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Abstract. Dade’s conjecture predicts that if p is a prime, then the number of
irreducible characters of a finite group of a given p-defect is determined by local
subgroups. In this paper we replace p by a set of primes π and prove a π-version of
Dade’s conjecture for π-separable groups. This extends the (known) p-solvable case
of the original conjecture and relates to a π-version of Alperin’s weight conjecture
previously established by the authors.

1. Introduction

One of the most general local-global counting conjecture for irreducible complex
characters of finite groups is due to E. C. Dade [D]. For a finite group G, a prime p
and an integer d > 0, the conjecture asserts that the number of irreducible characters
of G of p-defect d can be computed by an alternating sum over chains of p-subgroups.
(In this paper, we only deal with the group-wise ordinary conjecture; see [N, Con-
jecture 9.25].) Dade [D] already showed that his conjecture implies Alperin’s weight
conjecture. The first author has proved that McKay’s conjecture is also a conse-
quence of Dade’s conjecture (see [N, Theorem 9.27]). Dade’s conjecture is known to
be true for p-solvable groups by work of G. R. Robinson [R] (see also Turull [T17]),
and a reduction of it to simple groups has been recently conducted by B. Späth [Sp].

In previous work by Isaacs–Navarro [IN] and the present authors [NS], we have
replaced p by a set of primes π in order to prove variants of Alperin’s weight conjecture
for π-separable groups. In this paper, we are interested in a π-version of Dade’s
conjecture and possible applications.

Let C(G) be the set of chains of π-subgroups of G, and let GC be the stabilizer of
a chain C in G. For an integer d ≥ 1, we let kd(G) to be the number of irreducible
characters χ ∈ Irr(G) such that |G|π = dχ(1)π, where nπ =

∏
p∈π np, and np is the

largest power of p dividing the positive integer n. (Notice that this deviates slightly
from the usual notation for π = {p}.)
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Our main result is a natural generalization of Dade’s conjecture for p-solvable
groups:1

THEOREM A. Let G be a π-separable group, and let d > 1. Then∑
C∈C(G)

(−1)|C||GC |kd(GC) = 0.

As usual, the factor |GC | can be eliminated by summing over G-conjugacy classes
of chains. Unlike the original conjecture in the case π = {p}, we cannot restrict
ourselves to so-called normal chains in Theorem A (see [N, Theorem 9.16]). In fact,
G = S3 with π = {2, 3} is already a counterexample. (This is related to the fact that
π-subgroups are not in general nilpotent!) For this reason, the known proofs of the p-
solvable case cited above cannot be carried over to π. We will obtain Theorem A as a
special case of a more general projective statement with respect to normal subgroups.

To state applications, we denote the number of conjugacy classes of G by k(G) and
the number of conjugacy classes of π′-elements by l(G). Recall that χ ∈ Irr(G) has
π-defect zero if χ(1)p = |G|p for all p ∈ π. The number of those characters is k1(G),
using the notation above.

COROLLARY B. Let G be a π-separable group. Then∑
C∈C(G)

(−1)|C| |GC |
|G|

k(GC) =
∑

C∈C(G)

(−1)|C| |GC |
|G|

l(GC)

is the number of π-defect zero characters of G.

As another application we generalize a theorem of Webb [We] (see Theorem 2.5
below).

Unlike the case where π = {p}, Alperin’s weight conjecture cannot be deduced from
Corollary B. As a matter of fact, the most natural formulation of Alperin’s conjecture
does not even hold in some π-separable groups as indicated in [NS] (consider G = A5

and π = {2, 3, 5}). We now believe that the general situation can be explained
by introducing negative weights. More precisely, we checked for many π-separable
groups G that

l(G) =
∑

P∈Π(G)

ϵ(P )k1(NG(P )/P )

where Π(G) is a set of representatives for the conjugacy classes of π-subgroups of
G, and ϵ(P ) is an integer only depending on the isomorphism type of P (and not
on G or π). It is easy to see that the function ϵ is uniquely determined and can be
computed recursively (if it exists). Among solvable groups H we have ϵ(H) = 1 if
H is nilpotent and ϵ(H) = 0 otherwise. This is in complete accordance with [NS].

