ALTERNATING SUMS OVER π -SUBGROUPS

GABRIEL NAVARRO AND BENJAMIN SAMBALE

ABSTRACT. Dade's conjecture predicts that if p is a prime, then the number of irreducible characters of a finite group of a given p-defect is determined by local subgroups. In this paper we replace p by a set of primes π and prove a π -version of Dade's conjecture for π -separable groups. This extends the (known) p-solvable case of the original conjecture and relates to a π -version of Alperin's weight conjecture previously established by the authors.

1. INTRODUCTION

One of the most general local-global counting conjecture for irreducible complex characters of finite groups is due to E. C. Dade [D]. For a finite group G, a prime pand an integer d > 0, the conjecture asserts that the number of irreducible characters of G of p-defect d can be computed by an alternating sum over chains of p-subgroups. (In this paper, we only deal with the group-wise ordinary conjecture; see [N, Conjecture 9.25].) Dade [D] already showed that his conjecture implies Alperin's weight conjecture. The first author has proved that McKay's conjecture is also a consequence of Dade's conjecture (see [N, Theorem 9.27]). Dade's conjecture is known to be true for p-solvable groups by work of G. R. Robinson [R] (see also Turull [T17]), and a reduction of it to simple groups has been recently conducted by B. Späth [Sp].

In previous work by Isaacs–Navarro [IN] and the present authors [NS], we have replaced p by a set of primes π in order to prove variants of Alperin's weight conjecture for π -separable groups. In this paper, we are interested in a π -version of Dade's conjecture and possible applications.

Let $\mathcal{C}(G)$ be the set of chains of π -subgroups of G, and let G_C be the stabilizer of a chain C in G. For an integer $d \geq 1$, we let $k_d(G)$ to be the number of irreducible characters $\chi \in \operatorname{Irr}(G)$ such that $|G|_{\pi} = d\chi(1)_{\pi}$, where $n_{\pi} = \prod_{p \in \pi} n_p$, and n_p is the largest power of p dividing the positive integer n. (Notice that this deviates slightly from the usual notation for $\pi = \{p\}$.)

²⁰¹⁰ Mathematics Subject Classification. Primary 20C15; Secondary 20C20.

Key words and phrases. Dade's Conjecture, Alternating Sums, π -subgroups.

The research of the first author supported by Ministerio de Ciencia e Innovación PID2019-103854GB-I00 and FEDER funds. The second author thanks the German Research Foundation (projects SA 2864/1-2 and SA 2864/3-1).

Our main result is a natural generalization of Dade's conjecture for p-solvable groups:¹

THEOREM A. Let G be a π -separable group, and let d > 1. Then

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| k_d(G_C) = 0.$$

As usual, the factor $|G_C|$ can be eliminated by summing over *G*-conjugacy classes of chains. Unlike the original conjecture in the case $\pi = \{p\}$, we cannot restrict ourselves to so-called *normal* chains in Theorem A (see [N, Theorem 9.16]). In fact, $G = S_3$ with $\pi = \{2, 3\}$ is already a counterexample. (This is related to the fact that π -subgroups are not in general nilpotent!) For this reason, the known proofs of the *p*solvable case cited above cannot be carried over to π . We will obtain Theorem A as a special case of a more general projective statement with respect to normal subgroups.

To state applications, we denote the number of conjugacy classes of G by k(G) and the number of conjugacy classes of π' -elements by l(G). Recall that $\chi \in Irr(G)$ has π -defect zero if $\chi(1)_p = |G|_p$ for all $p \in \pi$. The number of those characters is $k_1(G)$, using the notation above.

COROLLARY B. Let G be a π -separable group. Then

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} \frac{|G_C|}{|G|} k(G_C) = \sum_{C \in \mathcal{C}(G)} (-1)^{|C|} \frac{|G_C|}{|G|} l(G_C)$$

is the number of π -defect zero characters of G.

As another application we generalize a theorem of Webb [We] (see Theorem 2.5 below).

Unlike the case where $\pi = \{p\}$, Alperin's weight conjecture cannot be deduced from Corollary B. As a matter of fact, the most natural formulation of Alperin's conjecture does not even hold in some π -separable groups as indicated in [NS] (consider $G = A_5$ and $\pi = \{2, 3, 5\}$). We now believe that the general situation can be explained by introducing *negative* weights. More precisely, we checked for many π -separable groups G that

$$l(G) = \sum_{P \in \Pi(G)} \epsilon(P) k_1(\mathbf{N}_G(P)/P)$$

where $\Pi(G)$ is a set of representatives for the conjugacy classes of π -subgroups of G, and $\epsilon(P)$ is an integer only depending on the isomorphism type of P (and not on G or π). It is easy to see that the function ϵ is uniquely determined and can be computed recursively (if it exists). Among solvable groups H we have $\epsilon(H) = 1$ if H is nilpotent and $\epsilon(H) = 0$ otherwise. This is in complete accordance with [NS].

