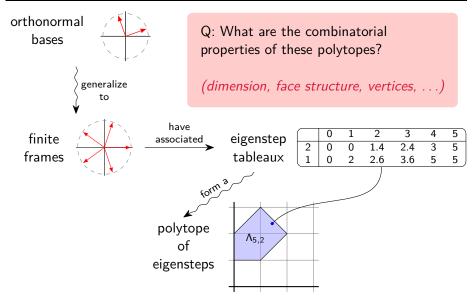
Polytopes of Eigensteps of Finite Equal Norm Tight Frames

Christoph Pegel (joint work with T. Haga)

March 8, 2016



$$B = \begin{pmatrix} | & | \\ v_1 & v_2 \\ | & | \end{pmatrix} = \begin{pmatrix} \frac{2\sqrt{2}}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2\sqrt{2}}{3} \end{pmatrix}$$

Let \mathcal{H} be a Hilbert space of "signals", dim $\mathcal{H}=d$, $B=(v_1 \cdots v_d)$ an ONB. We have the following *analysis* and *synthesis* operators:

$$\mathcal{H} \xrightarrow{B^*} \mathbb{C}^d \xrightarrow{B} \mathcal{H}$$

$$x \longmapsto \begin{pmatrix} \langle x, v_1 \rangle \\ \vdots \\ \langle x, v_d \rangle \end{pmatrix} \longmapsto \sum_{k=1}^d \langle x, v_k \rangle v_k = x$$

For ONBs we have $BB^*=\mathrm{id}_{\mathcal{H}}$. However, many other vector configurations $F=(v_1 \cdots v_N)$ also have reconstruction formulas like $FF^*=\lambda\,\mathrm{id}_{\mathcal{H}}$, while allowing redundance and hence better signal recovery.

$$F = \begin{pmatrix} 1 & \cos(\frac{2\pi}{5}) & \cos(\frac{4\pi}{5}) & \cdots & \cos(\frac{8\pi}{5}) \\ 0 & \sin(\frac{2\pi}{5}) & \sin(\frac{4\pi}{5}) & \cdots & \sin(\frac{8\pi}{5}) \end{pmatrix}$$

In this case $FF^* = \frac{5}{2} \operatorname{id}_{\mathcal{H}}$. Vector configurations $F \subset \mathcal{H}$ such that $FF^* = \lambda \operatorname{id}_{\mathcal{H}}$ for some $\lambda \neq 0$ are called *tight frames*.

In general, a *finite frame* in a finite dimensional Hilbert space \mathcal{H} is a finite vector configuration F such that the frame operator FF^* is bijective. This is equivalent to F being a spanning set of \mathcal{H} .

Looking for vector configurations with desired reconstruction properties, the following problem has been posed:

Problem

Given a sequence $(\mu_n)_{n=1}^N$ of norm-squares, and non-negative eigenvalues $(\lambda_i)_{i=1}^d$, find all complex $d \times N$ matrices $F = (f_n)_{n=1}^N$ such that

- $||f_n||^2 = \mu_n$ for all n,
- the spectrum of FF* is $(\lambda_i)_{i=1}^d$.

This problem has been solved in 2011 by Cahill, Fickus, Mixon, Poteet and Strawn using an algorithm involving *eigensteps*.

Definition (Eigensteps)

Given a matrix $F = (f_n)_{n=1}^N$ with entries in \mathbb{C} or \mathbb{R} , define

- $F_k = (f_n)_{n=1}^k$ the matrix F truncated to the first k columns,
- $(\lambda_{i,k})_{i=1}^d$ the non-increasing spectrum of $F_k F_k^*$.

The *sequence of eigensteps* of F is the sequence of non-increasing spectra $(\lambda_{i,0})_{i=1}^d, (\lambda_{i,1})_{i=1}^d, \dots, (\lambda_{i,N})_{i=1}^d$.