1Theorem A was proposed as a conjecture in the second author’s Oberwolfach talk in 2019.
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On the other hand, ϵ(A6) = −2. Understanding and interpreting these mysterious
coefficients remains a challenge.

2. Proofs

We fix a set of primes π for the rest of the paper. If G is a finite group, we consider
chains C of π-subgroups in G of the form 1 = P0 < P1 < . . . < Pn where n = 0 is
allowed (the trivial chain). Let |C| = n and let

GC = NG(P0) ∩ . . . ∩NG(Pn)

be the stabilizer of C in G. The set of all such chains of G is denoted by C(G).
For a normal subgroup N of G and θ ∈ Irr(N), let kd(G|θ) be the number of

irreducible characters χ of G lying over θ with |G|π = dχ(1)π. We denote by Gθ the
stabilizer of θ in G. By the Clifford correspondence, notice that

kd(G|θ) = kd(Gθ|θ).
We start with the following.

Lemma 2.1. Let G be a finite group, and let f be a real-valued function on the set
of subgroups of G. If Oπ(G) > 1, then∑

C∈C(G)

(−1)|C||GC |f(GC) = 0.

Proof. Let C : 1 = P0 < . . . < Pn be a chain in C(G). If N = Oπ(G) ⊈ Pn, we obtain
C∗ ∈ C(G) from C by adding NPn at the end which is still a π-group. Otherwise let
N ⊆ Pk and N ⊈ Pk−1. If Pk−1N = Pk, then we delete Pk, otherwise we add Pk−1N
between Pk−1 and Pk. It is easy to see that in all cases |C∗| = |C| ± 1, (C∗)∗ = C
and GC = GC∗ . Hence, the map C 7→ C∗ is a bijection on C(G) such that∑

C∈C(G)

(−1)|C||GC |f(GC) =
∑

C∈C(G)

(−1)|C
∗||GC∗|f(GC∗)

= −
∑

C∈C(G)

(−1)|C||GC |f(GC) = 0. □

It is obvious that G acts by conjugation on C(G). The set of G-orbits is denoted
by C(G)/G in the following. If K ◁ G, notice that G also acts on C(G/K).

Lemma 2.2. Let G be a finite group with a normal π′-subgroup K. Let H := HK/K
for H ≤ G.

(a) The map C(G) 7→ C(G) given by

C : P0 < . . . < Pn 7→ C : P0 < . . . < Pn

induces a bijection C(G)/G→ C(G)/G.
(b) For C ∈ C(G), we have that GC = GC/K = GCK/K.
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(c) Let f be a real-valued function on the set of subgroups of G such that f(H) =
f(Hg) for all H ≤ G and g ∈ G. Then∑

C∈C(G)

(−1)|C||GC |f(GCK) =
∑

C∈C(G)

(−1)|C||GC |f(GC).

Proof. First, we notice that the map C(G) → C(G) given by C 7→ C is surjective.
Indeed, suppose that C : 1 = U0/K < . . . < Un/K is a chain of π-subgroups of G/K.
By the Schur–Zassenhaus theorem, we have that Un = KPn for some π-subgroup Pn

of G. Then Ui = K(Ui ∩ Pn), and therefore the chain 1 = U0 ∩ Pn < . . . < Pn maps
to C.
If chains C : P0 < . . . < Pn and D : Q0 < . . . < Qn are conjugate in G, then C and

D are obviously conjugate in G. Suppose conversely that C and D are G-conjugate.
Without loss of generality, we may assume that PiK = QiK for i = 0, . . . , n. Again
by the Schur–Zassenhaus theorem (this time relying on the Feit–Thompson theorem),
Pn is conjugate to Qn by some x ∈ K. We still have P x

i K = QiK for i = 0, . . . , n.
Since P x

i , Qi ≤ Qn it follows that P x
i = Qi for i = 0, . . . , n. Hence, C and D are

G-conjugate. This proves (a).
Suppose that P1 < P2 are π-subgroups of G. We claim that

NG(P1)K ∩NG(P2)K = (NG(P1) ∩NG(P2))K.

