logT.
In the case (d,n) = (1,1) we have T+ D=1Ly = TlogT. If T > e, it
follows T'logT > T = T If (d,n) # (1,1) and T > 1, we get

Td(’nrl*l)flﬁo — Td(n+1)71 2 Td.

Consequently,
CFTd(nJrl)f1 CFTd CF Cr d _
B o F < 4 T (n+1) 1£
m(a)nJrlfl/d 0 m(q)n-‘rl m(a)nJrlfl/d m(a)n-‘rl 0

< C;Td(nJrl)flLO

for a constant c}, depending on K and F', and the lemma is proven. O
As already mentioned on page [A0] for every point x = (zg : ... : z,) on

P"(K) we can assume that the coordinates z; lie in Og. So, every point
(zo,...,Ty,) generates an integral ideal a in O, namely

a=200rg +...+2,0k.

We define
1/d
[T (ow(@o)] + - .. + low(@a) ™\

v |0

N(a)
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Since [, o0 loy(a)|% = N((a)) for all @ in K* and since the absolute norm
is multiplicative, we easily see that this definition is independent of a choice
of coordinates of z; for x. By Q(x) we mean the field Q with all the ratios
x;/x; adjoined if x; # 0. As the x; are elements of K, we have Q(x) € K.

Proposition 3.21 (Northcott). The number of points x on P"(K) with
[Q(x) : Q] = N and D(x) < S for N €N and S € R is finite.

Proor. [12, Thm. 1. O

Lemma 3.22. For every x € K""'\{0} with a = 20Ok + ...+ 2,0k it is

(3.20) H masx {[on ()2} = ()™

- 0<i<n

ProOOF. Consider the factorization of the integral ideals (zo),. .., (zy)
into prime ideals in O, which is unique, due to Proposition [[.12] We have

(zo) = p1* oy (@) = P T

with e; ; in Np, and nonzero prime ideals p1,...,p, in Ok, r > 1. Then, it is
minOSiSn{e’i,l} mln0<L<’lL{eZ TL}
P1 P

the prime factorization of a = 2¢Ok + ... + 2,0k in Ok. By using the
definition of the nonarchimedian absolute value and the multiplicity of the

norm, we obtain

r

H Orgzaéxn {|JU (1) |gv} - H OTEfE; {‘ﬂ(p I (ZZ)} H N(p —minogign{€i,j}

’U*OO ,7—

r —1
=M < p?llﬂosisn{ei,j}> — m(a)—l

J=1

Now we can already prove the first part of Theorem

PrOOF OF THEOREM [3.8], PART I. The theorem states that there are
only finitely many rational points z on P"(K) with Hg(z) < B. As there
are ¢ + 1 = rg + sk infinite places of K, we get by applying Lemma [3.22

[T (loo(@o)l + ...+ low(@n) )™ TT(n+1)* max {Joy(2:)|™)

v| oo < v| oo O<isr
N(a) h 0(a)
2(q+1) dy
< (n+ DX T max o ()|}
UEQK

= (n+ 1)@V (x).

Hence, every x € P"(K) with Hg (x) < B satisfies D(x) < B(n + 1)2@t1/4,
Due to Northcott’s Theorem and the fact that there are only d—p(d)+1 < o
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possible degrees for [Q(x) : Q] where ¢ denotes Euler’s totient function, the
number of these rational points x is finite. O

We write Z(B) for the cardinality of the set of & in K""\{0} with
Hy(xo,...,2n) < B. We have just seen that this set is finite. Now, we get
to the final lemma until we can complete the proof of the theorem. Therefore,
we need the standard logarithmic map [ : KX — R9*! introduced as in (|1.1)).
We have seen that [(O}) is a full rank lattice in ¥ and that the group of
roots of unity p(K) is the kernel of [ : 0% — R+,

Lemma 3.23. Suppose that F is a bounded measurable fundamental domain
for {O}) with volume Vi and OF is Lipschitz parametrizable of codimension
2 (at least if ¢ = 1). Then, for all B = e we have

(3.21) Z(B) =wg' >} Zp(a,M(a)/"B).
aeCx
Proor. Without loss of generality we can assume that the coordinates
z; of every © = (z0,...,2,) in K" are in Ok by multiplying with the
least common denominator. Every point  in O%\{0} corresponds to the
ideal a = 20Ok + ... + 2,0k in O. As a - x defines the same point as x
on P*(K) for all a in K*, this ideal is unique up to principal ideals. Hence,
every x on P"(K) corresponds to a unique ideal class, and we find an integral
ideal class representative a € Cx with

(3.22) 200k + ... + 2,0 = a

for a representative x of x in O?(H. This representative x is unique up to
multiplication with units, since z;nOx = ;0K for every n € OIX(.

Because of condition (2) of the definition of a Lipschitz distance function
, for every 1 <i < ¢+ 1 and n e O the following identities hold

log (max(ai(nm))di) = log <|0’¢(77)|di maX(Ui(af))di)

= d;log|oi(n)| + d; log max(o;(x)).

(3.23)

By assumption F'is a fundamental domain for (O ). Hence, due to Proposi-
tion , there exists a system of fundamental units €1, ..., &4 in O unique
up to roots of unity such that l(¢1),...,l(gq) lie in F'. Moreover, these I(g;)
build a basis of the lattice [(O}) in X.

We see that the set F'(c0) = F46R is a fundamental domain for R4*! un-
der the additive action of (O ). Thus, there are unique integers y1,. .., yq,

a unique element B in F' and a unique real number ¢ such that

B + td = d;jlogmax(o;(x)) + yil(e1) + ... + y4l(eq) = log (max(oi(n:c))di)
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where we used the identities (3.23]) in the last equation, and the fact that
n=e ---531% is unique up to roots of unity. So, there is only one repre-

sentative & unique up to roots of unity with the property that
(log max(oy ()™, ..., log max(c,1(x))%+)
lies in F'(00). This is equivalent to

(max(oy (a:))dl, e max(oqﬂ(:c))dq“)

lying in exp F'(c0). This yields the factor wgl.

We have already seen that the inequation 1_[3;1 X; < T9 holds for every
(X1,...,Xg+1) in exp F(T) (cf. Lemmal3.13)). By taking X; = max(o;(z))%
for1<i<qg+1,ie o(x)e Sp(T), we obtain

q+1
[ [max(os(x))™ < T,
=1

which is equivalent to
Hie(x) < TR(a) ",

due to Lemma [3.22] Here x denotes the corresponding rational point of & on
P"(K). As we are interested in the points @ in K"*'\{0} with Hx(x) < B
we set B = T‘ﬁ(a)fl/d or equivalently 7" = sﬁ(a)l/dB.

To sum up, for every rational point x € P"(K') we choose a representative
z € OF\{0} with Hg(x) < B satisfying equation for an integral
ideal class representative a. Using Sr(T") we can choose the representative
x unique up to roots of unity and Zj(a, ‘)”((a)l/dB)w;(1 yields the desired
number of points corresponding to the integral ideal class a. Then, we obtain
Z(B) by summing over any set of integral ideal class representatives. O

Finally, we can complete the proof of our Theorem.