Example

Let $F = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}$. We obtain the spectra (0,0), (1,0), (2,0) and (2,2). We summarize this data in an *eigenstep tableau*

$$\lambda_F = \begin{pmatrix} \lambda_{2,0} & \lambda_{2,1} & \lambda_{2,2} & \lambda_{2,3} \\ \lambda_{1,0} & \lambda_{1,1} & \lambda_{1,2} & \lambda_{1,3} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 2 \\ 0 & 1 & 2 & 2 \end{pmatrix}.$$

A theorem by Horn and Johnson states that the spectra of $F_k F_k^*$ and $F_{k+1} F_{k+1}^*$ interlace:

$$\lambda_{d,0} \qquad \lambda_{d,1} \qquad \lambda_{d,2} \qquad \cdots \qquad \lambda_{d,N-1} \qquad \lambda_{d,N} \\
\lambda_{d-1,0} \qquad \lambda_{d-1,1} \qquad \lambda_{d-1,2} \qquad \cdots \qquad \lambda_{d-1,N-1} \qquad \lambda_{d-1,N} \\
\lambda_{d-2,0} \qquad \lambda_{d-2,1} \qquad \lambda_{d-2,2} \qquad \cdots \qquad \lambda_{d-2,N-1} \qquad \lambda_{d-2,N} \\
\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \\
\lambda_{1,0} \qquad \lambda_{1,1} \qquad \lambda_{1,2} \qquad \cdots \qquad \lambda_{1,N-1} \qquad \lambda_{1,N}$$

A wedge $\lambda_{i,j} \longrightarrow \lambda_{k,l}$ denotes an inequality $\lambda_{i,j} \leq \lambda_{k,l}$.

Furthermore, for $0 \le k \le N$ we have the *trace conditions*

$$\sum_{i=1}^{d} \lambda_{i,k} = \text{Tr}(F_k F_k^*) = \text{Tr}(F_k^* F_k) = \sum_{n=1}^{k} \|f_n\|^2 = \sum_{n=1}^{k} \mu_n.$$

Theorem (Cahill, Fickus, Mixon, Poteet and Strawn 2013)

The following conditions completely characterize the valid sequences of eigensteps for non-increasing sequences $(\mu_n)_{n=1}^N$ and $(\lambda_i)_{i=1}^d$:

- the interlacing conditions,
- the trace conditions,
- $\lambda_{i,0} = 0$ and $\lambda_{i,N} = \lambda_i$ for $1 \le i \le d$.
- \Rightarrow The valid sequences of eigensteps form a polytope in $\mathbb{R}^{d \times (N+1)}$.

We only consider equal norm tight frames with norm-squares $\mu=d$ and $FF^*=N\cdot I_d$. In this case the conditions for valid sequences of eigensteps can be summarized as:

$$0 = \lambda_{d,0} \qquad \lambda_{d,1} \qquad \lambda_{d,2} \qquad \lambda_{d,N-1} \qquad \lambda_{d,N} = N$$

$$0 = \lambda_{d-1,0} \qquad \lambda_{d-1,1} \qquad \lambda_{d-1,2} \qquad \lambda_{d-1,N-1} \qquad \lambda_{d-1,N} = N$$

$$0 = \lambda_{d-2,0} \qquad \lambda_{d-2,1} \qquad \lambda_{d-2,2} \qquad \lambda_{d-2,N-1} \qquad \lambda_{d-2,N} = N$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$0 = \lambda_{1,0} \qquad \lambda_{1,1} \qquad \lambda_{1,2} \qquad \cdots \qquad \lambda_{1,N-1} \qquad \lambda_{1,N} = N$$

$$\Sigma \qquad 0 \qquad d \qquad 2d \qquad \cdots \qquad (N-1)d \qquad Nd$$

The solutions of this system of linear equations and inequalities form the polytope $\Lambda_{N,d} \subset \mathbb{R}^{d \times (N+1)}$ of eigensteps of finite equal norm tight frames with N vectors in a d-dimensional Hilbert space.

We found a non-redundant description of $\Lambda_{N,d}$ in terms of linear equations and inequalities. In particular, we obtain the following results.

Theorem (Haga, P)

1. The dimension of $\Lambda_{N,d}$ is 0 for d=0 and d=N, otherwise

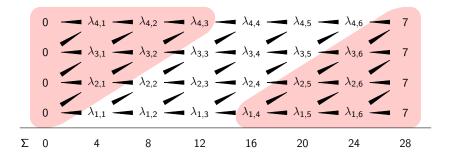
$$\dim(\Lambda_{N,d})=(d-1)(N-d-1).$$

2. For $2 \le d \le N-2$ the number of facets of $\Lambda_{N,d}$ is

$$d(N-d-1)+(N-d)(d-1)-2.$$

Furthermore, we found affine isomorphisms $\Phi \colon \Lambda_{N,d} \to \Lambda_{N,d}$ and $\Psi \colon \Lambda_{N,d} \to \Lambda_{N,N-d}$ that can be explained by certain operations on the underlying frames.