If x ∈ NG(P1)K ∩ NG(P2)K, then P x
2 = P k

2 for some k ∈ K. Therefore xk−1 ∈
NG(P2) ∩ NG(P1)K. Since P1K ∩ P2 = P1, we have that xk−1 ∈ NG(P1), and
therefore x ∈ (NG(P1) ∩NG(P2))K. This proves the claim.

Suppose now that C : P0 < . . . < Pn is a chain of π-subgroups of G. By the Frattini
argument, NG(Pi) = NG(Pi) and therefore GC = GC , using the last paragraph.
Regarding the action of G on C(G) we also have GC/K = GC .

Finally, we prove (c). The G-orbit of C has size |G : GC |, while the G-orbit of C
has size |G : GC | = |G : GC |. Let C1, . . . , Ck be representatives for C(G)/G, so that
C1, . . . , Ck are representatives for C(G)/G . Then

∑
C∈C(G)

(−1)|C||GC |f(GCK) = |G|
k∑

i=1

(−1)|Ci|f(GCi
K) =

∑
C∈C(G)

(−1)C |GC |f(GC). □

The deep part of our results comes from the “above Glauberman–Isaacs corre-
spondence” theory. If A is a solvable finite group, acting coprimely on G, recall that
Glauberman discovered a natural bijection ∗ from IrrA(G), the set of A-invariant irre-
ducible characters of G, and Irr(CG(A)), the irreducible characters of the fixed-point
subgroup. The case where A is a p-group is fundamental in the local/global counting
conjectures. If A is not solvable, an important case in this paper, then G has odd
order by the Feit-Thompson theorem. In this case, Isaacs [I] proved that there is
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also a natural bijection IrrA(G) → Irr(CG(A)). T. R. Wolf [Wo] proved that both
correspondences agree in the intersection of their hypotheses.

Theorem 2.3. Let G be a finite group with a normal π′-subgroup K. Let C ∈
C(G) with last subgroup PC = P|C|. Let τ ∈ Irr(K) be PC-invariant, and let τ ∗ ∈
Irr(CK(PC)) be its Glauberman–Isaacs correspondent. Then

kd(GCK|τ) = kd(GC |τ ∗)
for every integer d.

Proof. Let U = K(PCGC). Notice that GC ∩K = CK(PC). Also, KPC ◁ U . Thus
U = KNU(PC), by the Frattini argument and the Schur–Zassenhaus theorem. Also,

NU(PC) = NG(PC) ∩ (PCGC)K = (PCGC)NK(PC) = PCGCCK(PC).

Since GC normalizes PC , we have that GC commutes with the PC-Glauberman–Isaacs
correspondence. In particular,

(GC)τ∗ = (GC)τ .

Hence, by using the Clifford correspondence, we may assume that τ is GC-invariant
(and therefore U -invariant) and that τ ∗ is GC-invariant too.

Now, we claim that the character triples (U,K, τ) and (NU(PC),CK(PC), τ
∗) are

isomorphic. If PC is solvable, this is a well-known fact which follows from the Dade–
Puig theory. (A comprehensive proof is given in [T08].) If PC is not solvable, then
|K| is odd, by the Feit–Thompson theorem. Then the claim follows from the theory
developed by Isaacs in [I]. (A proof is given in the last paragraphs of [L].)

Since the character triples (U,K, τ) and (NU(PC),CK(PC), τ
∗) are isomorphic, it

follows from the definition that the sub-triples (GCK,K, τ) and (GC ,CK(PC), τ
∗) are

isomorphic too. This yields a bijection Irr(GCK|τ) → Irr(GC |τ ∗), χ 7→ χ∗ such that
χ(1)/τ(1) = χ∗(1)/τ ∗(1) (see [N, p. 87]). In particular, kd(GCK|τ) = kd(GC |τ ∗) (if
dπ ̸= d, both numbers are 0). □

Theorem A is the special case N = 1 of the following projective version.

Theorem 2.4. Let G be a π-separable group with a normal π′-subgroup N . Let
θ ∈ Irr(N) be G-invariant and d > 1. Then∑

C∈C(G)

(−1)|C||GC |kd(GCN |θ) = 0.

