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This is the second talk I’m giving on toric varieties in the scope of my
reading course. Our goal is to understand how abstract toric varieties are
glued together from affine pieces given by the cones of a polyhedral fan. We
start with a quick recap and then study how faces of cones correspond to
open subsets of the associated affine toric variety.

Recap: From Cones to Affine Toric Varieties

• Let N ∼= Zn be a lattice, NR := N ⊗R the corresponding vector space.

Start with a rational convex polyhedral cone

σ = Cone(u1, . . . , uk︸ ︷︷ ︸
∈N

) ⊆ NR.

• The dual lattice M = Hom(N, Z) ∼= Zn gives the dual vector space MR = M⊗R.

By Farkas’ Theorem, we have the dual cone

σ∨ =
{

v ∈ MR

∣∣∣ 〈u, v〉 ≥ 0 ∀u ∈ σ
}
= Cone(v1, . . . , vl︸ ︷︷ ︸

∈M

) ⊆ MR

• By Gordan’s Lemma, we have a finitely generated semigroup

Sσ = σ∨ ∩M = N {m1, . . . , ms} .

• The semigroup determines the C-algebra

C[Sσ] = C[χm1 , . . . , χms ]

with multiplication given by χm · χm′ = χm+m′ .
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• This C-algebra gives the affine toric variety

Uσ = Spec(C[Sσ]).

Example. Take the lattice N = Z3 and the rational cone σ = Cone(e1, e2, e1 + e3, e2 +
e3) ⊆ R3 (Picture). By taking inward pointing normal vectors of the facets we see
the dual cone is σ∨ = Cone(e1, e2, e3, e1 + e2 − e3) ⊆ R3 (Picture). The corresponding
semigroup is Sσ = N {e1, e2, e3, e1 + e2 − e3} so we get the C-algebra

C[Sσ] = C[χe1 , χe2 , χe3 , χe1+e2−e3 ] ∼= C[x, y, z, xyz−1] ∼= C[x, y, z, w]
/
〈xy− zw〉.

Thus, Uσ is the affine toric variety V(xy− zw) ⊆ C4.

Toric ideals

From previous examples we can see that the ideals corresponding to affine toric varieties
will always be generated by binomials, since we need to express relations like w = xyz−1

without negative exponents as xy− zw = 0. Prime ideals generated by binomials are
called toric ideals.

Proposition. Let S ⊆ M ∼= Zn be a semigroup with generators A = {m1, . . . , ms}, then
V = Spec(C[S]) = V(I) ⊆ Cs for the toric ideal

I =

〈
xa − xb

∣∣∣∣∣ a, b ∈Ns :
s

∑
i=1

(ai − bi)mi = 0

〉
, where xa = xa1

1 xa2
2 · · · x

as
s .

Proof. We have the usual construction Spec(C[S]) = V(ker ϕ) ⊆ Cs for

ϕ : C[x1, . . . , xs]→ C[S] = C[χm1 , . . . , χms ],
xi 7→ χmi .

Let xa − xb ∈ I, then ϕ(xa − xb) = χa1m1+···+asms − χb1m1+···+bsms = 0, so I ⊆ ker ϕ.

For m ∈ S set π(m) =

{
a ∈Ns

∣∣∣∣∣ ∑s
i=1 aimi = m

}
.

Now let f = ∑ caxa ∈ ker ϕ, so

ϕ( f ) = ∑
m∈S

(
∑

a∈π(m)

ca

)
χm = 0,

2



and therefore ∑a∈π(m) ca = 0 for all m ∈ S. It suffices to show that fm = ∑a∈π(m) caxa lies
in the ideal I. Let ca1 , . . . , cak be the non-zero coefficients in fm, then

fm =
k

∑
i=1

cai xai
= ca1

(
xa1 − xa2

)
+ (ca2 + ca1)

(
xa2 − xa3

)
+ · · ·+

(
k

∑
i=1

cai

)(
xak − xa1

)
+

(
k

∑
i=1

cai

)
xa1

.