PrROOF OF THEOREM [3.8], PART II. Let F be a fundamental domain for
the lattice [(O)) € RI™! (at least if ¢ > 1). For example F can be taken
as a parallelepiped. Then, the boundary of F' consists of the faces of this
parallelepiped, i.e. the boundary of F'is (¢ — 1)-dimensional and can be
parametrized, for example, by continuously differentiable maps. Hence, the
boundary 0F is Lipschitz parametrizable of codimension 2, and we can apply
the previous Lemma. Since D(a) > 1 for every nonzero integral ideal a, we
get ‘T((a)l/ iB = e for all B > e. Therefore, we deuce by using Lemma
and Lemma
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Z(B) =wi' > Zp(a,M(a)"/"B)

aeCK

C’F‘It(a)” le(n 1) 1-1/d
_ 1 2 : n+ d(n+1)—1
=w + O (N(a B L
K ( Cr(n+ 1)’Jt(a)n+1 ( () O)

. (n + 1)q 25K(n+1) VF2TK(n+1)7TsK(n+1)Bd(n+1)
=w
BVa+1 /ldg |+t (k(n+1)

where Lo = 1 unless (d,n) = (1,1) in which case £y = log B. Thanks to
equation (1.2), the regulator Ry is equal to Vz/+/q + 1. The sum taken over
any set of integral ideal class representatives of K is the class number hg,

aeCK

1

ClECK

by definition. And as hg is finite, there is a constant ¢y > 0 with 9(a) < ¢
for every a € Cx. Hence, we can omit the factor 91(a) in the above error
term. Thus, together with Definition [3.7] the equation becomes

Z(B) = Sk (n)BY+D 1+ 0 (Bd("“)*l/;o) .
This completes the proof. O

Remark 3.24. Similarly to Remark [2.6] let us consider the asymptotic
behaviour of

Nix(B) = #{xeP"(K) | H ' (x) < B}

as B — o0, since we consider the height function to the power of n + 1 in
the following chapter. Theorem implies

Nix(B) = Ni (Bl/<n+1>) = Sk(n)B+ 0 <Bd*1/("“)£o)

for all B > e where £y = 1 unless (d,n) = (1,1) in which case £y = log B.
Thus, N1 x(B) ~ Sk (n)B? as B — o0,



CHAPTER 4

Rational Points on Products of Projective Spaces

over Number Fields

In this chapter we use the same notation and assumptions as in the
previous chapter. After considering the asymptotic behaviour of the number
of rational points with bounded height on P"(K'), we want to generalize the
theory to the asymptotic behaviour of the number of rational points with
bounded height on products of projective spaces over K, that is [ [}, P™(K)
for m,ny,...,n, € N

Definition 4.1. For x = (x;,...,X,,) in [ [/2; P"(K) the height H,, x of 2
is defined by

m
Hpic(x) = [ [ Hc ()™
i=1

where H (x;) denotes the height of z; on P (K) (cf. Definition [3.1]).

Lemma 4.2. The height Hy, i is welldefined on [ [/, P"(K) and satisfies
Hp, k(x) = 1 for every rational point x in | |2, P"(K).

ProoFr. We have seen in Lemma that the standard height Hyx on
P™(K) is welldefined for each 1 < i < m. So we easily see that the above
defined height is welldefined, too. Further, Lemma (3.2 gives us Hi(x;) > 1
for every x; € P"(K). Hence, immediately we deduce the same for H,, . O

For all real numbers B we set

m

Npic(B) = # {x = (X1,--,Xy) € [ [P(K)

i=1

Hm,K(X) < B} .

Theorem 4.3. For all real B and m,n1,...,ny, in N with m = 2 there are
only finitely many rational points x in | [}~ P"(K) with Hy, x(x) < B. For
B = e their number is

mos i an—1
Npn.x(B) = L=y Sre(no) Blog™ ' B+ 0 (Bd log™ 2 B) .
’ (m—1)!
Thus,
m N gm—1
Ny x(B) ~ L= Sk (na)d Bllog™ ' B as B — .

’ (m—1)!
63
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Similarly to chapter 2] we proof this theorem by induction on m. There-
fore, we use the case m = 2 as the base case. But before starting, let us note
that Ny, x(B) = 0 for all B < 1, due to Lemma With the same lemma
we deduce

m
N i (B) < ( max {xeP"(K) | Hp''(x) < B}) :
ne{ni,...,nm}

Theorem [3.8 implies that
{xeP"(K) | HF ' (x) < B}

is finite for each n € {nq,...,n,,}. Hence, Nm,K(B) is finite, too.

4.1. Products of Two Projective Spaces over Number Fields

Let m = 2 and set a = ny, b = ny. Let x = (v,z) be a rational
point on (IP“ X IP’b) (K). For reasons of symmetry we can assume a < b
without loss of generality. We write y = (yo : ... :¥Ya) and z = (20 : ... : 2p)
with corresponding vectors ¢ and z in K*+1\{0} and K*+1\{0}, respectively.
With the same type of argument as in the previous chapter, we can assume
that y and z have coordinates in the ring of integers Ok. Also, we have
already discussed that (y)o, = ¥90Ok + ...+ 9.0k is an ideal in Ok, which
is unique up to principal ideals (cf. proof of Lemma[3.23). Hence, we can find
a unique a in Cx such that yoOg + ...+ y,Ok lies in the ideal class of a. By
multiplying with a suitable element of K*, we can choose a representative
Yy e (9?1\{0} for y with 40Ok +. . .+y,Ok = a. This representative is unique
up to scalar multiplication by units in Oj. Analogously we can choose a
representative z € (91;;”1\{0} for z unique up to scalar multiplication by units
in O satisfying 200k + ... + 2Ok = b for an ideal class representative b
in Cx. Again we note that the cardinality of O might me infinite.

Let F' be a bounded measurable fundamental domain for I(Oy) with
volume Vp and let 0F be Lipschitz parametrizable of codimension 2 (at
least if ¢ > 1). We have seen in the proof of Lemma that we can choose
the representative y unique up to roots of unity by requiring o(y) € Sp(o0).
The same is true for z. Hence, we obtain

No(B) =# {x = (v.2) € (B x P') (K) | H (0 H (2) < B}

1
—— ) #{ye0g\0}, 2 O\(0} | o, = a.
K (a,b)ec

(z)o, = b, o(y) € Sp(x©), o(z) € Sp(w©), H?(H(y)Hfjl(z) < B}.

Recall that ¢ = rg + sg — 1. Set
q+1

(4.1) H max {|01 N
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With Lemma we obtain

1
No(B) == Y, #{ye 05 \{0}, z e OF\(0} |
K (ab)ec2

<y>OK = a, <Z>OK =b, U(y) € SF(OO)v O'(Z) € SF(OO)a
ﬁ?;rl(y)ﬁ?;rl(z) < B‘)‘t(a)(““)/d‘ﬁ(b)(b“)/d}.

