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This talk will be the first of at least two talks I will give on toric varieties
in the scope of my reading course. We establish the essential background in
algebraic geometry to start studying affine toric varieties given by rational
convex polyhedral cones. We cover the general theory of affine varieties
given by semigroup algebras and look at the first simple examples of affine
toric varieties.

Background in Algebraic Geometry

Definition. An affine variety V ⊆ Cn is the zero-locus of finitely many polynomials
f1, . . . , fs ∈ C[x1, . . . , xn], i.e.

V =
{

p ∈ Cn
∣∣∣ f1(p) = · · · = fs(p) = 0

}
.

• An ideal I ⊆ C[x1, . . . , xn] determines the affine variety

V(I) =
{

p ∈ Cn
∣∣∣ f (p) = 0 ∀ f ∈ I

}
,

since C[x1, . . . , xn] is a Noetherian ring.

• An affine variety V ⊆ Cn determines the ideal

I(V) =
{

f ∈ C[x1, . . . , xn]
∣∣∣ f (p) = 0 ∀p ∈ V

}
.

• It’s easy to verify that V(I(V)) = V and by the Nullstellensatz I(V(I)) =
√

I.

Example. Consider the ideal I = 〈x4 + y2 − 2x2y〉 ⊆ C[x, y]. We obtain the variety

V = V(I) =
{
(x, y) ∈ C2

∣∣∣ x2 = y
}
⊆ C2

with associated ideal

I(V) = 〈x2 − y〉 =
√

I.

1



Remark. Affine varieties together with polynomial maps form a category. This gives us
the usual categorical notions like isomorphism.

Definition. For an affine variety V ⊆ Cn we define the coordinate ring as the C-algebra

C[V] := C[x1, . . . , xn]
/

I(V).

• Elements of C[V] give well-defined polynomial maps V → C.

• A point p ∈ V corresponds to the maximal ideal { f ∈ C[V] | f (p) = 0 }.

• A morphism φ : V → W between affine varieties gives the C-algebra homomor-
phism φ∗ : C[W]→ C[V], f 7→ f ◦ φ.

• V ∼= W as affine varieties if and only if C[V] ∼= C[W] as C-algebras.

The last statement allows us to reconstruct an affine variety Spec(R) from a coordinate
ring R up to isomorphism:

Construction. Let R be a finitely generated C-algebra with no non-zero nilpotents. Pick
generators f1, . . . , fr ∈ R. The homomorphism ϕ : C[x1, . . . , xr]→ R with xi 7→ fi gives

R ∼= C[x1, . . . , xr]
/

ker ϕ.

Hence R is the coordinate ring of Spec(R) = V(ker ϕ) ⊆ Cr.

The Complex Torus

The complex torus (C∗)n is a multiplicative group, but not the zero-locus of a finite family
of polynomials in C[x1, . . . , xn]. Is it an affine variety?

Construction. We have (C∗)n = Cn \V(x1x2 · · · xn). Consider the affine variety

V = V(1− x1x2 · · · xny) ⊆ Cn ×C.

The projection Cn × C → Cn maps V bijectively onto (C∗)n, equipping it with the
structure of an affine variety.

We obtain the coordinate ring

C[(C∗)n] = C[x1, . . . , xn, y]
/
〈1− x1x2 · · · xny〉 = C[x1, . . . , xn, 1/(x1x2 · · · xn)]

= C[x±1
1 , . . . , x±1

n ]

of Laurent polynomials in n variables.
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Cones

Definition. A lattice N is a free abelian group of finite rank, i.e. N ∼= Zn. It is contained
in the real vector space NR := N ⊗R ∼= Rn. The dual lattice M = Hom(N, Z) ∼= Zn is
contained in MR := M⊗R ∼= Rn, which is dual to NR.

We have a product 〈·, ·〉 : NR×MR → R given by the usual dual pairing.

Definition. A convex polyhedral cone in NR is given by

σ = Cone(u1, . . . , uk) :=

{
k

∑
i=1

riui

∣∣∣ ri ≥ 0

}
,

where u1, . . . , uk ∈ NR. It is rational if all ui ∈ N.

The dual cone of σ is

σ∨ :=
{

v ∈ MR

∣∣∣ 〈u, v〉 ≥ 0 ∀u ∈ σ
}

.

Lemma. For a convex polyhedral cone σ, we have σ∨∨ = σ.

Remark. This lemma is not as trivial as it might seem. Proving it involes the Hahn-
Banach theorem and some functional analysis. Nevertheless, most texts on toric varieties
don’t give a proof and we won’t either.

Theorem (Farkas’ Theorem). The dual of a rational convex polyhedral cone is a rational convex
polyhedral cone.

Example. Take the lattice N = Z2 and the rational cone σ = Cone(2e1 + e2, e2) ⊆ R2.
The dual is obtained from intersecting half spaces as σ∨ = Cone(e1,−e1 + 2e2). It is
generated by the inward pointing normal vectors of the generators of σ.

(Pictures)

Semigroups

Definition. A semigroup is a subset S ⊆ M of a lattice M that is closed under addition
and contains 0. The semigroup S is said to be generated by a subset A ⊆ S, if

S = NA =

{
∑
a∈A

kaa
∣∣∣ ka ∈N

}
.

Proposition (Gordan’s Lemma). If σ ⊆ NR is a rational convex polyhedral cone, then
Sσ := σ∨ ∩M is a finitely generated semigroup.
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Proof. By Farkas’ Theorem, σ∨ = Cone(u1, . . . , us) ⊆ MR for some ui ∈ M. Consider
the set

K =

{
s

∑
i=1

tiui

∣∣∣ ti ∈ [0, 1]

}
.

Since K is bounded, K ∩M is finite. We will show that Sσ is generated by K ∩M.

