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The intention of this talk is to point out a connection between
frame theory and representation theory that might be worth further

investigation.
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Representation Theory
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Lie algebras and their representations

I A (complex) Lie algebra g is a (complex) vector space
equipped with a Lie bracket [·, ·] : g× g→ g that is bilinear,
alternating and satisfies the Jacobi identity

[f , [g , h]] + [g , [h, f ]] + [h, [f , g ]] = 0.

I Each vector space V comes with a Lie algebra gl(V ), which is
the vector space of endomorphisms V → V equipped with the
commutator Lie bracket [f , g ] = f ◦ g − g ◦ f .

I A representation V of a Lie algebra g is a vector space
together with a Lie bracket preserving linear map
ρ : g→ gl(V ).

(equivalently, V is g-module where brackets act as commutators)

I A representation V of g is irreducible, if 0 and V are the only
g-invariant subspaces of V .
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Irreducible representations of gln

I Let gln = gl(Cn) denote the general linear Lie algebra. It is
the vector space of complex n× n matrices with the Lie
bracket [A,B ] = AB − BA.

I The isomorphism classes of irreducible representations of gln
are enumerated by dominant weights

λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) ∈ Nn.

I For each dominant weight λ ∈ Nn, denote the corresponding
irreducible represenation of gln by V (λ).
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The branching rule for gln−1 ↪→ gln

I Consider gln−1 as a subalgebra of gln via the embedding
A 7→ ( A 0

0 0 )

I When the irreducible representation V (λ) of gln is restricted
to gln−1 it is (in general) no longer irreducible.

I However, it uniquely decomposes into irreducible
representations: let λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) ∈ Nn, then

V (λ)
∣∣
gln−1

=
⊕
µ≺λ

V (µ),

where the sum ranges over all µ ∈ Nn−1 interlacing λ:

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn.
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The Gelfand–Tsetlin basis of V (λ)
Repeating this decomposition, one ends up with

V (λ)
∣∣
gl1

=
⊕

λ(1)≺λ(2)≺···≺λ(n)=λ

V (λ(1)),

with the sum indexed by integral Gelfand–Tsetlin patterns
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The Gelfand–Tsetlin basis of V (λ)

I All irreducible representations of gl1 (which is C with
[z ,w ] = 0) are 1-dimensional

I Hence, we have a decomposition of V (λ) into 1-dimensional
subspaces enumerated by integral GT-patterns. Picking a
non-zero vector in each summand yields the Gelfand–Tsetlin
basis of V (λ).

I Integral GT-patterns are the lattice points in the
Gelfand–Tsetlin polytope GT(λ) ⊂ Rn(n+1)/2 consisting of all
real valued GT-patterns with last column λ.



9/17

The Gelfand–Tsetlin basis of the weight subspace V (λ)µ

I The irreducible representation V (λ) of gln decomposes (as a
vector space) as a direct sum of weight subspaces

V (λ) =
⊕

µ

V (λ)µ,

where the sum ranges over all µ ∈ Permutohedron(λ) ∩Nn.

I The Gelfand–Tsetlin basis of V (λ) is a disjoint union of bases
of the weight subspaces V (λ)µ. The basis of V (λ)µ is given
by GT -patterns satisfying the column sum conditions

k

∑
i=1

λ
(k)
i =

k

∑
i=1

µi for k = 1, . . . , n.

These are the lattice points in the weighted Gelfand–Tsetlin
polytope GT(λ)µ.
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Frame Theory
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Outer and inner sequences of eigensteps

I Let F = (f1 | f2 | · · · | fn) ∈ Cd×n be a finite frame for Cd .
I For k = 0, 1, . . . , n define

I the truncated frame Fk = (f1 | · · · | fk ) ∈ Cd×k ,
I the partial frame operator FkF

∗
k = f1f

∗
1 + · · ·+ fk f

∗
k ,

I and the partial Gram matrix F ∗k Fk (matrix of inner products).

I For any Hermitian m×m matrix M denote by

λ(M) = (λ1(M) ≥ λ2(M) ≥ · · · ≥ λm(M))

the spectrum of M. That is, λi (M) is the i-th largest
eigenvalue of M, counting multiplicity.

I To F associate the outer and inner sequence of eigensteps

Λout(F ) = (λ(F0F
∗
0 ), λ(F1F

∗
1 ), . . . , λ(FnF

∗
n )),

Λin(F ) = (λ(F ∗1 F1), λ(F ∗2 F2), . . . , λ(F ∗n Fn)).

These were defined by Cahill, Fickus, Mixon, Poteet and
Strawn in 2013 as a tool to parametrize frame varieties.
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Outer and inner sequences of eigensteps

The two sequences of eigensteps. . .

Λout(F ) =

λ1(F0F ∗0 ) · · · λ1(FnF ∗n )
...

...
λd (F0F

∗
0 ) · · · λd (FnF

∗
n )

 ∈ Rd×(n+1),

Λin(F ) =


λ1(F ∗1 F1)

λ2(F ∗2 F2)

λ1(F ∗2 F2)

· · ·

· · ·

· · ·

λn(F ∗n Fn)

λn−1(F ∗n Fn)

...

λ2(F ∗n Fn)

λ1(F ∗n Fn)

∈ Rn(n+1)/2

encode the exact same spectral information . . .
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Frame varieties and sequences of eigensteps

I Fix a length n ∈ N and a spectrum λ = (λ1 ≥ · · · ≥ λd ).

I Denote by Fλ the set of all frames F for Cd of length n with
spectrum λ(FF ∗) = λ.

I Given norm-squares µ = (µ1, . . . , µn), denote by Fµ,λ the set
of all frames F ∈ Fλ such that ‖fk‖2 = µk for all k .

What are the sets Λin/out(Fλ) and Λin/out(Fµ,λ)? [CFMPS13]

I Using the Courant–Fischer Min-Max theorem and a theorem
of Mirsky, one obtains necessary and sufficient interlacing
conditions for relating spectra when adding a frame vector.

I Taking traces one sees that the columns of sequences of
eigensteps sum up to ‖f1‖2, ‖f1‖2 + ‖f2‖2, . . .
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Frame varieties and sequences of eigensteps

I In fact, one obtains exactly the descriptions of unweighted
and weighted Gelfand–Tsetlin polytopes.

I To be precise, let

λ̃ = (λ1, λ2, . . . , λd , 0, . . . , 0︸ ︷︷ ︸
n−d

) ∈ Rn.

Then we have

Λout(Fλ) ∼= Λin(Fλ) = GT(λ̃),

Λout(Fµ,λ) ∼= Λin(Fµ,λ) = GT(λ̃)µ.
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Frame theory and representation theory

I The polytopes GT(λ) and GT(λ)µ have been studied a lot in
the last years, so frame theory might benefit from this.

I A description of the face structure of marked order polyhedra
we gave in 2016 applies to GT(λ) and hence Λ(Fλ).

I In the case of equal norm tight frames, we obtained a
non-redundant description of Λ(Fµ,λ) (joint with T. Haga)
and identified frame reversal and Naimark complements as
affine isomorphims of polytopes.
Is the representation theoretic interpretation of this
interesting?
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Thanks for your attention!
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