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Abstract. We give two ways to distinguish from the character table of a finite
group G if a Sylow 2-subgroup of G has maximal class. We also characterize finite
groups with Sylow 3-subgroups of order 3 in terms of their principal 3-block.

1. Introduction

Dihedral, semi-dihedral and generalized quaternion 2-groups play an essential role
in finite group theory. They have been characterized in many ways:

• as the 2-groups of maximal class,
• as the non-abelian 2-groups whose commutator subgroup has index 4 (O.

Taussky-Todd),
• as the non-cyclic 2-groups whose number of involutions is 1 modulo 4 (Alperin-

Feit-Thompson),
• as the 2-groups with five rational-valued irreducible characters ([INS]),
• as the non-abelian 2-groups whose group algebra over an infinite field of char-

acteristic 2 has tame representation type.

The representation theory of the groups with a Sylow 2-subgroup of maximal class
is a classical theme that has been extensively studied by R. Brauer, G. Glauberman,
K. Erdmann, among many others. Here, we wish to go into the other direction: from
the character table of a finite group G, how do we distinguish if G possesses a Sylow
2-subgroup of maximal class? We provide with two ways to show that.

Theorem A. Let G be a finite group, and let P ∈ Syl2(G). Then the following
conditions are equivalent.

(a) |P/P ′| = 4.
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(b) Either |P | = 4, or there exists g ∈ P such that |G : CG(g)| is even and

Q(χ(g) : χ ∈ Irr(G)) = Q(ζ ± ζ−1)
where ζ ∈ C is a primitive |P |/2-th root of unity.

(c) The principal 2-block B has exactly four irreducible complex characters of odd
degree.

The equivalence of (a) and (b) in Theorem A is quite elementary and will be shown
in Section 2. On the other hand, we make use of the classification of finite simple
groups to show that (c) implies (a). This is a particular case of the Alperin-McKay
conjecture. Unfortunately, despite the recent success [MS] in proving the McKay
conjecture for p = 2, it seems that there is still a long way to reach the Alperin-
McKay conjecture for p = 2. For instance, we are not able to prove that if B is an
arbitrary block of a finite group with exactly four height zero characters then the
defect group of B is of maximal class.

Of course, we are not only interested in p = 2. Brauer asked in [Br] what properties
of the Sylow p-subgroup of a finite group G can be detected in its character table
X(G). After giving a method in [NT2, NST] to check from X(G) if a Sylow p-
subgroup P of G is abelian, it is natural to concentrate on the group P/P ′ now. For
instance, does X(G) know if |P/P ′| = p2? Again, for p = 3, the following is a not so
well-known consequence of the Alperin-McKay conjecture.

Conjecture B. Let G be a finite group, let B be the principal 3-block of G, and let
P ∈ Syl3(G). Then |P/P ′| = 9 if and only if B has either 6 or 9 irreducible complex
characters of degree not divisible by 3.

Before even attempting to prove Conjecture B, one needs first to establish the
apparently innocent Theorem C below, which has remained unproven until now.
Indeed, the proof of Theorem C is highly non-trivial.

Theorem C. Let G be a finite group and let B be the principal 3-block of G. Then
B has exactly three irreducible characters of degree not divisible by 3 if and only if
|G| is divisible by 3 but not by 9.

Even with Theorem C at our disposal, it remains a challenge for us to prove
Conjecture B, and new ideas are welcome. Despite the fact that the Alperin-McKay
conjecture was reduced to a question on finite simple groups by B. Späth in [Spa2],
we notice that the hypotheses of Conjecture B (or of Theorem A) are not inherited
by normal subgroups. Our hope is that, as Brauer did in the case |P/P ′| = 4, the
small cases can be handled by different techniques which might have interest on their
own.

For primes p ≥ 5, we have not yet found a way to characterize when |P/P ′| = p2

from the character table of G.
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2. Proofs

We denote the n-th cyclotomic field by Qn. For a finite group G and g ∈ G let
Q(g) := Q

(
χ(g) : χ ∈ Irr(G)

)
⊆ Q|〈g〉|. The following proves the equivalence of (a)

and (b) in Theorem A:

Proposition 2.1. Let G be a finite group with Sylow 2-subgroup P of order 2n ≥ 8.
Then |P/P ′| = 4 if and only if there exists a g ∈ P such that |G : CG(g)| is even and
Q(g) = Q(ζ ± ζ−1) where ζ ∈ C is a primitive 2n−1-th root of unity.