Let us recall that in the case K = QQ we got rid of the greatest common divisor
condition for y and z by using Mdobius inversion. Therefore, we summed
over the natural numbers, added the factor pg(k) and the greatest common
divisor condition was replaced by k£ | y. The latter can be formulated
equivalently by using ideals. It is k | y equivalent to yoZ + ... + y.Z S kZ,
i.e. (y)z € (k). Thus, equivalently we could have summed over the principal
ideals a in Z, added the factor pug(a) and replaced the greatest common
divisor condition by {y)z < (k). Thereby, we use the generalized Mdbius
function for integral ideals, defined as in . Thus, by modifying the
M@ébius inversion to the general situation for arbitrary number fields K we
obtain

NoxB) = S Y k@Y k)

K 2
(a,b)eCKm gd/(bﬂ)

o @FIGFT
#{y e OF\{0}, 2 € OF\(O} | (W, € ac, (o, < b0,
o(y) € Sp(0), o(2) € Sp(o0),

Er}z(-&-l(y)g?(-&—l(z) < Bm(a)(aﬂ)/dm(b)(bﬂ)/d}

C
d/(a
(0)<B /(a+1) N()<

where the sums are taken over all integral ideals ¢ respectively 0 in Og. We
may restrict ¢ to 9(c) < B¥@+D) and v to M(d) < BYO+D /m(c)(a+/(0+1),
We have (z)p, < b0 and thus 91(bd) < N({(z)0, ). Moreover, (2;) € ()0,
ie. N((2)o,) <N((25)) (0 < j <b). With equation for z; we obtain

MN(b) < N(bd) < N((2)o,) < Hir(2).

Analogously, we get
N(ac) < A (y).

Therefore,

rrd d/(a+1) (b+1)/(a+1)
_Hxy) _ B N(a)(b)

(4.2) N(c) < < —— < BH/(a+1)

and
d(z) _ BYODy(q)let D/ (0D p) Rd/(b+1)

< < :
N(b) ﬁ?((aﬂ)/(bﬂ)(y)m(b) N (c)(atD/(b+1)
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4.1.1. Upper and Lower Bound. Take a closer look at Hy(y) for
y € 0% 1\{0}. Without loss of generality let y be unequal to 0. We have

1 1
ﬁ max {|o;(y;)[}/4 > ﬁ s (o) |/ = | N (yo)‘l/d =1
0<j<a' 77 -1 ? /Q )

1=

because N g(yo) € Z\{0}, since yo € Ox\{0}. Thus, Hy (y) takes values
between 1 and B = BY(@+D91(a)Y/d9n(p)0+1)/(da+1)) " Define for N e N

an1 =#{y € 05N} | Woy < ac, o(y) € Sp(w0),
N < Hxly) < N +1},

anz =#{y € O \(0} | oy < ac. o(y) € Si(e),
N —1 < Hx(y) <N}.

Clearly, an,1 < Zpq(ac, N +1) and an2 < Zpq (ac, N) (cf. p. [55]for the
definition of Zp). Thus, we deduce with Lemma

an1=0if N <Nac)’? =1 and ayg =0if N < N(ac)/.

Set mg. = max {1,m(ac)1/d — 1}. By definition of Zpy, it is

bt 3 Blat1)/(b+1)
#12z€ O \{0} | (=)o, S b, 0(z) € Sp(0), Hk(z) < N@r O/
Blat1)/(b+1)
(44) = ZF,b bb, W .

This vanishes if
BlatD/0+1) UG+ () atD/ b))y (p)1/d
Na+D/ o+ N (a+1)/(b+1)

which is equivalent to

< N(6d) Y,

Bl/(a+1)m( )1/d _

N > N0 )b+1)/(d(a+1) = Bs.

Further, Hg (y) is bounded by B As Ba < B, due to M(0)N(b) > 1, and
‘ﬁ(ac)l/d < B,, thanks to equation , we can narrow N to the interval
[Mac, By] and [m(ac)l/ d,Ba], respectively. We find an upper and a lower
bound for Ny i (B) by splitting the set in the formula for Ny i (B) into a set
of vectors y and a set of vectors z

Nowe(B) s 3 INTECEED YO0

2
w
K
(a,b)eC? gd/(b+1)

m(t)((l‘+l)/(b+1)

Bla+1)/(b+1)
2 an,1 - Zrp | b0, N(ar /) |

mac<N<BD

K Sd/(a+1)
N(c)<B NO)<
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Naic(B) %1;( > X @ X

(a,b)eCy gd/(b+1)
91(0) (@FD/GFI)

B(a—i—l)/(b—i—l)
Z i aN72'ZF7b ba,m .
N(ac)*<N<B,

K d/(a+1
N(c )<B /(a+1) N(0)<

Lemma implies

No k(B LQ Z 1 (<) Z 1k (9)
YK

0
)GCK ‘ﬂ( )<Bd/(a+1) ’)’I(D)< B/(b+1)

S o(o)(a+D)/(0+1)
Bdla+1)
2, O Nt Do )

Mac <KN<Byp
Bdla+1)—(a+1)/(b+1)
+0
Nd(a+l)f(a+1)/(b+1)§ﬁ(ba)bJFl*l/d

= Z 2 fur (€) 2 1 (9)

0
(a,b)eC% MN(e )<Bd/(a+1) oo d/(b+1)
Q< g @ D
+1
Z an,1 Cry _B™M(a)"
_ w a+1
Mac<N<Byp K N ( )m(a)

Bd—l/(b+1)m(a)a+1*(a+1)/(d(b+1))
Nd(a+1)_(a+1)/(b+1);ﬁ(a)bﬂ—l/d

+0 2 an,1

Mmac<N<By

Using Abel’s summation formula (Proposition [1.22]) to compute the sums
over N yields

Nog(B)< ). Z 1 (€) > 1 (9)

a,b)e 0
(a,b)eC K;ﬂ(c)<Bd/(a+1) N(o)< gd/(b+1)

S (o (@FD/GFT)

Cry Crp d B(a)*t U
bl
Wic N<B, Wi Jma N<t dt g aDN(0)""
+ 0 aN,1 — J Z an1
N<Ba Mac Nt

d Bl V0D q)e 1=+ D/db+1)

At gd(a+1)— (a+ D)/ +1) ()01 1/d dt
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We note that

Z ang =0 and 2 ang2 =0,

N<mgc N<N(ac)

according to Lemma Furthermore, we have

Y ana ={y € OO} | oy < ac, o(y) € Se(ee), Hicly) <t+1}
N<t

(4.5) <Zpg(ac,t+1)

as well as

> ana = {y € OO} | (woy < ac, o(y) € Sp(0), Hicly) <t}
N<t

(4.6) =Zpq(ac,t).

