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Related Polytopes and PL-Maps
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Two Poset Polytopes
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Given a finite poset P with 0̂ and 1̂, Stanley introduced two poset

polytopes in RP̃ , where P̃ = P \ {0̂, 1̂}.
I The order polytope

O(P) =
{
x ∈ [0, 1]P̃

∣∣∣ xp ≤ xq for p < q
}

,

I and the chain polytope

C(P) =
{
x ∈ RP̃

≥0

∣∣∣ xp1 + · · ·+ xpk ≤ 1 for p1 < · · · < pk

}
.

Example

Consider the poset P =

1̂

p q

r

0̂
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1̂

p q

r

0̂

P :

xp

xq

xr

O(P) :

For the order polytope O(P) ⊆ R{p,q,r} we
just need to consider inequalities given by
covering relations:

0 ≤ xp,

0 ≤ xq,

xp ≤ xr ,

xq ≤ xr ,

xr ≤ 1.
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1̂

p q

r

0̂

P :

xp

xq

xr

C(P) :

For the chain polytope O(P) ⊆ R{p,q,r} we
just need to consider inequalities given by
maximal chains:

xp + xr ≤ 1,

xq + xr ≤ 1,

as well as all coordinates being non-negative:

0 ≤ xp,

0 ≤ xq,

0 ≤ xr .
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What about the face structure of O(P) and C(P)?
I The face structure of O(P) has an elegant description in

terms of connected, compatible partitions of P.

I The face structure of C(P) . . .

“A description of the faces of C(P) analogous to Theo-
rem 1.2 seems messy and will not be pursued here.”

—R. P. Stanley, Two Poset Polytopes, 1986

However, there is a piecewise-linear bijection called the transfer
map ϕ : O(P)→ C(P) given by

ϕ(x)p = xp −max
q≺p

xq.

This allows to transfer some properties from O(P) to C(P) . . .
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The transfer map ϕ : O(P)→ C(P) . . .

I . . . restricts to a bijection

vertices of O(P) −→ vertices of C(P)

sending indicator functions of filters to indicator functions of
anti-chains.

I . . . yields an Ehrhart equivalence Ehr(O(P)) = Ehr(C(P)).
I . . . preserves a unimodular triangulation with simplices

corresponding to linear extensions of P.

The last statement yields a geometric proof that the number of
linear extensions of P is determined by its comparability graph!
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GT and FFLV Polytopes
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I For a given tuple of integers λ = (λ1 ≥ λ2 ≥ · · · ≥ λn),
there is an irreducible representation V (λ) of GLn(C) with
highest weight λ.

I It admits a Gelfand–Tsetlin basis with elements enumerated
by integral GT-patterns. For example, when λ = (5, 3, 3, 1), a
GT-pattern would be:

5

3

3

1

1

3

4

1

3

2 Each blue entry has to be between the
two neighboring numbers to the right.

 Lattice points in the Gelfand–Tsetlin polytope GT(λ).

Note that the description of GT(λ) is very similar to that of an
order polytope!
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I The irreducible representation V (λ) of GLn(C) has another
basis called the Feigin–Fourier–Littelmann–Vinberg basis with
elements enumerated by integral patterns of another kind:

5

3

3

1

1

0

0

0

1

2

For each Dyck path between two red en-
tries, the sum of the blue entries along
the path should be at most the difference
of the two red entries. In this case:

1 + 0 + 0 + 1 + 0 ≤ 5− 1

 Lattice points in the Feigin–Fourier–Littelmann–Vinberg
polytope FFLV(λ).

Note that the description of FFLV(λ) is very similar to that of a
chain polytope!
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A Theorem of Cayley
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The following combinatorial identity was proved by Cayley using
generating functions.

Theorem (Cayley 1857)

For each n ∈ N, the number of positive integer tuples (a1, . . . , an)
satisfying a1 ≤ 2 and ai+1 ≤ 2ai is equal to the total number of
partitions of non-negative integers less than 2n into powers of 2.

Example (n = 2)

(1, 1),
(1, 2),
(2, 1),
(2, 2),
(2, 3),
(2, 4)


←→



0,
1,
2,

1 + 1,
1 + 2,

1 + 1 + 1


.

These are called Cayley compositions and Cayley partitions.
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In 2014, Konvalinka and Pak gave an alternative proof of Cayley’s
theorem using a bijection between lattice polytopes.

I Let Cn be the lattice polytope in Rn given by 1 ≤ x1 ≤ 2 and
1 ≤ xi+1 ≤ 2xi for i = 1, . . . , n− 1. Its lattice points are the
Cayley compositions.

I To each Cayley partition

m1 · 2n−1 +m2 · 2n−2 + · · ·+mn · 1

associate the point (m1, . . . ,mn) and let Bn be the convex
hull of these.
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Example

(1,1)

(1,2)

(2,1)

(2,2)

(2,3)

(2,4)

C2

0

1

1+1

1+1+1

2

1+2

B2
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I The convex hull of Cayley partitions Bn is described by the
inequalities 0 ≤ mi for all i as well as

2k−1m1 + 2k−2m2 + · · ·+mk ≤ 2k − 1

for k = 1, . . . , n.