Proof. Assume first that n = 3. Then |P/P ′| = 4 if and only if P is non-abelian.
This happens if and only if there exists a g ∈ P such that |G : CG(g)| is even (this
is an elementary case of a well-known general result by Camina and Herzog). In this
case, the condition Q(g) = Q(ζ ± ζ−1) is always fulfilled, since Q(ζ ± ζ−1) is either
Q or Q(i). Therefore, we may assume in the following that n ≥ 4.

Recall that |P/P ′| = 4 if and only if there exists some g ∈ P of order 2n−1 such

that g is conjugate to g−1 or to g−1+2n−2
in P . Assume first that such an element

exists. Then |G : CG(g)| is even and Q(g) has index 2 in Q2n−1 by [N2, Theorem 4].
Moreover, Q(g) is contained in the fixed field of the Galois automorphism sending ζ
to ±ζ−1. This shows Q(g) = Q(ζ ± ζ−1).

Assume conversely that Q(g) = Q(ζ ± ζ−1) is fulfilled for some g ∈ P . Then the
Galois group of Q(g) over Q is cyclic of order 2n−3. Since n ≥ 4, it is easy to see that
Q(g) is not a cyclotomic field. Hence, g has order at least 2n−1. Suppose that P does
not have maximal class. Then P is isomorphic either to C2n , to C2n−1 ×C2, or to the
modular group M2n (which is the group 〈r, s | r2n−1

= s2 = 1, rs = r2
n−2+1〉). It follows

from Wong [W] that G has a normal 2-complement. This yields the contradiction
Q2n−2 ⊆ Q(g). �

If B is a p-block, then Irrp′(B) denotes the set of irreducible characters in B of
degree not divisible by p. In general, our notation for blocks follows [N1]. If G is a
finite group, B0(G) denotes the principal block of G.

In order to prove the equivalence of (a) and (c) in Theorem A, we start with the
following elementary result which even holds for non-principal blocks (see [L]).

Lemma 2.2. Let G be a finite group, let p be a prime, and let B = B0(G).

(i) Assume that p = 2. If 4 divides |G|, then 4 divides |Irr2′(B)|.
(ii) Assume that p = 3. If 3 divides |G|, then 3 divides |Irr3′(B)|.

Proof. For the convenience of the reader we provide a proof which is slightly easier
than the one given in [L]. Let P ∈ Sylp(G). By the weak block orthogonality
Corollary 3.7 of [N1], we have that

∑
χ∈Irr(B) χ(1)χ(x) = 0 for every p-singular x ∈ G.
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In particular, ∑
χ∈Irr(B)

χ(1)χP = fρP ,

where f ∈ N and ρP is the regular character of P . Suppose that Irrp′(B) =
{χ1, . . . , χk} have degrees χi(1) = bi and that p divides |G|. If p = 2 and 4 di-
vides |G|, we obtain

k ≡ b21 + · · ·+ b2k ≡
∑

χ∈Irr(B)

χ(1)2 = fρP (1) ≡ 0 (mod 4).

Similarly, if p = 3, we have

k ≡ b21 + · · ·+ b2k ≡ 0 (mod 3). �

Let us point out that Lemma 2.2(b) is not longer true for p = 5. In fact, the
dihedral group G = D10 is already a counterexample.

We will need the following theorem on simple groups whose proof is deferred until
the next section.

Theorem 2.3. Suppose that S is a finite non-abelian simple group. Then the follow-
ing statements hold.

(i) Suppose S�G ≤ Aut(S) and |G/S| ≤ 2. If |Irr2′(B0(G))| = 4, then |P/P ′| = 4
for P ∈ Syl2(G).

(ii) At least one of the following two conditions holds for S.
(a) Each θ ∈ Irr2′(S) belongs to the principal 2-block B0(S) of S.
(b) Irr2′(B0(S)) contains at least three characters that are each Aut(S)-invariant.

We will take advantage of [MS] to take care of many almost simple groups, partic-
ularly the ones with self-normalizing Sylow 2-subgroups, even though our techniques
can also handle them directly:

Proposition 2.4. Let G be a finite group such that |Irr2′(G)| = 4. Then |P/P ′| = 4.