These results and the chain rule imply

Ns k(B) <i§’b Z 2 P (c) 2 pr (0)

K
(a,0)eC% m(c)chd/(aJrl) m(a)é%
N(e)le
_ d(a + 1)BN(a)* (B> Zp, (ac,t + 1)
(ZF,a (ac, By + 1) + m(b)bﬂ LL d(a+1)+1 dt

Bd—l/(b+1)m(a)a+1*(a+1)/(d(b+1))

+0 (Zpﬂ (ac, By +1) +

Bo  Zp,(ac,t+1) ”
' g, LD F1=(a+1)/(b+1) :
To estimate Zr, we apply Lemma again. It is By = 1, according to
equation (4.3) and DN(ac) > 1. We obtain

Ny i (B) <i§’b Z Z ik (c) Z 1k (0)

K (a,p)ecz

c 0
N(c)<BY (a+1) ()< gd/(b+1)
S @ D/

B d(a + 1) B (a)* ™
<O (m(a)b—i-lm(c)a—&-l) T m(a)bﬂ

Bo [ Opa(t +1)4etD) of ¢+ 1)dat+D)—1 dt
. . m(ac)a-',-l + m(ac)aJrlfl/d td(a+1)+1
d d—1/(b+1) a+1—(a+1)/(d(b+1))
+0(0 b ? 1 = ‘ﬂ(a)b 1-1/d
M) N(e)* N(o)r-Y

oo [+ pfery dt
Jm N(ac)®t | tdla+D+1-(a+D/C+1) | |-
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Fort>1itist+ 1= O(t) and

1 1 1
d(a+1
(t+1)(+)W:t+O()

Now(B) < )] >, k(o) > 1k (9)

2 c 0
(a,b)eCy, MN(c)y< B/ (a+1) pd/(b+1)

)< 5@

(d(a + I)CF,GCRde JBO 1dt

W2(0) " NE)T S, £
B4 Bo
+0 f —dt
(4.7) (‘ﬁ@)““m(a)”“ mee 1 )
) d 1/d By
o B9 J 1y
m(c)aJrlfl/dm(b)bJrl e t
B4
+0
m(c)a+1m(0)b+l)
d—1/(b+ gy gy~ (@ DA+ Ba
+0 = ST(a) ; J ! dt ) |.
m(c)a-i- m(a) +1-1/d a t1—(a+1)/(b+1)

As hg is finite, there is a constant ¢y > 0 such that M(a) < ¢y for every
a € Cx. Hence, we can omit the factor ‘)"((a)l/d in the above error terms, and
we see that the first error term is dominated by the second one.

Firstly, we take a look at the leading term in the above formula. It is
Mg = O <‘ﬁ(ac)1/d) =0 (‘ﬁ(c)l/d>, as JM(ac) > 1. Thus, by using logarith-
mic identities in the second equation and Lemma with r = 1/2 in the
last one, we obtain for the main term in (4.7)

(

a+1 CF,aCF,de By 1d
N(c a+1sﬁ(b)b+1 Jdt
a +

)

) t
( 1)CpaCrpBY I BY(a+1gn(q)1/d 1

20 oty (%8 | )@ sy | 108 (ma)
B dCF,aCF,,,Bd
_w%(m(c)a+1m(a)b+1
+0 B 1 m(c)l/d

N(c)at19(0)bH! og N(0) b+ D/ (d(a+1)

_ dCF7aCF7de B
TN (0) I (2)b L log B+ 0O N(c)ar1-1/CDM )b+t ) -

Mac

log B
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Next, consider the error terms in (4.7). It is (a +1)/(b+ 1) > 0 and

hence, we have

Bd—1/(b+1) By
0 J Pat)/(+1)—1 3,
m(c)a-i-lm(o)b-i-l—l/d m

Bd-1/(b+1)
=0 N(c)atiN(p)p+l-1/d

(a+1)/(b+1)
a d
. (( B/ +1)fﬁ(a)1/ ) L0 (m(c)(a-i-l)/(d(b-i-l))))

N (0)b+1)/(da+1))

B RBA-1/(b+1)
=0 (‘ﬂ(c)aﬂm(a)bH) +0 MN(c)at1=(a+ /O (p)b+1-1/d |

For the second error term we obtain

Bd Ba _9
o (m(c)a-‘rl—l/dm(a)b-‘rl) Jmm tode

o B m(o)(b—i-l)/(d(a-&-l)) o 1
(m(c)aﬂ—l/dm(a)bﬂ) BY/(a+D)(q)1/d + <‘)T(c)1/d)
B4 Bd—1/(a+1)
=0 +0 :
N(c)a+tIN(0)b+1 N(c)at1-1/dN(p)b+1-(b+1)/(d(a+1))

By combining these results we get

Now(B) < ), > ex(o) ), nx (0)

2 )
(a,b)eCk N()< pd/(b+1)

c
N(c)<BY/ (at+1)
= ‘J’I(c)(a+1)/(b+1)

dCr oCrpBY
( CraCrp log B

w%{m(c)a-‘r lm(a)b-‘r 1

Bd
+0
(m(c)aJrll/(Qd)m(b)bJrl )

to (m(@afsua)b“)

Bd*l/(aJrl)
+0
‘ﬁ(c)a+1_I/dm(b)b+1_(b+1)/(d(a+1))

RBd—1/(b+1)
+0 :
N(e)e - @ DG )11/

We see that the second error term is dominated by the first one, because
m(c)a-‘rl—l/(Qd) < ‘ﬁ(c)‘”l.

(4.8)
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The same arguments show that

Nox(B) 2 )] Z 1k (c) > 1 (0)

0
(a,b)eCEk Yﬂ(c)<Bd/(a+1) () Bd/(b+1)

S o @F D+

(0 ( B > . Crpd(a+ 1) B0(a)* !

0 b+1m( )a+1 w%{ m(a)bJrl

CF td a+1) L0 td(a+1)_1 dt
‘ﬁ(ac 1/d ‘ﬁ a+1 m(ac)a-&-l—l/d td(a+1)+1
(0]

-1/ D gy 1= (@ D/AG+D)
O +
m(a b+1m a+1 (D)b+171/d

td a+1) dt
‘)’I(ac 1/d ‘ﬁ( a+1 tdla+1)+1—(a+1)/(b+1)

- 2 Yook Y k@)

K N(c)<B d/(a+1) 0 Igd/(b+1)
@)= o @rnmern

d(a + 1)BCr,Cry JBD dt B
w%‘ﬁ(c)‘”l‘ﬂ(D)Hl ‘ﬁ(at)l/d t m(c)aJrlm(a)bJrl
B! B gt
+0 a+1-1/d b+1 J 1d 12
N(c) N() N(ac)"/
BA-1/(br1)g(q)~(e+D/db+1) - Ba dt
o m(c)a-‘rlm(a)b-‘rl—l/d J‘ﬁ(ac)l/d tl—(a+1)/(d(b+1)) :
As N(ac)? = O (M(c)/?), we obtain with similar calculations, as made for

(4.7), that No g (B) is less than (4.8)). For real valued functions f, g with
g(B) > 0 it is

f(B) + O(g(B)) < N2,k (B) < f(B) + O(9(B))

equivalent to

[No.x(B) = f(B)] < O(9(B)),

which implies Ny g (B) = f(B) + O (9(B)). Thus, N x(B) is equal to the
computed main and error terms in (4.8)).