I The description of Cn compares variables and constants as is
the case for order polytopes. (1 ≤ x1 ≤ 2, 1 ≤ xi+1 ≤ 2xi )

I The description of Bn is given by non-negativity constraints
and upper bounds of positive combinations of coordinates as
is the case for chain polytopes.

I There is a unimodular isomorphism Cn → Bn given by

(x1, . . . , xn) 7→ (2− x1, 2x1 − x2, . . . , 2xn−1 − xn).

. . . is this an instance of a more general “transfer map”?
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Towards a General Framework
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Marked Poset Polytopes
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To generalize O(P), C(P), GT(λ) and FFLV(λ), Ardila, Bliem
and Salazar introduced marked poset polytopes in 2011.

To a finite poset P, a subset A ⊆ P containing all extremal
elements, and an order-preserving marking λ : A→ R, associate

two polytopes in RP̃ , where P̃ = P \ A:

I The marked order polytope

O(P, λ) =

 x ∈ RP̃

∣∣∣∣∣∣∣
xp ≤ xq for p < q,

λ(a) ≤ xp for a < p,

xp ≤ λ(a) for p < a

 ,

I and the marked chain polytope

C(P, λ) =

 x ∈ RP̃

∣∣∣∣∣∣
∑
i

xpi ≤ λ(b)− λ(a) for a < p1 < · · · < pk < b

xp ≥ 0 for all p ∈ P̃

 .
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I For a poset P with 0̂ and 1̂ we recover O(P) and C(P) as
O(P, λ) and C(P, λ) with the marking

λ :
{

0̂, 1̂
}
−→ R, 0̂ 7−→ 0, 1̂ 7−→ 1.

I GT(λ) and FFLV(λ) are the marked poset polytopes
associated to the marked poset

λ1

λ2

λ3

λ4

(n = 4).
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What about the face structure of O(P, λ) and C(P, λ)?

I The face structure of O(P, λ) has a combinatorial description
using face partitions of P. [Jochemko–Sanyal ’14, P. ’16]

I The face structure of C(P, λ) . . . seems even messier.

However, there is a piecewise-linear bijection called the transfer
map ϕ : O(P, λ)→ C(P, λ) given by

ϕ(x)p = xp −max
q≺p

{
xq if q ∈ P̃,

λ(q) if q ∈ A.

This allows to transfer some (but less) results from O(P, λ) to
C(P, λ) . . .
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The transfer map ϕ : O(P, λ)→ C(P, λ) . . .

I . . . does not preserve vertices. In fact, in general f0(O(P, λ))
will not be equal to f0(C(P, λ)). (“≤”is an open conjecture).

I . . . yields an Ehrhart equivalence of O(P, λ) and C(P, λ) for
integral markings. [ABS ’11]

I . . . preserves a subdivision into products of simplices with cells
corresponding to “marking compatible” saturated chains of
order ideals. [JS ’14]
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A Universal Family
joint with Xin Fang, Ghislain Fourier and Jan-Philipp Litza
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First Idea
Parametrize the transfer-map with t ∈ [0, 1] as

ϕt(x)p = xp − t max
q≺p

{
xq if q ∈ P̃,

λ(q) if q ∈ A.

This piecewise-linear map is still injective and we get the following
result:

Theorem (P.)

The image Ot(P, λ) := ϕt(O(P, λ)) is always a polytope and its
combinatorial type is constant for t ∈ (0, 1).

O(P, λ) O 1
2
(P, λ) C(P, λ)
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Second Idea
Parametrize the transfer-map with t ∈ [0, 1]P̃ as

ϕt(x)p = xp − tp max
q≺p

{
xq if q ∈ P̃,

λ(q) if q ∈ A.

This piecewise-linear map is still injective and we get the following
result:

Theorem (Fang, Fourier, P.)

The image Ot(P, λ) := ϕt(O(P, λ)) is always a polytope and its
combinatorial type is constant along the relative interiors of faces

of the hypercube [0, 1]P̃ .

O = O(0,0)

O(1,1) = C

O(1,0)

O(0,1)

O( 12 ,0)

O(0, 12 )

O(1, 12 )
O(0, 12 )

O( 12 ,
1
2 )
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I When all tp = 0, we have Ot(P, λ) = O(P, λ).

I When all tp = 1, we have Ot(P, λ) = C(P, λ).

I When P̃ = C tO where C is an order ideal in P̃, letting
t = χC , we recover the marked chain-order polytopes
introduced by Fang and Fourier in 2016.

Since we have a transfer map O(P, λ)→ Ot(P, λ) by
construction, we can use it to get a straightforward proof of the
following theorem.

Theorem (Fang, Fourier, P.)

For an integrally marked poset (P, λ), the polytopes Ot(P, λ) for

t ∈ {0, 1}P̃ form an Ehrhart-equivalent family of integrally closed
lattice polytopes.
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Since the combinatorial type of Ot(P, λ) is fixed along relative

interiors of faces of [0, 1]P̃ , we may think of all marked poset
polytopes as continuous degenerations of the generic marked poset

polytope for t ∈ (0, 1)P̃ .