The last term vanishes since ∑k
i=1 cak = 0 and all other terms are elements of I.

Background in Algebraic Geometry: Localization

Consider an affine variety V ⊆ Cn with coordinate ring C[V] = C[x1, . . . , xn]
/

I(V).
Assuming V is irreducible, so C[V] is an integral domain, for f ∈ C[V] \ {0} we can
define the localization at f by

C[V] f =

{
g
f `

∣∣∣ g ∈ C[V], ` ≥ 0
}

= C[V][1/ f ].

We have a correspondence between localizations of the coordinate ring and principal
open subsets of the affine variety:

Proposition. Let V be an irreducible affine variety, f ∈ C[V] \ {0}, then

Spec(C[V] f ) = Spec(C[V]) f = Vf :=
{

p ∈ V
∣∣∣ f (p) 6= 0

}
.

Proof. Let I(V) = 〈 f1, . . . , fs〉, then

Vf
∼= W = V( f1, . . . , fs, 1− gy) ⊆ Cn ×C

where g ∈ C[x1, . . . , xn] represents f ∈ C[V] and the correspondece with V is given by
the projection Cn ×C→ Cn. We obtain the coordinate ring

C[Vf ] ∼= C[W] = C[x1, . . . , xn, y]
/
〈 f1, . . . , fs, 1− gy〉

∼= C[x1, . . . , xn, 1/g]
/
〈 f1, . . . , fs〉

∼= C[V][1/ f ] = C[V] f .
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Faces of Cones and Principal Open Subsets

Definition. Let σ ⊆ NR be a rational convex polyhedral cone. Given m ∈ MR we define
the hyperplane and half-space

Hm = { u ∈ NR | 〈m, u〉 = 0} ⊆ NR,
H+

m = { u ∈ NR | 〈m, u〉 ≥ 0} ⊆ NR.

If σ ⊆ H+
m we call Hm a supporting hyperplane, this happens if and only if m ∈ σ∨.

Definition. A face of the cone σ is given as τ = σ ∩ Hm for some m ∈ σ∨, written τ � σ.
Every face of a cone is a cone itself and can be expressed as τ = σ ∩ Hm for some
m ∈ Sσ = σ∨ ∩M.

Proposition. Let τ = σ∩Hm � σ be a face of a rational convex polyhedral cone σ ⊆ NR given
by some m ∈ Sσ, then the affine toric variety Uτ is the principal open subset (Uσ)χm ⊆ Uσ.

Sketch of proof. From τ = σ ∩ Hm we obtain the dual cone τ∨ = Cone(σ∨ + {−m}).
Thus the corresponding semigroup is Sτ = Sσ + Z(−m) and the coordinate ring is the
localization

C[Sτ] = C[Sσ + Z(−m)] = C[Sσ]
[
χ−m] = C[Sσ]χm .

From what we know about localizations of coordinate rings we have

Uτ = Spec(C[Sτ]) = Spec(C[Sσ]χm) = Spec(C[Sσ])χm = (Uσ)χm .

Example. In the previous example of σ = Cone(e1, e2, e1 + e3, e2 + e3) ⊆ R3 consider the
facet τ = Cone(e1 + e3, e2 + e3) = σ ∩ Hm given by m = e1 + e2 − e3 ∈ Sσ. We have

Uτ = (Uσ)χe1+e2−e3 .

From

C[Sσ] = C[χe1 , χe2 , χe3 , χe1+e2−e3 ] ∼= C[x, y, z, xyz−1] ∼= C[x, y, z, w]
/
〈xy− zw〉.

we obtained the coordinate representation Uσ = V(xy− zw) ⊆ C4 where χe1+e2−e3 ∈
C[Sσ] corresponds to [w] ∈ C[x, y, z, w]

/
〈xy− zw〉. Thus

Uτ = (Uσ)[w] =
{
(x, y, z, w) ∈ C4

∣∣∣ xy− zw = 0, w 6= 0
}
⊆ Uσ.
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Toric Varieties from Polyhedral Fans

Definition. A fan in NR is a finite collection of cones σ ⊆ NR such that:

(a) Every σ ∈ Σ is a strongly convex rational polyhedral cone. (Here strongly convex
means {0} is a face of σ.)