The defining conditions for $\Lambda_{7,4}$ are:



A non-redundant description of $\Lambda_{7,4}$ is:

Σ		4	8	12	16	20	24	
	0	$\lambda_{1,1}$	$\lambda_{1,2}$	$\lambda_{1,3}$	7	7	7	7
	0	0	$\lambda_{2,2}$	$\lambda_{2,3}$	$\lambda_{2,4}$	7	7	7
	0	0	0	$\lambda_{3,3}$	$\lambda_{3,4}$	$\lambda_{3,5}$	7	7
	0	0	0	0 -	λ _{4,4} —	$\lambda_{4,5}$	$\lambda_{4,6}$	7

Proposition

There is an affine involution $\Phi_{N,d} : \Lambda_{N,d} \longrightarrow \Lambda_{N,d}$ given by

$$(\Phi_{N,d}(\lambda))_{i,n} = N - \lambda_{d-i+1,N-n}.$$

Example

For N=5, d=3 the involution $\Phi_{5,3}\colon \Lambda_{5,3} \to \Lambda_{5,3}$ is given by

$$\begin{pmatrix} 0 & 0 & 0 & \lambda_{3,3} & \lambda_{3,4} & 5 \\ 0 & 0 & \lambda_{2,2} & \lambda_{2,3} & 5 & 5 \\ 0 & \lambda_{1,1} & \lambda_{1,2} & 5 & 5 & 5 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 & 5 - \lambda_{1,2} & 5 - \lambda_{1,1} & 5 \\ 0 & 0 & 5 - \lambda_{2,3} & 5 - \lambda_{2,2} & 5 & 5 \\ 0 & 5 - \lambda_{3,4} & 5 - \lambda_{3,3} & 5 & 5 & 5 \end{pmatrix}.$$

Proposition

There is an affine isomorphism $\Psi_{N,d} : \Lambda_{N,d} \longrightarrow \Lambda_{N,N-d}$ given by

$$(\Psi_{N,d}(\lambda))_{i,n} = \begin{cases} \lambda_{d+i-n,N-n}, & \text{for } i \leq n \leq d+i-1, \\ 0, & \text{for } n < i, \\ N, & \text{for } n > d+i-1. \end{cases}$$

Example

For $N=5,\ d=3$ the isomorphism $\Psi_{5,3}\colon \Lambda_{5,3} \to \Lambda_{5,2}$ is given by

$$\begin{pmatrix} 0 & 0 & 0 & \lambda_{3,3} & \lambda_{3,4} & 5 \\ 0 & 0 & \lambda_{2,2} & \lambda_{2,3} & 5 & 5 \\ 0 & \lambda_{1,1} & \lambda_{1,2} & 5 & 5 & 5 \end{pmatrix} \mapsto \begin{pmatrix} 0 & 0 & \lambda_{3,3} & \lambda_{2,2} & \lambda_{1,1} & 5 \\ 0 & \lambda_{3,4} & \lambda_{2,3} & \lambda_{1,2} & 5 & 5 \end{pmatrix}.$$

Institute for Algebra, Geometry, Topology and their Applications

> Let $F = (f_n)_{n=1}^N$ be an equal norm tight frame in \mathbb{F}^d ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) with $\mu = d$.

- The reversed frame is $F = (f_{N-n+1})_{n=1}^N = (f_N f_{N-1} \cdots f_1)$.
- A frame $G = (g_n)_{n=1}^N$ in \mathbb{F}^{N-d} satisfying

$$\begin{pmatrix} F^* & G^* \end{pmatrix} \begin{pmatrix} F \\ G \end{pmatrix} = N \cdot I_N$$

is called a *Naimark complement* of F.

Theorem (Haga, P)

The affine isomorphisms $\Phi_{N,d}$ and $\Psi_{N,d}$ satisfy

$$\Phi_{N,d}(\lambda_F) = \lambda_{\widetilde{F}},$$

$$\Psi_{N,d}(\lambda_F) = \lambda_{\widetilde{C}}.$$

Open questions

- What are the vertices of $\Lambda_{N,d}$?
- What is the f-vector and face lattice of $\Lambda_{N,d}$?
- Are the frame classes belonging to certain classes of eigensteps interesting? ($\partial \Lambda_{N,d}$, vertices of $\Lambda_{N,d}$, ...?)
- Can we obtain similar non-redundant descriptions of more general polytopes of eigensteps $\Lambda((\mu_n)_{n=1}^N, (\lambda_i)_{i=1}^d)$?

Thanks for your attention!