¹Theorem A was proposed as a conjecture in the second author's Oberwolfach talk in 2019.

On the other hand, $\epsilon(A_6) = -2$. Understanding and interpreting these mysterious coefficients remains a challenge.

2. Proofs

We fix a set of primes π for the rest of the paper. If G is a finite group, we consider chains C of π -subgroups in G of the form $1 = P_0 < P_1 < \ldots < P_n$ where n = 0 is allowed (the trivial chain). Let |C| = n and let

$$G_C = \mathbf{N}_G(P_0) \cap \ldots \cap \mathbf{N}_G(P_n)$$

be the stabilizer of C in G. The set of all such chains of G is denoted by $\mathcal{C}(G)$.

For a normal subgroup N of G and $\theta \in \operatorname{Irr}(N)$, let $k_d(G|\theta)$ be the number of irreducible characters χ of G lying over θ with $|G|_{\pi} = d\chi(1)_{\pi}$. We denote by G_{θ} the stabilizer of θ in G. By the Clifford correspondence, notice that

$$k_d(G|\theta) = k_d(G_\theta|\theta).$$

We start with the following.

Lemma 2.1. Let G be a finite group, and let f be a real-valued function on the set of subgroups of G. If $O_{\pi}(G) > 1$, then

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| f(G_C) = 0.$$

Proof. Let $C: 1 = P_0 < \ldots < P_n$ be a chain in $\mathcal{C}(G)$. If $N = \mathbf{O}_{\pi}(G) \notin P_n$, we obtain $C^* \in \mathcal{C}(G)$ from C by adding NP_n at the end which is still a π -group. Otherwise let $N \subseteq P_k$ and $N \notin P_{k-1}$. If $P_{k-1}N = P_k$, then we delete P_k , otherwise we add $P_{k-1}N$ between P_{k-1} and P_k . It is easy to see that in all cases $|C^*| = |C| \pm 1$, $(C^*)^* = C$ and $G_C = G_{C^*}$. Hence, the map $C \mapsto C^*$ is a bijection on $\mathcal{C}(G)$ such that

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| f(G_C) = \sum_{C \in \mathcal{C}(G)} (-1)^{|C^*|} |G_{C^*}| f(G_{C^*})$$
$$= -\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| f(G_C) = 0.$$

It is obvious that G acts by conjugation on $\mathcal{C}(G)$. The set of G-orbits is denoted by $\mathcal{C}(G)/G$ in the following. If $K \triangleleft G$, notice that G also acts on $\mathcal{C}(G/K)$.

Lemma 2.2. Let G be a finite group with a normal π' -subgroup K. Let $\overline{H} := HK/K$ for $H \leq G$.

(a) The map $\mathcal{C}(G) \mapsto \mathcal{C}(\overline{G})$ given by

$$C: P_0 < \ldots < P_n \mapsto \overline{C}: \overline{P_0} < \ldots < \overline{P_n}$$

induces a bijection $\mathcal{C}(G)/G \to \mathcal{C}(\overline{G})/\overline{G}$.

(b) For $\overline{C} \in \mathcal{C}(\overline{G})$, we have that $\overline{G}_{\overline{C}} = G_{\overline{C}}/K = G_C K/K$.

(c) Let f be a real-valued function on the set of subgroups of G such that $f(H) = f(H^g)$ for all $H \leq G$ and $g \in G$. Then

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| f(G_C K) = \sum_{\overline{C} \in \mathcal{C}(\overline{G})} (-1)^{|\overline{C}|} |G_{\overline{C}}| f(G_{\overline{C}}).$$

Proof. First, we notice that the map $\mathcal{C}(G) \to \mathcal{C}(\overline{G})$ given by $C \mapsto \overline{C}$ is surjective. Indeed, suppose that $\overline{C} : 1 = U_0/K < \ldots < U_n/K$ is a chain of π -subgroups of G/K. By the Schur–Zassenhaus theorem, we have that $U_n = KP_n$ for some π -subgroup P_n of G. Then $U_i = K(U_i \cap P_n)$, and therefore the chain $1 = U_0 \cap P_n < \ldots < P_n$ maps to \overline{C} .