Goal
Understand the face structure of the generic marked poset
polytope and figure out how it degenerates to the rest of the
marked poset polytopes.

This might still “be messy”, but . . .

I we have a common H-description of all Ot(P, λ) and

I we can describe the vertices of the generic marked poset
polytope by means of a polyhedral subdivision.
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Definition
The marked order polytope O(P, λ) has a polyhedral subdivision
into maximal regions of linearity with respect to the transfer map
ϕ. Call this the tropical subdivision.

Why tropical?

I The regions are determined by the loci of non-differentiability
of the tropical affine linear forms

max
q≺p

{
xq if q ∈ P̃,

λ(q) if q ∈ A
=

⊕
q≺p

{
0� xq if q ∈ P̃,

λ(q) if q ∈ A.

I Hence, we are intersecting O(P, λ) with the chambers of an
affine tropical hyperplane arrangement.
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By construction the tropical subdivision of O(P, λ) transfers to all
Ot(P, λ) via the transfer map ϕt .

Theorem (Litza, P.)

When t ∈ (0, 1)P̃ , the vertices that appear in the tropical
subdivision of Ot(P, λ) are exactly the vertices of Ot(P, λ).

. . . let us visualize this theorem in an Example.
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Example
xp

xq

xr

(P, λ) =

4

p q

r

0

3

2

tr = 0
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Example
xp

xq

xr

(P, λ) =

4

p q

r

0

3

2

tr = 0
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Example
xp

xq

xr

(P, λ) =

4

p q

r

0

3

2

tr =
1
4
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Example
xp

xq

xr

(P, λ) =

4

p q

r

0

3

2

tr =
1
2
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Example
xp

xq

xr

(P, λ) =

4

p q

r

0

3

2

tr =
3
4
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Example
xp

xq

xr

(P, λ) =

4

p q

r

0

3

2

tr = 1
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Example
xp

xq

xr

(P, λ) =

4

p q

r

0

3

2

tr = 1
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Distributive and Anti-Blocking Polytopes
joint with Raman Sanyal
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I Marked order polytopes are distributive, i.e.,

x , y ∈ Q =⇒ min(x , y), max(x , y) ∈ Q.

I By Felsner and Knauer (2011), a polytope Q ⊆ Rn is
distributive if and only if all defining inequalities are of the
form

αxi + c ≤ xj , α ≥ 0, c ∈ R.

Hence, distributive polytopes are given by directed graphs on
[n] with edge weights α and c.

I The Cayley polytope Cn is distributive as well.
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I Marked chain polytopes are anti-blocking, i.e.,

1. Q ⊆ Rn
≥0,

2. x ∈ Q and 0 ≤ y ≤ x =⇒ y ∈ Q.

I A polytope Q ⊆ Rn is anti-blocking if and only if the defining
inequalities are

1. xi ≥ 0 for i = 1, . . . , n,
2. 〈a, x〉 ≤ 1 for finitely many a ∈ Rn

≥0.

I The image Bn of the Cayley polytope is anti-blocking as well.

Do distributive polytopes admit piecewise-linear “transfer maps” to
anti-blocking polytopes?
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Definition
A marked network Γ = (V ,E , α, c , λ) is a directed, loop-free
multigraph with nodes V , edges E and

I a positive edge weight α ∈ RE
>0,

I a real edge weight c ∈ RE ,

I a marking λ : A→ R on a subset A ⊆ V containing at least
all sinks and sources.

To Γ associate a distributive polytope in RṼ , where Ṽ = V \ A:

D(Γ) =

 x ∈ RṼ

∣∣∣∣∣∣∣∣
αexw + ce ≤ xv for v

e−→ w ,

αeλ(a) + ce ≤ xv for v
e−→ a,

αexw + ce ≤ λ(a) for a
e−→ w

 ,

as well as the transfer map ϕ : RṼ → RṼ given by

ϕ(x)v = xv − max
v

e−→w

{
αexw + ce if w ∈ Ṽ ,

αeλ(w) + ce if w ∈ A.
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Example (non-injective transfer map)

0

wv
2,−2

2,−2

(a) Γ

xv

xw

x

1

1

(b) D(Γ)

xv

xw

ϕ(x)1

1

(c) ϕ
(
D(Γ)

)
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Example (injective transfer map)

2

v w

1
2 ,0

1,−1

1
2 ,0

(a) Γ

xv

xw

1

1

(b) D(Γ)

xv

xw

1

1

(c) ϕ
(
D(Γ)

)
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I The difference in the two examples is the product of weights

∏ αe along the cycles.

I We call a cycle v1
e1−→ v2

e2−→ · · · en−→ v1 lossy if ∏n
i=1 αei < 1.

Proposition (P., Sanyal)

When Γ is a marked network with only lossy cycles, the transfer
map ϕ is injective and A(Γ) := ϕ(D(Γ)) is an anti-blocking
polytope.

I The defining inequalities of A(Γ) are given by certain finite
acylic and infinite cyclic walks in Γ, generalizing the
description of marked chain polytopes.
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Thanks for your attention!
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