(b) For all σ ∈ Σ we have τ � σ⇒ τ ∈ Σ.

(c) For σ1, σ2 ∈ Σ the intersection σ1 ∩ σ2 is a face of both σ1 and σ2 (hence also in Σ).

After establishing that faces τ � σ correspond to principal open subsets Uτ ⊆ Uσ we
can now glue together affine toric varieties Uσ1 and Uσ2 along the principal open subset
Uσ1∩σ2 of both. This gluing construction gives an abstract variety XΣ called the toric
variety of Σ.

Example. Consider the fan Σ = {τ, σ1, σ2} in R with lattice Z given by the cones
τ = {0}, σ1 = Cone(1) = R≥0 and σ2 = Cone(−1) = R≤0. We have the semigroup
algebras

C[Sσ1 ] = C[χ1] ∼= C[x1],

C[Sσ2 ] = C[χ−1] ∼= C[x2],

C[Sτ] = C[χ1, χ−1] ∼= C[x1]x1
∼= C[x2]x2 ,

where Uσ1 and Uσ2 are copies of C (with coordinates x1 and x2, respectively) and Uτ is a
one-dimensional torus C∗ contained in both of them.

Our gluing rule is x1 ∼ (x2)−1 whenever x1, x2 6= 0, since χ1 = (χ−1)−1 and we chose
isomorphisms mapping x1 7→ χ1 and x2 7→ χ−1. Thus

XΣ = CtC
/
(x ∼ x−1)x 6=0.

This is exactly how the charts (x : 1) and (1 : x) in CP1 are glued, therefore XΣ
∼= CP1.

Example. Consider the fan Σ in R2 given by the cones

σ1 = Cone(e1, e2),
σ2 = Cone(e1,−e1 − e2),
σ3 = Cone(e2,−e1 − e2)

and its intersections. The dual cones are

σ∨1 = Cone(e1, e2),
σ∨2 = Cone(e1 − e2,−e2),
σ∨3 = Cone(e2 − e1,−e1).
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(Pictures)

The semigroup algebras of the affine patches are

C[Sσ1 ] = C[χe1 , χe2 ] ∼= C[x1, y1],
C[Sσ2 ] = C[χe1−e2 , χ−e2 ] ∼= C[x2, y2],
C[Sσ3 ] = C[χe2−e3 , χ−e1 ] ∼= C[x3, y3].

Thus, we have to glue 3 copies of C2.

Let’s see how to glue Uσ1 and Uσ2 . We have

C[Sσ1∩σ2 ] = C[χe1 , χe2 , χ−e2 ]

= C[Sσ1 ]χe2
∼= C[x1, y1]y1 ,

= C[Sσ2 ]χ−e2
∼= C[x2, y2]y2 .

Thus the intersection is C×C∗ given by y1 6= 0 for Uσ1 and y2 6= 0 for Uσ2 , where we
glue according to the rules

x2 ∼ x1y−1
1 ,

y2 ∼ y−1
1 .

For the other two intersections we obtain the gluing rules

x3 ∼ y1x−1
1 , x3 ∼ x−1

2 ,

y3 ∼ x−1
1 , y3 ∼ y2x−1

2 ,

where x1, y3 6= 0 and x2, x3 6= 0 respectively.

Again, this is just how the 3 charts (x1 : y1 : 1), (x2 : 1 : y2) and (1 : x3 : y3) of CP2 are
glued, so XΣ

∼= CP2 in this case.

If time permits, we will discuss another example:

Example. The 2-dimensional fan given by

σ0 = Cone(e1, e2),
σ1 = Cone(−e1,−e2)

gives the toric variety

XΣ = (C2 tC2)
/
((x, y) ∼ (x−1, y−1))x,y 6=0,

which is the blow-up of C2 along the coordinate axes.
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