If chains $C: P_0 < \ldots < P_n$ and $D: Q_0 < \ldots < Q_n$ are conjugate in \overline{G} , then \overline{C} and \overline{D} are obviously conjugate in \overline{G} . Suppose conversely that \overline{C} and \overline{D} are \overline{G} -conjugate. Without loss of generality, we may assume that $P_iK = Q_iK$ for $i = 0, \ldots, n$. Again by the Schur–Zassenhaus theorem (this time relying on the Feit–Thompson theorem), P_n is conjugate to Q_n by some $x \in K$. We still have $P_i^x K = Q_i K$ for $i = 0, \ldots, n$. Since $P_i^x, Q_i \leq Q_n$ it follows that $P_i^x = Q_i$ for $i = 0, \ldots, n$. Hence, C and D are G-conjugate. This proves (a).

Suppose that $P_1 < P_2$ are π -subgroups of G. We claim that

$$\mathbf{N}_G(P_1)K \cap \mathbf{N}_G(P_2)K = (\mathbf{N}_G(P_1) \cap \mathbf{N}_G(P_2))K.$$

If $x \in \mathbf{N}_G(P_1)K \cap \mathbf{N}_G(P_2)K$, then $P_2^x = P_2^k$ for some $k \in K$. Therefore $xk^{-1} \in \mathbf{N}_G(P_2) \cap \mathbf{N}_G(P_1)K$. Since $P_1K \cap P_2 = P_1$, we have that $xk^{-1} \in \mathbf{N}_G(P_1)$, and therefore $x \in (\mathbf{N}_G(P_1) \cap \mathbf{N}_G(P_2))K$. This proves the claim.

Suppose now that $C: P_0 < \ldots < P_n$ is a chain of π -subgroups of G. By the Frattini argument, $\overline{\mathbf{N}_G(P_i)} = \mathbf{N}_{\overline{G}}(\overline{P_i})$ and therefore $\overline{G_C} = \overline{G_C}$, using the last paragraph. Regarding the action of G on $\mathcal{C}(\overline{G})$ we also have $G_{\overline{C}}/K = \overline{G_C}$.

Finally, we prove (c). The *G*-orbit of *C* has size $|G : G_C|$, while the \overline{G} -orbit of \overline{C} has size $|\overline{G} : \overline{G}_{\overline{C}}| = |G : G_{\overline{C}}|$. Let C_1, \ldots, C_k be representatives for $\mathcal{C}(G)/G$, so that $\overline{C_1}, \ldots, \overline{C_k}$ are representatives for $\mathcal{C}(\overline{G})/\overline{G}$. Then

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| f(G_C K) = |G| \sum_{i=1}^k (-1)^{|C_i|} f(G_{C_i} K) = \sum_{\overline{C} \in \mathcal{C}(\overline{G})} (-1)^{\overline{C}} |G_{\overline{C}}| f(G_{\overline{C}}). \quad \Box$$

The deep part of our results comes from the "above Glauberman–Isaacs correspondence" theory. If A is a solvable finite group, acting coprimely on G, recall that Glauberman discovered a natural bijection * from $\operatorname{Irr}_A(G)$, the set of A-invariant irreducible characters of G, and $\operatorname{Irr}(\mathbf{C}_G(A))$, the irreducible characters of the fixed-point subgroup. The case where A is a p-group is fundamental in the local/global counting conjectures. If A is not solvable, an important case in this paper, then G has odd order by the Feit-Thompson theorem. In this case, Isaacs [I] proved that there is also a natural bijection $\operatorname{Irr}_A(G) \to \operatorname{Irr}(\mathbf{C}_G(A))$. T. R. Wolf [Wo] proved that both correspondences agree in the intersection of their hypotheses.

Theorem 2.3. Let G be a finite group with a normal π' -subgroup K. Let $C \in C(G)$ with last subgroup $P_C = P_{|C|}$. Let $\tau \in Irr(K)$ be P_C -invariant, and let $\tau^* \in Irr(\mathbf{C}_K(P_C))$ be its Glauberman–Isaacs correspondent. Then

$$k_d(G_C K|\tau) = k_d(G_C|\tau^*)$$

for every integer d.

Proof. Let $U = K(P_C G_C)$. Notice that $G_C \cap K = \mathbf{C}_K(P_C)$. Also, $KP_C \triangleleft U$. Thus $U = K\mathbf{N}_U(P_C)$, by the Frattini argument and the Schur–Zassenhaus theorem. Also,

$$\mathbf{N}_U(P_C) = \mathbf{N}_G(P_C) \cap (P_C G_C) K = (P_C G_C) \mathbf{N}_K(P_C) = P_C G_C \mathbf{C}_K(P_C)$$

Since G_C normalizes P_C , we have that G_C commutes with the P_C -Glauberman–Isaacs correspondence. In particular,

$$(G_C)_{\tau^*} = (G_C)_{\tau} \, .$$

Hence, by using the Clifford correspondence, we may assume that τ is G_C -invariant (and therefore U-invariant) and that τ^* is G_C -invariant too.