Take any u ∈ Sσ = σ∨ ∩M, then u = ∑s
i=1 riui for ri ≥ 0. Write

u =
s

∑
i=1
bricui +

s

∑
i=1

(ri − bric)ui.

Since u and the first summand are elements of M, the second summand is in M as well.
Since ui ∈ K ∩M, the first summand is in N(K ∩M). The second summand is obviously
in K as well, thus u ∈N(K ∩M).

Example. In the previous example, where σ∨ = Cone(e1,−e1 + 2e2) ⊆ R2, we have

Sσ = σ∨ ∩M = N {e1, e2,−e1 + 2e2} .

(Picture)

Semigroup algebras

Definition. For a semigroup S in a lattice M, we define the semigroup algebra C[S]
as a vector space with basis elements χm for all m ∈ S with multiplication given by
χmχm′ := χm+m′ .

If S is generated by m1, . . . , ms, we have

C[S] = C[χm1 , . . . , χms ].

Example. Continuing the example we get

C[Sσ] = C[χe1 , χe2 , χ−e1+2e2 ] = C[x, y, x−1y2].

Affine toric varieties

Definition. An affine variety V is toric, if V = Spec(C[S]) for some semigroup S.

If V = Spec(C[Sσ]) for a cone σ, we write V = Uσ.

Remark. Affine toric varities contain a torus T ∼= (C∗)k as a dense subset. The characters
χ : T → C∗ (morphisms that are group homomorphisms) form a lattice isomorphic to
the lattice ZS containing S. In fact, we can define affine toric varieties using embedded
tori and their action on the variety.
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Example. Still in the example of σ = Cone(2e1 + e2, e2) we continue with

C[Sσ] = C[x, y, x−1y2] = C[x, y, z]
/
〈xz− y2〉.

Therefore, Uσ = Spec(C[Sσ]) = V(xz− y2) ⊆ C3.

We see that

T =
{
(t1, t2, t−1

1 t2
2)
∣∣∣ t1, t2 ∈ C∗

}
∼= (C∗)2

is a torus that sits densely in Uσ. The characters are given by χm : T → C with
(t1, t2, t−1

1 , t2
2) 7→ ta1

1 ta2
2 for some m = (a1, a2) ∈ Z2.

In the general construction of Spec(R), we gave the defining ideal as the kernel of
C[x1, . . . , xr]→ R, where the xi map to generators of R. In the toric case, we can give a
description of this ideal in terms of S.

Proposition. Let S ⊆ M ∼= Zn be a semigroup with generators A = {m1, . . . , ms}, then
V = Spec(C[S]) = V(I) ⊆ Cs for the ideal

I =

〈
xa − xb

∣∣∣∣∣ a, b ∈Ns :
s

∑
i=1

(ai − bi)mi = 0

〉
, where xa = xa1

1 xa2
2 · · · x

as
s .

We may skip the following proof.

Proof. We have the usual construction Spec(C[S]) = V(ker ϕ) ⊆ Cs for

ϕ : C[x1, . . . , xs]→ C[S] = C[χm1 , . . . , χms ],
xi 7→ χmi .

Let xa − xb ∈ I, then ϕ(xa − xb) = χa1m1+···+asms − χb1m1+···+bsms = 0, so I ⊆ ker ϕ.

For m ∈ S set π(m) =

{
a ∈Ns

∣∣∣∣∣ ∑s
i=1 aimi = m

}
.

Now let f = ∑ caxa ∈ ker ϕ, so

ϕ( f ) = ∑
m∈S

(
∑

a∈π(m)

ca

)
χm = 0,

and therefore ∑a∈π(m) ca = 0 for all m ∈ S. It suffices to show that fm = ∑a∈π(m) caxa lies
in the ideal I. Let ca1 , . . . , cak be the non-zero coefficients in fm, then

fm =
k

∑
i=1

cai xai
= ca1

(
xa1 − xa2

)
+ (ca2 + ca1)

(
xa2 − xa3

)
+ · · ·+

(
k

∑
i=1

cai

)(
xak − xa1

)
+

(
k

∑
i=1

cai

)
xa1

.

The last term vanishes since ∑k
i=1 cak = 0 and all other terms are elements of I.
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More examples

Example (Torus). Take N = Zn and σ = Cone(∅) = {0} ⊆ Rn. We have

σ∨ = Rn = Cone(e1,−e1, . . . , en,−en)

and therefore Sσ = σ∨ ∩M = Zn and

C[Sσ] = C[χ±e1 , . . . , χ±en ] = C[x±1
1 , . . . , x±1

n ].

We know this is the coordinate ring of the torus Uσ = (C∗)n.

Example. (Point) Take σ = Rn, then σ∨ = {0}, Sσ = {0}, C[Sσ] = C, which is the
coordinate ring of any point.

Example (Going backwards). Start with V = V(x2 − y) ⊆ C2 from the beginning, note
that V ∼= C. We have the torus

T =
{
(t, t2) | t ∈ C∗

} ∼= C∗.

The coordinate ring is

C[V] = C[x, y]
/
〈x2 − y〉 ∼= C[x].

So our semigroup is just S = N ⊆ Z, and the cone is σ = Cone(1) = R≥0 ⊆ R.

Example (A curve with a cusp). Take V = V(x2 − y3) ⊆ C2, again with a torus

T =
{
(t3, t2) | t ∈ C∗

} ∼= C∗.

Our coordinate ring this time is

C[V] = C[x, y]
/
〈x2 − y3〉 ∼= C[χ2, χ3],

where x 7→ χ3 and y 7→ χ2 (check the kernel!). Thus, S = N{2, 3} = {0, 2, 3, 4, . . . } does
not come from a cone.

6