4.1.2. The Main Term. Firstly, we notice that the two inner sums
in the main term in ( . ) do not depend on a or b. Thus, the sum over
(a,b) € C% yields the factor h%, since Cx has cardinality hgx. For s with
real part larger than 1 we define the Dedekind zeta function over K by

Cr(s) = H 1_%

N(p)®
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where the product is taken over every nonzero prime ideal p of K. The
Dedekind zeta function has the additive expression

1
)= Ly

(cf. [8, p. 160]). Hence, by using Proposition we see that

1 _ _ 1 _ /LK(CL)
(4.9) <K<s>‘H<1 >S> ()"

p
for (c) por (D)
Z N(c)a+1 Z N(0)b+1

rﬁ(c)éBcd/(a-%—l)
P (c MK(
2 a+1 2 (0)
1k (e

) 1 (9)
- X g L g

Further, it is

0
pd/(b+1)

m(a)ém(c)(a+1)/(b+l)

¢ 0
N(c)< B (a+1) gd/(b+1)
N@)> m
/~LK
2 Z bﬂ
¥
m(c)>Bd/(a+1)

Thus, Lemma and equation (4.9) imply
Z pr (€) Z 1 (2)
sn(c)a-i-l m(a)bﬂ

¢ 0
<Bd/(a+1) d/(b+1)
N()<B NO)< s Hernmrn
_ 1 Lo |pwen Y 1
Crla+1)(x(b+1) - N c)a+1f(a+1)b/(b+1)
‘ﬁ(c)sBd/(‘”l)

L0 (B—da/(a+1)> ‘

Recall equation (2.4). It is (a +1)/(b+ 1) = 1 if and only if a = b, and
otherwise it is 0 < (a + 1)/(b+ 1) < 1, as a < b by assumption. Thus, if

a < b, Lemma and equation (2.5 show that

1
—db/(b+1) -

N(e)< B/ a+D)
—0 (deb/(bJrl)Bd/(a+1)(1f(a+1)/(b+1)))

-0 (B—da/(a+1)> ‘



4.1. PRODUCTS OF TWO PROJECTIVE SPACES OVER NUMBER FIELDS 73

If a = b, Lemma yields

1
—db/(b+1)
OB Z m(c)(a+1)/(b+1)

m(c)chd/(a-H)
—0 (dea/(aJrl) max {log (Bd/(aJrl)) 71})

=0 (B*da/(aﬂ) log B) .

In the last equation we used logarithmic identities and the fact that B > e.
Hence, we obtain for the main term in (4.8)

dC’FaCth%(BdlogB ( 1 —d

4 + O (B~/(at) 150 B

w2 Cr(a+ DCr(b+ 1) ( & )
CroCryh?

- dB%1og B + O <Bd) ,

A lla+ Db+ 8
since O (log2 B) =0 (Bda/(“ﬂ)), due to Lemma . Finally, consider the
factor Crohi/(wiCk(a+1)). With the definition of Cpg (cf. Lemma )
Schanuel’s constant (cf. Deﬁnition and equation (1.2]) we get

CF,ahK _ hK (CL + 1)(1 28}(((1+1) VFQT'K((L+1)7TSK(CL+1)
wKCK(CL-i-l) wKCK(CL-i-l) \/q—i-l \/|d}(|a+1
(4.10) orxmy s\ hRi
=(a + 1)1
v]dK| wi(k(a+1)

=Sk (a).

Finally, the main term in the formula for Ny i (B) becomes
S (a)Sk(b)dBlog B + O (Bd) .

4.1.3. The Error Terms. Analogously to The Main Term, we see that
the sum taken over (a,b) € C%{, occurring in each error term, yields the factor
hf;(, as the inner sums do not depend on a or b. As hg is finite, we can omit
this factor in all error terms.

Clearly, the first and the second error term in lie in O (Bd), thanks
to Lemma To compute the third error term, we examine for which
a, b, d the exponent of D(d) is greater than, equal to or less than 1. It is

b1
bel— L o
e D 7

if and only if

1

PSP —
“da+ ) -1
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As d(a + 1) — 1 is greater than or equal to 1 with equality if and only if
(a,d) = (1,1), we see that the above inequality holds for all natural numbers
a,b,d unless a = b =d = 1. In the latter case we have

b+1
bl — 1.
LI TPy

If (a,d) # (1,1), we have a + 1 — 1/d > 1, and Lemma [I.2§] yields that the
third error term is in O (B¥Y(@+1))_ If (a,d) = (1,1) and b # 1, we obtain
0 (51159 mas fiog (50 1)) = 0 (54)

with Lemma [1.21] If (a,b,d) = (1,1,1), Lemma and imply

~1/(a ()
@) (Bd 1/( +1)> Z m(gf—&-:—l/d

C
N()<B/ (@ +1)

Ba/b+1)
O max 10g W y 1

(4.11)

for the third error term. Finally, consider the fourth error term in (4.8).
Itisb+1—1/d > 1if and only if (b,d) # (1,1), and b+ 1—1/d = 1 if
(b,d) = (1,1). Hence, if (b,d) # (1,1), the last error term becomes

1
d—1/(b+1)
0 (B ) ZC: N(c)a+t1-(a+D/db+1D)) o)
N(c)<BY (a+1)
and
a+1 a+1

1
- ety (1_d(b+1)> >y =k

since d(b+1) > 2. Therefore, according to Lemma the error term above
reduces to O (B4~Y/®+1) which is contained in O (B?). If (b,d) = (1,1),
we also have a = 1. Thus, Lemma and yield for the last error term

B/ (b+1)
0O <Bd71/(b+1)) Z ax {bg <§)’[(c)(a+l)/(4b+1)) ’ 1}
- m(c)a-‘rl—(a-l-l)/(d(b-&-l))
m(c)éBd/(a-#l)

Analogously to 1} this term becomes O (Bd).

(a+1)—
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We deduce that the error terms sum up to O (Bd). So in total, we obtain
Nox(B) = dSk (a)Sx(b)B log B + O (Bd)
for all B > e, and Theorem [4.3]is proven for m = 2.

4.2. Arbitrary Products of Projective Spaces over Number Fields

Now, let m = 3. To prove the induction step, we use the same idea as in
the case K = Q (cf. Section [2.3). That means, we use Mébius inversion for
the first vector and apply the induction hypothesis to the remaining m — 1
vectors. To do so, we use the same approach as in the previous section.