Now, we claim that the character triples (U, K, τ) and $(\mathbf{N}_U(P_C), \mathbf{C}_K(P_C), \tau^*)$ are isomorphic. If P_C is solvable, this is a well-known fact which follows from the Dade– Puig theory. (A comprehensive proof is given in [T08].) If P_C is not solvable, then |K| is odd, by the Feit–Thompson theorem. Then the claim follows from the theory developed by Isaacs in [I]. (A proof is given in the last paragraphs of [L].)

Since the character triples (U, K, τ) and $(\mathbf{N}_U(P_C), \mathbf{C}_K(P_C), \tau^*)$ are isomorphic, it follows from the definition that the sub-triples $(G_C K, K, \tau)$ and $(G_C, \mathbf{C}_K(P_C), \tau^*)$ are isomorphic too. This yields a bijection $\operatorname{Irr}(G_C K|\tau) \to \operatorname{Irr}(G_C|\tau^*), \chi \mapsto \chi^*$ such that $\chi(1)/\tau(1) = \chi^*(1)/\tau^*(1)$ (see [N, p. 87]). In particular, $k_d(G_C K|\tau) = k_d(G_C|\tau^*)$ (if $d_{\pi} \neq d$, both numbers are 0).

Theorem A is the special case N = 1 of the following projective version.

Theorem 2.4. Let G be a π -separable group with a normal π' -subgroup N. Let $\theta \in \operatorname{Irr}(N)$ be G-invariant and d > 1. Then

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| k_d(G_C N | \theta) = 0.$$

Proof. We may assume that $d_{\pi} = d$. We argue by induction on |G : N|. Let $\overline{G} = G/N$. By Lemma 2.2, we may sum over $\overline{C} \in \mathcal{C}(\overline{G})$ by replacing G_C with $G_{\overline{C}}$. Recall that a character triple isomorphism $(G, N, \theta) \to (G^*, N^*, \theta^*)$ induces an isomorphism $\overline{G} \cong G^*/N^*$ and a bijection $\operatorname{Irr}(G|\theta) \to \operatorname{Irr}(G^*|\theta^*), \chi \mapsto \chi^*$ such that $\chi(1)/\theta(1) = \chi^*(1)/\theta^*(1)$. Thus, $k_d(G_{\overline{C}}|\theta) = k_d(G_{\overline{C}^*}^*|\theta^*)$ and the numbers $|G_{\overline{C}}|, |G_{\overline{C}^*}^*|$ differ only by a factor independent of C. This allows us to replace N by N^* . Using

[N, Corollary 5.9], we assume that N is a central π' -subgroup in the following. Now using Lemma 2.2 in the opposite direction, we sum over $C \in \mathcal{C}(G)$ again and note that $N \subseteq G_C$. Thus, it suffices to show that

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| k_d(G_C|\theta) = 0.$$

By Lemma 2.1, we may assume that $\mathbf{O}_{\pi}(G) = 1$. Let $K = \mathbf{O}_{\pi'}(G)$. If K = N, then N = G by the Hall-Higman 1.2.3 lemma. In this case, the theorem is correct because d > 1. So we may assume that K > N. Let P_C be the last member of $C \in \mathcal{C}(G)$. Observe that $G_C \cap K = \mathbf{C}_K(P_C)$. Each $\psi \in \operatorname{Irr}(G_C|\theta)$ lies over some $\mu \in \operatorname{Irr}(\mathbf{C}_K(P_C)|\theta)$. But ψ lies also over μ^g for every $g \in G_C$. Therefore,

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| |k_d(G_C|\theta) = \sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| \Big(\sum_{\mu \in \operatorname{Irr}(\mathbf{C}_K(P_C)|\theta)} \frac{k_d(G_C|\mu)}{|G_C : G_{C,\mu}|} \Big)$$

where $G_{C,\mu} = G_C \cap G_{\mu}$. According to Theorem 2.3, we replace $\operatorname{Irr}(\mathbf{C}_K(P_C)|\theta)$ by $\operatorname{Irr}_{P_C}(K|\theta)$ and $k_d(G_C|\mu)$ by $k_d(G_CK|\mu)$. By the Clifford correspondence, $k_d(G_CK|\mu) = k_d(G_{C,\mu}K|\mu)$. Moreover, $\mu \in \operatorname{Irr}_{P_C}(K|\theta)$ implies $P_C \leq G_{\mu}$. Thus, for a fixed μ we only need to consider chains in G_{μ} . Hence,

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| |k_d(G_C|\theta) = \sum_{\mu \in \operatorname{Irr}(K|\theta)} \left(\sum_{C \in \mathcal{C}(G_\mu)} (-1)^{|C|} |G_{C,\mu}| k_d(G_{C,\mu}K|\mu) \right).$$

Since $|G_{\mu}: K| < |G: N|$, the inner sum vanishes for every μ by induction. Hence, we are done.

