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Introduction

When Stanley introduced order and chain polytopes associated to finite posets in the 1980s
[7], he gave an elegant combinatorial description of the face lattices of order polytopes
and stated that an analogue for chain polytopes seems messy. In 2011, Ardila, Bliem and
Salazar generalized order and chain polytopes to a setting with arbitrary markings [1], now
incorporating polytopes that appeared in the representation theory of gln(C) [4, 3]. Based
on work by Jochemko and Sanyal [5], we recently generalized the face lattice description of
Stanley to the marked setting [6]. For faces of marked chain polytopes, the situation can be
expected to be even more complicated.

We present a new approach to this problem, by introducing a third generic marked poset
polytope, interpolating between marked order and marked chain polytopes. We hope to gain
knowledge about marked chain polytopes by studying generic marked poset polytopes and
how they degenerate to marked order and marked chain polytopes.

Stanley’s Poset Polytopes

Given a finite poset P with 0̂ and 1̂, Stanley introduced two lattice polytopes in RP̃, where
P̃ = P \ {0̂, 1̂} [7],

the order polytope

O(P) =
{

x ∈ [0, 1]P̃
∣∣∣ xp ≤ xq for p < q

}
,

and the chain polytope

C(P) =
{

x ∈ [0, 1]P̃
∣∣∣ xp1 + · · ·+ xpk ≤ 1 for p1 < · · · < pk

}
.
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The face lattice F (O(P)) has an elegant combinatorial description in terms of face partitions of
P ordered by refinement. These are partitions π of P, such that each block B ∈ π is connected
in the Hasse diagram of P and the quotient graph remains acyclic, so P/π is a poset.

A description of the faces of C(P) analogous to Theorem 1.2 seems messy and will not be pursued here.
—R. P. Stanley, Two Poset Polytopes, 1986

However, there is a piecewise linear bijective transfer map

ϕ : O(P) −→ C(P) with ϕ(x)p = xp−max
q≺p

xq.

Since ϕ preserves 1
nZ

P̃, the polytopes O(P) and C(P) have the same Ehrhart polynomial.

Polytopes in Representation Theory

For a given tuple of integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λn), there is an irreducible representation
V(λ) of gln(C) with heighest weight λ. It has a Gelfand–Tsetlin basis with elements enumerated
by integral GT-patterns [4].
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The red column contains the entries of λ. The blue entries must
be integers between their upper and lower right neighbors.

This gives rise to the Gelfand–Tsetlin polytope GT(λ), whose lattice points correspond to the
GT basis vectors of V(λ).

Another basis of V(λ) called the Feigin–Fourier–Littelmann–Vinberg basis is enumerated by
integral patterns of another kind [3]:
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For each Dyck path between two red entries, the sum of the
blue entries along the path should be at most the difference of
the two red entries. In this case:

1 + 0 + 0 + 1 + 0 ≤ 5− 1

This gives rise to the Feigin–Fourier–Littelmann–Vinberg polytope FFLV(λ), whose lattice points
correspond to the FFLV basis vectors of V(λ).

Marked Poset Polytopes

To generalize O(P), C(P), GT(λ) and FFLV(λ), Ardila, Bliem and Salazar introduced marked
poset polytopes [1]. To a finite poset P with subset A ⊆ P containing all extremal elements,
and an order-preserving marking λ : A → Z, associate two lattice polytopes in RP̃, where
P̃ = P \ A.

The marked order polytope

O(P, λ) =

 x ∈ RP̃

∣∣∣∣∣∣∣
xp ≤ xq for p < q,

λ(a) ≤ xp for a < p,
xp ≤ λ(a) for p < a

 ,

and the marked chain polytope

C(P, λ) =

 x ∈ RP̃

∣∣∣∣∣∣
∑
i

xpi ≤ λ(b)− λ(a) for a < p1 < · · · < pk < b

xp ≥ 0 for all p ∈ P̃

 .

The face lattice F (O(P, λ)) has a combinatorial description in terms of face partitions of (P, λ)
ordered by refinement. These are partitions π of P, such that each block B ∈ π is connected
in the Hasse diagram of P, P/π is a poset and λ induces a strictly order-preserving marking
λ/π on all blocks intersecting A.
The transfer map generalizes to the piecewise affine bijection

ϕ : O(P, λ) −→ C(P, λ) with ϕ(x)p = xp−max
q≺p

{
xq if q ∈ P̃,

λ(q) if q ∈ A.

Generic Marked Poset Polytopes

The idea behind generic marked poset polytopes is to add a parameter t ∈ [0, 1] to the transfer
map to continuously deform O(P, λ) to C(P, λ). The images turn out to be polytopes of
constant combinatorial type for t ∈ (0, 1). One can even introduce different parameters tp
for all p ∈ P̃ and still obtain similar results for this family incorporating marked chain-order
polytopes [2]. This is joint work in progress with Ghislain Fourier, Xin Fang and Jan-Philipp
Litza, but on this poster we stick to the diagonal case.

To be precise, given t ∈ [0, 1], define

ϕt : O(P, λ) −→ RP̃ with ϕt(x)p = xp− t max
q≺p

{
xq if q ∈ P̃,

λ(q) if q ∈ A.

Theorem [P.]

The image Ot(P, λ) = ϕt(O(P, λ)) is a polytope for all t ∈ [0, 1]. The combinatorial type
of Ot(P, λ) is constant for t ∈ (0, 1).

For any t ∈ (0, 1), we call Ot(P, λ) a generic marked poset polytope. All Ot(P, λ) share a
common H-description that degenerates to those of O(P, λ) and C(P, λ) for t = 0 and t = 1,
respectively. In fact, this setting produces poset surjections

F (O(P, λ)) � F (O1
2
(P, λ)) � F (C(P, λ)).

The Tropical Subdivision

The marked order polytope O(P, λ) has a polyhedral subdivision into maximal regions of
affine linearity with respect to the transfer map ϕt. By construction, this subdivision transfers
to all Ot(P, λ). The regions are determined by the loci of non-differentiability of the affine
tropical linear forms

max
q≺p

{
xq if q ∈ P̃,

λ(q) if q ∈ A
=

⊕
q≺p

{
0� xq if q ∈ P̃,

λ(q) if q ∈ A.

Hence, the subdivision is obtained by intersecting O(P, λ) with a tropical hyperplane ar-
rangement. The cells are indexed by certain pairs (π, c) where π is a face partition of (P, λ)
and c is a tropical covector. This subdivision is a coarsening of the subdivision into products
of simplices introduced by Jochemko and Sanyal [5].

Vertices of Generic Marked Poset Polytopes

Using the tropical subdivision, we obtain the following result on the vertices of generic
marked poset polytopes:

Theorem [Litza, P.]

When t ∈ (0, 1), the vertices in the tropical subdivision of Ot(P, λ) are exactly the vertices
of the generic marked poset polytope.

We finish with an example of a marked poset (P, λ) and the associated polytopes O(P, λ) =
O0(P, λ), O1/2(P, λ) and O1(P, λ) = C(P, λ). In the example, vertices of the polytopes show
in green, vertices that only appear in the subdivision show in red. The theorem now states
that, in the generic case, all vertices are green.
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