Again, without loss of generality we can assume n; < ... < n,, for rea-
sons of symmetry. Let x = (x1,...,X,,) be a rational point in [ [;~, P (K).
We write x; for the corresponding vector of x; in K™+1\{0} (1 < i < m).
Recall that Cx denotes a set of integral ideal class representatives of O . Let
F be a bounded measurable fundamental domain for [(Oj;) with volume Vg
and let 0F be Lipschitz parametrizable of codimension 2 (at least if ¢ > 1).
Then, for every x; we can choose a representative x; in (9}?“\{0} unique up
to roots of unity such that o(x;) € Sp(0) and ;00 + ... + 2,0 = a
for an a in Cx (1 <i < m) (cf. Section [.1)). Therefore, we obtain

Nm,K( 7}( Z #{mle(ﬂm—i—l\{o} (XQ,.--;, ) H]sz(K) ‘
aeCx =2

(T1)0) = 8, o(x1) € Sp(0 HH"ZH ; \B}.
Equation and Lemma yield
Np.x(B) =— Z #{m e OO0}, (x9,...,%,,) € HIP””(K)‘
WK aeCK =2
(@10, =8, o(x1) € Sp(0),
f{In(Hrl(ml) HH?+1(Xi) < Bm(a)(m—i-l)/d} )

1=2

Analogously to the case m = 2, Mdobius inversion for the vector a1 implies

— Z 2 furc (b)# {331 e ORh\{0},

ueC
;ﬁ(b)<Bd/(n1 +1)

(Xoy -y X, EHIP”%

Hg @) | [ HE () < Bm<a><"1“>/d}

=2

(Z1)0) S ab, o(x1) € Sp(0),
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where we can restrict b to 91(b) < B+ due to equation 1}

4.2.1. Upper and Lower Bound. Similarly to the case m = 2 we set
any = # {1 € OO} | @)o, € ab, o) € Sp(0),
N < Hye (1) <N+1},
anz = #{@1 € OO} | @1)o, € ab, o) € Sp(w),
N —1 < Hy(z1) <N}.
Define mg, = max {1,m(ab)1/d - 1}. Analogously to the previous section,

we can find an upper and a lower bound for N, x(B) by splitting the set in
the formula for Ny, x(B)

N,k (B) <w11< > > furc (b) > an,1

aeCk ‘ﬁ(b)<Bbd/("1+1) Map <N <BY (1+D)0(g)1/d

BR(a)(m+1/d
'le,K< ( ) )

Nn1+1
1
Nei(B)Z2—— >, >, px(b) > a2
K
C b 1/d s
" ey <+ M(ab)VI<N<BY/ (M +) 9 (a)1/d

BR(a)(m+1)/d
. Nmfl,K <_§\f211+1 .

If the argument of N,,_1 k is at least e, i.e. if

Bl/(n1+1)m(a)1/d
S T )

= 37
the induction hypothesis gives us

BR(a)(m+1/d N(a) +1 B log™ 2 (L)
N1,k T Nmrl | TOmel Nd(ni+1)

B S Bgﬂ(a)(nﬁ-l)/d
+0 (Nd(n1+1) log ( Nni+l

where we can omit the factor 9(a) in the error term, due to 9(a) < ¢p, and

dm72 l_[;ig SK (nz)
(m —2)! ‘

Cm—1 =

Now, we show that for every B < e and m > 3 it is

(4.12) Ny 1.x(B) = O(1).
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Obviously, Np,—1  is increasing, i.e. Ny—1,5(B) < Npm—1,x(e) for all B < e.
The induction hypothesis implies

No_1.5(€) = em_1e%log™2(e) + O (ed logm_3(e)> = O(1).
It is 9M(ab)/? — 1 < B if and only if
d
B/(n+1) 1
) < <el/<m+1> ) TP

Define B, = min{Bd/(”lﬂ),Bea}. Furthermore, ‘)"((ab)l/d < B is equiva-
lent to N(b) < (B/e)¥+1) We get

Nm,K(B) <i 2 HK(b) Z an,1

b map<N<B
m(h)éBmin ab

et M(a)" ¥ B 1ogn 2 (AL
-

Nnr1+l
Nd(n1+1)
m(Bd - Bm(a)(n1+1)/d
+0 2 } aN’lNd(n1+1) log ( N+l
mubéNéB

+O| > 2 k() > an.1
aeC b

B 1/(nq+1) 1/d
K m(b)gBmin B<N<B ! ‘ﬁ(a)

o ¥ 3 s (b)) > an,

oeCr B, <‘ﬁ(b)h<Bd/(n1 +1) muh<N<B1/(n1+1)m(a)l/d

The last two error terms are dominated by

ol X 2 am

aeC b 1/(n1+1) 1/d
K py< gt/ 41 NSBTIN)

Moreover, we note that Lemma [3.19| shows

Z aN1 = 0 and 2 anN2 = 0.

N<mgp N<MN(ab)/?
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Hence, Abel’s summation formula (Proposition [1.22)) yields

1
N,k (B) Son D> uk(b) | emo1log™ 2 (e) e DT ana

C b B
aetK m(b)gBmin N<B
- _ (n1+1)/d
JB S Cm- 10 (a)" "' B log™ 2 (B“’”“;?Ll:l)d
- aN 1~ - t
Mab N<t dt t (n1+1)

B
+0 | log™3(e)e? 2 an —J Z an1

N<B Mab Nt

d B¢ log BN (a)(m+1D/d &
&td(?’u-‘rl) 0 tn1+1

S DI 2 am

aeC b 1/(nq+1) 1/d
ey g/ +n) NSBTIN

Similarly to (4.5) we have

2 aN,1 §ZFm1 (Clb,t + 1) and Z aN,2 = ZF,nl (ab,t) .
N<t N<t

Moreover, for t < B we get by using the product and chain rule as well as
the increasing monotony of the logarithm

g log™ 2 (BN gy 4 1) logm 2 (ENL)

tn1tl !
dt td(n1+1) - td(n1+1)+1
_ BN(a)(n1+1)/d
(m — 2)log™ 3 (7(21:1 )
+ td(n1+l)
it B(a) "M (g + 1))
' Bm(a)(n1+1)/d $n1+2
(n1+1)/
(m + 1)dlog™ 2 ( P2 )
- $d(ny+1)+1
_ (ny+1)/d
1ogm 3 (Bm(;{ljli)
+0 td(ni+1)+1

and

tn1+1 tn1+1

d logm_3 <M> o logm_3 (M)

& td(”1+1) td(n1+1)+1
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Hence, we deduce by inserting the computed derivations and subsequent

combining of equal error terms

1
N, (B) SO DD ux(b)
K aeCK b
m(b)gBmm

B
[cmledZEa (ab7 B+ 1) + f Zpa (ab,t + 1)

Map

(n1 + 1)dem_19(a)+1 Bd 1ogm 2 (W)

td(n1+1)+1

a)(n1+1)/d

Bdm(a)n1+1 logmig (Bm(tnl +1 ) dt

+0 td(n1+1)+1

B
+0 <edZF,a (ab,B+1) + J Zpa (ab,t+ 1)

Map
BiN(a)™ " g ( BN(a)mTD/A
© (td(m+1)+110g B

oY Y Zra(ab, B/ )

uECK b
m(b)ggd/(m +1)

1 B
:EZ Z MK([;)U Zpq (ab,t + 1)

aeCx b Mab
m(b)éBmm
(n )/d
(1 + 1)y (@)™ LB logm 2 (L) d
. t

td(n1+1)+1

B
+0 J Zpﬂ(ab,t-i-l)

Map

(n1+1)/
BIM()™ g (PG
td(na+1)+1 d

+0 (ZF,a (ab,B + 1)) ]

oY Y Zpa(ab, B Dma) )

aeCK

b
N(b)<BY (M1 +1)
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The preparations that have already been made, Lemma and the fact
that B > 1, due to B = e by assumption, imply