Proof. We may assume that dπ = d. We argue by induction on |G : N |. Let
G = G/N . By Lemma 2.2, we may sum over C ∈ C(G) by replacing GC with
GC . Recall that a character triple isomorphism (G,N, θ) → (G∗, N∗, θ∗) induces an
isomorphism G ∼= G∗/N∗ and a bijection Irr(G|θ) → Irr(G∗|θ∗), χ 7→ χ∗ such that
χ(1)/θ(1) = χ∗(1)/θ∗(1). Thus, kd(GC |θ) = kd(G

∗
C

∗ |θ∗) and the numbers |GC |, |G∗
C

∗|
differ only by a factor independent of C. This allows us to replace N by N∗. Using
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[N, Corollary 5.9], we assume that N is a central π′-subgroup in the following. Now
using Lemma 2.2 in the opposite direction, we sum over C ∈ C(G) again and note
that N ⊆ GC . Thus, it suffices to show that∑

C∈C(G)

(−1)|C||GC |kd(GC |θ) = 0.

By Lemma 2.1, we may assume that Oπ(G) = 1. Let K = Oπ′(G). If K = N ,
then N = G by the Hall–Higman 1.2.3 lemma. In this case, the theorem is correct
because d > 1. So we may assume that K > N . Let PC be the last member of
C ∈ C(G). Observe that GC ∩ K = CK(PC). Each ψ ∈ Irr(GC |θ) lies over some
µ ∈ Irr(CK(PC)|θ). But ψ lies also over µg for every g ∈ GC . Therefore,∑

C∈C(G)

(−1)|C||GC ||kd(GC |θ) =
∑

C∈C(G)

(−1)|C||GC |
( ∑
µ∈Irr(CK(PC)|θ)

kd(GC |µ)
|GC : GC,µ|

)
where GC,µ = GC ∩ Gµ. According to Theorem 2.3, we replace Irr(CK(PC)|θ) by
IrrPC

(K|θ) and kd(GC |µ) by kd(GCK|µ). By the Clifford correspondence, kd(GCK|µ) =
kd(GC,µK|µ). Moreover, µ ∈ IrrPC

(K|θ) implies PC ≤ Gµ. Thus, for a fixed µ we
only need to consider chains in Gµ. Hence,∑

C∈C(G)

(−1)|C||GC ||kd(GC |θ) =
∑

µ∈Irr(K|θ)

( ∑
C∈C(Gµ)

(−1)|C||GC,µ|kd(GC,µK|µ)
)
.

Since |Gµ : K| < |G : N |, the inner sum vanishes for every µ by induction. Hence,
we are done. □

Finally, we come to our second result.

Proof of Corollary B. Let C : P0 < . . . < Pn in C(G) such that n > 0. Then P1�GC .
Let χ ∈ Irr(GC) and θ ∈ Irr(P1) under χ. By Clifford theory, χ(1)/θ(1) divides
|GC/P1| (see [N, Theorem 5.12]). Since θ(1) < |P1|, it follows that χ(1)π < |GC |π
and k1(GC) = 0. Summing over d ≥ 1 in Theorem A yields∑

C∈C(G)

(−1)|C| |GC |
|G|

k(GC) = k1(G).

The second equality follows from a straight-forward generalization of the Knörr–
Robinson argument. In fact, the proofs of [N, 9.18–9.23] go through word by word
(replacing p by π, of course). □

Given the proof above, we take the opportunity to point out that a theorem of
Webb [We] (see also [N, Corollary 9.20]) remains true in the π-setting:
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Theorem 2.5. Let G be an arbitrary finite group, and let π be a set of primes. Then
the generalized character ∑

C∈C(G)

(−1)|C||GC |(1GC
)G

vanishes on all elements of G whose order is divisible by a prime in π.

It is interesting to speculate on variations of Theorem A, that is projective versions
of Dade’s conjecture, that might be even true for arbitrary normal subgroups of
any finite group G, whenever π = {p}. We have not attempted a block version of
Theorem A. Although π-block theory is well-developed in π-separable groups (see
[Sl], for instance), Brauer’s block induction does not behave well if Hall π-subgroups
are not nilpotent.

Computations with chains are almost impossible to do by hand. The results of this
paper would not have been discovered without the help of [GAP].
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