Finally, we come to our second result.

Proof of Corollary B. Let $C: P_0 < \ldots < P_n$ in $\mathcal{C}(G)$ such that n > 0. Then $P_1 \leq G_C$. Let $\chi \in \operatorname{Irr}(G_C)$ and $\theta \in \operatorname{Irr}(P_1)$ under χ . By Clifford theory, $\chi(1)/\theta(1)$ divides $|G_C/P_1|$ (see [N, Theorem 5.12]). Since $\theta(1) < |P_1|$, it follows that $\chi(1)_{\pi} < |G_C|_{\pi}$ and $k_1(G_C) = 0$. Summing over $d \geq 1$ in Theorem A yields

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} \frac{|G_C|}{|G|} k(G_C) = k_1(G).$$

The second equality follows from a straight-forward generalization of the Knörr–Robinson argument. In fact, the proofs of [N, 9.18–9.23] go through word by word (replacing p by π , of course).

Given the proof above, we take the opportunity to point out that a theorem of Webb [We] (see also [N, Corollary 9.20]) remains true in the π -setting:

Theorem 2.5. Let G be an arbitrary finite group, and let π be a set of primes. Then the generalized character

$$\sum_{C \in \mathcal{C}(G)} (-1)^{|C|} |G_C| (1_{G_C})^G$$

vanishes on all elements of G whose order is divisible by a prime in π .

It is interesting to speculate on variations of Theorem A, that is projective versions of Dade's conjecture, that might be even true for arbitrary normal subgroups of any finite group G, whenever $\pi = \{p\}$. We have not attempted a block version of Theorem A. Although π -block theory is well-developed in π -separable groups (see [Sl], for instance), Brauer's block induction does not behave well if Hall π -subgroups are not nilpotent.

Computations with chains are almost impossible to do by hand. The results of this paper would not have been discovered without the help of [GAP].

References

- [D] E. C. Dade, Counting characters in blocks, I, Invent. Math. 109, (1992), 187–210.
- [GAP] The GAP group, 'GAP groups, algorithms, and programming', Version 4.11.0, 2020, http://www.gap-system.org.
- [I] I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 85 (1973), 594–635.
- [IN] I. M. Isaacs, G. Navarro, Weights and vertices for characters of π -separable groups, J. Algebra 177 (1995), 339–366.
- [KR] R. Knörr, G. R. Robinson, Some remarks on a conjecture of Alperin, J. London Math. Soc. 39 (1989), 48–60.
- M. L. Lewis, Characters, coprime actions, and operator groups, Arch. Math. 69 (1997), 455-460.
- [N] G. Navarro, *Character theory and the McKay conjecture*, Cambridge Studies in Advanced Mathematics, **175**, Cambridge University Press, Cambridge, 2018.
- [NS] G. Navarro, B. Sambale, Weights and nilpotent subgroups, Int. Math. Res. Not. 2021 (2021), 2526–2538.
- [R] G. R. Robinson, *Dade's projective conjecture for p-solvable groups*, J. Algebra **229** (2000), 234–248.
- [Sl] M. C. Slattery, *Pi-blocks of pi-separable groups*. I, J. Algebra **102** (1986), 60–77.
- [Sp] B. Späth, A reduction theorem for Dade's projective conjecture, J. Eur. Math. Soc. 19 (2017), 1071–1126.
- [T08] A. Turull, Above the Glauberman correspondence, Adv. in Math. 217 (2008), 2170–2205.
- [T17] A. Turull, Refinements of Dade's Projective Conjecture for p-solvable groups, J. Algebra 474 (2017), 424–465.
- [We] P. J. Webb, Subgroup complexes, Proc. Sympos. Pure Math. 47 (1987), 349–365.
- [Wo] T. R. Wolf, Character correspondences in solvable groups, Illinois J. Math. 22 (1978), 327–340.

Department of Mathematics, Universitat de València, 46100 Burjassot, València, Spain

Email address: gabriel@uv.es

Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

Email address: sambale@math.uni-hannover.de