B C (t+ 1)d(n1+1) +O (t+ 1)d(n1+1)—1
e \ | 9(ab)m NM(ab)ri+1-1/4

(114 e M(a)" 1B log = (PG
‘ t

td(n1+1)+1

Lo JB oLy
i N(ab)™*
n — (n1+1)/d I

BUM(a)" g~ ()

' td(n1+1)+1 de

BIN(a)"
+0 O| ——~+———
Zb: (‘ﬂ(ab)"lﬂed
‘n(b)gBmin
Bd n1+1
oz % o5
aeCK b m(ab)
m(b)gBd/(mH)

By definition of By it is straightforward that the penultimate error term is
contained in the last one. The expansion the products above, and t+1 = O(t)
for t = 1 yield

1 Cr(ny + 1)dcy,—1 B?
N, (B) €— pc (b) -
WK a;K 2 M(b)™

b
m(b)gBmin
- _ BMN(a)(n1+1)/d
B logn= (EMOTTS)
| d
Mab t

- — (n1+1)/d
of B 7l (=) d
+ m(b)n1+l t2 t

Map

+0

_ - (n1+1)/d
Bd;ﬁ(a)l/d B log 2 (%) &
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- ),
sjt(b) Map

1
+0 | B )] > O

aeCg b
N(b)<BY (n1+1)

As NM(a) < ¢ for every a € Cx for a constant ¢y, the first error term is
dominated by the second one. Lemma implies

o|BY] 3 m(b)l’““ -0 (hKBdO(l)) -0 (Bd) .

aeCyx b
‘ﬁ(b)gBd/(”l +1)

By adjusting the sum and integral limits we obtain in an analogous way

Z Z 1 (6) Cr(ny + 1)de,, 1B?

aeCyk m(b) i

b
N(B)<(B/e)?/(m+D)

b g (g
. t
Lt(ab)l/d t
i (n1+1)/
o B B log™ 2 (7391(;)11:1 d) w
+ O'I(b)nﬁ_l_l/d J‘ﬂ(ab)l/d t2

Lo B JB log™—3 (LSZZTW) y
N(6)" " Jnn(ap) /2 t

+0 (Bd) .
Note that the numbers Zp (ab, B+ 1) and Zp (ab, B) both are dominated
by O (Bd/m(b)m“).

Now, we calculate the main term and the remaining two error terms of
the upper and lower bound of N, g (B).

4.2.2. The Main Term. Our leading term for the upper bound of
Ny, ik (B) arises out of

1 Cr(ny + 1)dey, 1 BY
WK 2 Z e (b) OB
GGCK

b
N(6)<Bmin

_ (n1+1)/d
| )y,

(4.13)

Map



4.2. ARBITRARY PRODUCTS OF PROJECTIVE SPACES OVER NUMBER FIELDS 82

To obtain the leading term for the lower bound, we have to change the limits
Buin and mg to (B/e)¥(m+1D) and ’ﬁ(ab)l/d, respectively. The Binomial
Theorem and logarithmic identities show that
log™ 2 <Bm(a)(m+l)/d>
tn1+1
-2
= <log (B‘)”((a)("lﬂ)/d) —log (t’““))m

:m_2 (mk— 2) ]ogm—Q—k (Bsn(a)(nl-i-l)/d) (—(n1 + 1))k 1ng(t)‘

B logn=? (B
dt

J tn1+1
Map t

:m_2 m — 2 ogM—2—k (n1+1)/d —(n & B logk(t)
5 (e om0 [

k Map

It is log"™1(t)/(k 4+ 1) a primitive of log*(t)/t. By inserting B, the above

equation reduces to

7:202 <mk— 2) log™ =2k (Bm(a)(n1+1)/d) W

BY(m+Dg(q)'/4
| <1ng+1 ( elﬂn1+f)) — log"*! (may) | -

Again, by using the Binomial Theorem the term becomes

(4.14)
(M =2\, e ) (=(n1 + 1)
%(k;ﬁng@ww w@ @H)

) (logk+1 (Bl/(n1+1))

N (1= 2) 2k (s (= (0 + 1)F
+§(k>u;2(mm 1)

k+1
k+1 1/d
k+1 k+l—i ( pl/(n1+1) i [ Ma)
; ( ; ) log (B 1 ) log RYICIEE)

m—2
m—2 e (=(n1 +1))*
. log™ 2—k (n1+1)/d 1 k+1 )
(7)ot (e 0) COEED gt
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By using the Binomial Theorem one more time, we obtain for the first sum-
mand in ((4.14))

m—2 m—2—k
1 m — 2\ ( k1 —Q—k
B
() S
(n1+1)
dJ

m—2 k
- log™ 1 B
m+120( k >k+1 ©8
Ll ’”Z‘S m—2 (—1)km‘22"“ m—2—k
n1+lk_ k k+1 4 i

oz 13(5) P 103 (1@

In the last equation we split the sum over j into the summand for j = 0 and

log™ 2"%J(B) log’ (M(a))

the remaining summands. By setting 1 as the lower limit for the sum over
J, we have to decrease the upper limit for the sum over k£ to m — 3. Since
MN(a) < ¢o and the logarithm to the power of j is monotonically increasing,

we have
(4.15) log! (M(a)) = O (log? (cn)) = O(1)
for each 1 < j < m — 2. Therefore, the equation above reduces to

m—2
1 ml m—2 ( 1)
SR 2( )k+1

k=0

b e

k=0 j=1

+0(1)

By assumption we have B > e. Then, again by the increasing monotony of
the logarithm and equation (2.7)), we deduce for the first summand in (4.14))

m—1

log
(n1+1)(m—1)
Next, consider the second summand in (4.14). Similarly to equation (4.15)

i sﬂ(a)l/d i c(lJ/d
log (el/(n1+1) =0 [ log SY.CTES)) = 0(1)

foreach 1 <i<m—1, and

log™ =27k (@) V) —0 ((logB +1log (¢ (”1“)/(1))’"“)

=0 (logm_z_k B)

+ 0 (logm_2 B).

we have

(4.16)
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for each 0 < k < m — 2. Hence, the second summand becomes

m—2 m— —(n k
0(2( kﬁwakww<1+nn

= kE+1
k+1
k41 1 1
=0 (logm_2 B) .

It is mgy = max{1,m(ab)1/d— 1} ) (‘ﬁ(ab)l/d) — O(M(b)). Analo-
gously, ‘ﬁ(ab)l/d = O (N(b)). Since the logarithm is monotonically increas-
ing, the third summand in (4.14)) lies in

o me m—2 log™—2—F (Bm(a)(n1+1)/d) (nq + 1)¥ logh+1 (MN(b))
=\ k o8 k+1 08 '
Together with equation (4.16]) this error term becomes
m—2 k
m =2\ (n1 +1) 2k k1
0] ———log™ B)1 (b
(;ﬁ -0 ot ) g (o)
=0 (log™ 2 B - max{1,log™ ! (MN(b))})

as each 0 < k < m — 2 satisfies
loghT1(91(b)) < log™ 1 (M(b)) or logh+t1(M(b)) < 1.

Now, we bring the results together and (4.13]) sums up to

1 Cr(ny + 1)dey, 1 B?
— px (b) -
WK a;}( Zb: N(b)m+

m(b)éBmln
log™ ' B
(n1+1)(m—1)

+0 (log;m_2 B -max {1, log™~* (‘ﬁ(b))}))

d m—1 /J’K(b)

m(b)gBmin

max {1,log” ' (N(b))}
sﬁ(b)nlJrl

+0 | B4log™ 2B Z
m(b)gBmin

Here we used that the cardinality of Cx equals hx. Lemma and
imply

b

9(6)<Bmin
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and

oo™ 1/2
(4.17) O ; W 0| 3] O o).

‘ﬂ(b)éBmm m(b)gBmm

The same is true for (B/e)¥(™+1 instead of Bpi,. In addition to that,
analogously to (2.2) we deduce with Lemma and equation (4.9)

px (b) 1 1
= O —
NEOY T (1) Zb: N(b)m 1
‘ﬂ(b)éBmm m(b)>Bmin
1
- +0(BM).
Moreover,
pix (b) 1 —n1d/(n1+1)
= B meAm .
Z Nyt (x(ng +1) +0 ( )

N(b)<(B/e)¥/ (M1 +1)
We note that

—dn1
BlUm+) 4
—n1y _ _ —dn1/(n1+1)
O(By") =0 (el/(n1+l) T (o) 0 (B )

Therefore, the main term for both bounds of N, i (B) becomes
cm—-1Crhgd
wiCr(n +1)(m —1)
+ B1og" 1(B)O (B~/ D) 1.0 (Bllog™ X(B))
Lemma yields
1o (B*dmﬂmﬂ) log™! B) —0 <B*d”1/("1+1> 1ogm*2(B)Bd”1/(”1+l>)
=0 (log”"“2 B) :

B%log™ ' B

Hence, together with equation (4.10) we get for the main term
d™ T2, Sk (ni)BYlog™ ! B
(m—1)!
4.2.3. The Error Terms. It remains to consider
1 B (B 1 . BN(a)m+DA
WK 2 2 kx(0)0 <m(b)n1+1 J 1 log™ ( 1t dt

aeCx b Mab
N(6)<Bin

+0 (Bd log™2 B) .

and

1 BN (B 1.,/ B
o Z 2 ’uK(b)O (m(b)nlJrll/dJ 7?210'g (tn1+1> dt )

Map
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and the two error terms of the lower bound of N, i (B), which are identical
to the error terms above, up to the limit of the sum over b and the lower
integral limit. Exactly the same calculations as in The Main Term yield

log™ 2B
(n1+1)(m—2)

+0 (]Ogm*P’ B - max {1, log™ 2 (‘)T(b))})

for the integral in the first error term. Thus, the first error term for both

bounds is dominated by

max {1, log™ 2 (M(6))}
N(b)m+l ’

O | Bllog™ 2B 2
cﬁ(b)ngd/('nqi»l)
which is equivalent to O (Bd logm_Q(B)), according to equation 1} and

Lemma .28
Fort =11t is

(m+1)/d
log™? <B (a) > = 0 (log™*(B)) ,

tnﬁ-l

because the logarithm to the power of m — 2 is monotonically increasing
and MN(a) < co. Further, B = O (BY(M*V) and mg = O (‘ﬁ(b)l/d>, as

N(ab)/ = 0 (m(b)l/d). We obtain

B o1 BN(a)m+D/A . N B gt
[ ot (B Y a0 s () [

Map t2
11
(log™*(3)) (B »

0 log” 2B log" 2B
B Bl/(n1+1) + sﬁ(b)l/d ’

and we obtain the same value with lower integral limit ‘ﬁ(ab)l/ 4 instead of
Map, because M(ab)/e = O (‘Jt(b)l/d). Thus, the second error terms become

Bllog™ 2B 1
o Blog" “B 5L
B1/(ni+1) - N(p)m+1-1/d
g’t(b)gBd/(nl‘*‘l)
d m—2 :U’K(b)
+Blog™2(B) Y. LR

m(b)nlJrl
N(b)< B (n1+1)
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because B, and (B/e)d/(m“) are less than or equal to BY(m+bh) —If
(n1,d) # (1,1), we have n; + 1 — 1/d > 1. Hence, Lemma implies

o) (Bd log™ 2 B)
for the second error term. For (n1,d) = (1,1) the same lemma together with

Lemma [I.21] yield
1 1 Bd/(n1+1)
ool g <°g( N -ow.

B1/(n1+1) m(b)nﬁrlfl/d o B1/(n1+1)
MN(b)<BY/(n1+1)

Hence, the second error term becomes
(@) (Bd log™—2 B) .
Since the main and error term for the upper and lower bound of Ny, x(B)
are equal, we finally get
_ A" T Sk (ni) B log™ ™' B
(m—1)!
by using the same arguments as on page[71] Thereby, Theorem {.3]is proven.

Nk (B) +0 (Bd log™ 2 B) .

Remark 4.4. Similarly to Remark we see that Theorem recovers
Proposition by choosing K = Q.



APPENDIX A

Proof of the Weighted AM-GM

It is wellknown that the map x — log(x) for = € R~ is strictly concave,
that is
log( Az + (1 = N)y) = Aogz + (1 — ) logy
for every 0 < A < 1, x,y € Rog. Thus, for n = 2 the assertion is clear. Let
Al + ...+ A, = 1. Then, we also have 1/(1 — A1) >/" 5 A; = 1. By induction
we get

log (Z )\iai> =log <)\1a1 +(1- )\1
=1

>\ loga; + (1 — A1) log (

: )

an Ailog(a;) = log (H a;\i> )
i=1 i=1

also known as the Jensen inequality. Since x — log(z) for z € R is strictly

increasing, the desired inequality follows.
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List of Symbols

Natural numbers

Natural numbers including 0
Integer numbers

Rational numbers

Positive rational numbers

Real numbers

Positive real numbers

Complex numbers

Cardinality

Euclidean norm

Unit group of the ring R

Floor function

m X n matrix with entries a; ;
Closed unit ball in R

Scalar product

Volume

Number field

Degree of the number field K
Ring of Integers of the number field K
Field of fractions

Places of the number field K
Completion of K relating to v
Local degree

Canonical embedding of K into K,
Standard v-adic absoulte value
Euclidean norm

Number of real embeddings of K
Number of complex embeddings of K
Group of roots of unity of K
Number of roots of unity of K
Finite places v in Qg

Infinite places v in Qg
Discriminant of K

Ideal class group of K

Class number of K

Regulator of K

Standard logarithmic map
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Field norm

Absolute norm

Big O Notation

Asymptotic behaviour of functions

Euler’s number

Natural logarithm

Rational points in n dimensional projective space over K
Rational point in P"(K)

Greates common divisor

(Standard) height function on P"(K)

Height function on the product of m projective spaces over
K

Dedekind zeta function

Moebius function

Gamma function

Schanuel’s constant

Boundary of a set

Hyperplane in RI*!
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