Proof. By the main result of [MS] we have

| Irr2′(NG(P ))| = | Irr2′(G)| = 4.

It is well-known that the finite groups with 4 conjugacy classes are C4, C2 × C2, A4

and D10. (This was already known to Burnside, see Note A in [B].) Hence NG(P )/P ′

is one of these four groups, and has a normal Sylow 2-subgroup. Thus we discard
D10, and P/P ′ has order 4. �

Now we are ready to prove Theorem A which we restate for the reader’s conve-
nience.
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Theorem 2.5. Let G be a finite group, let B be the principal 2-block of G, and let
P ∈ Syl2(G). Then |P/P ′| = 4 if and only if B has exactly four irreducible characters
of odd degree.

Proof. If |P/P ′| = 4, then it is well known that B has exactly four irreducible char-
acters of odd degree, by celebrated work of R. Brauer and G. Glauberman.

For the converse, we argue by induction on |G|. We may assume that G is not a 2-
group, and by Theorem 2.3 that G is not simple. Since O2′(G) ⊆ ker(B) by Theorem
6.10 of [N1], we may assume that O2′(G) = 1. In particular, we may assume that 4
divides |G| (for otherwise, G = P ).

Let 1 < N be a normal subgroup of G and recall that B0(G/N) ⊆ B0(G) =
B. Assume that 4 divides |G/N |. Therefore, using Lemma 2.2, we have that
Irr2′(B0(G/N)) = Irr2′(B). Now, let γ ∈ Irr(B0(PN)) of odd degree. Now, γN =
θ ∈ Irr(N) is in the principal block of N (using Corollary 11.29 of [I], and Theorem
9.2 of [N1]). By Lemma 4.3 of [Mu], there exists χ in the principal block of G of
odd-degree over θ. Thus θ = 1 and γ is linear. By Corollary 3 of [IS], we have that
NP has a normal 2-complement, and therefore so does N . Thus N is a 2-group (since
O2′(G) = 1) and N ≤ P ′ (since N is in the kernel of every linear character of P ). In
this case, we are done by induction.

Hence, we may assume that if 1 < N is a normal subgroup of G, then G/N has odd
order or |G/N |2 = 2. In particular, we have that G/N has a normal 2-complement.
Since G does not have a normal 2-complement, we deduce that G has a unique
minimal normal subgroup N , which is proper in G (since we are assuming that G is
not simple) and that G/N has a Sylow 2-subgroup PN/N of order at most 2.

Again by Corollary 3 of [IS], let θ ∈ Irr(B) be non-linear of odd degree.
Suppose that G has a normal subgroup L such that G/L has prime odd order. If

G = LCG(P ), then by Lemma 1 of [A], we have that restriction defines a bijection
Irr(B) → Irr(B0(L)), and then we are done by hypothesis. Hence, we may assume
that CG(P ) ≤ L. Then, by Lemma 3.1 of [NT1], it follows that Irr(G/L) ⊆ Irr(B).
Hence, we have that G/L has order 3, and thus Irr2′(B) = {1, λ, λ̄, θ}, where λ ∈
Irr(G/L) has order 3. Now, let τ ∈ Irr(B0(L)) be non-trivial of odd-degree (by
Lemma 2.2), and let ψ ∈ Irr(B) be over τ (by Theorem 9.4 of [N1]). Since G/L has
odd order, ψ(1) is odd, and therefore ψ = θ. Since θL has at most three irreducible
constituents, using Lemma 2.2 we see that L satisfies the hypothesis. Hence, we may
assume that O2′(G) = G.

Now we have that PN/N has order 2, and let K/N be a normal 2-complement of
G/N . Let λ be the non-trivial character of G/K. Then Irr2′(B0(G)) = {1, λ, θ, λθ},
by using Gallagher’s Corollary 6.17 of [I]. Let C/N = NK/N(PN/N). Now, by
the relative Glauberman correspondence (Theorem E of [NTV]), there is a natural
bijection ∗ : IrrP (K) → IrrP (C), where IrrP (K) denotes the P -invariant irreducible
characters in K. Also, χ∗ is an irreducible constituent of χC , and if χ ∈ IrrP (K) has
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odd-degree, then χ is in B0(K) if and only if χ∗ is in B0(C). Since χ∗ is an irreducible
constituent of χC and K/N has odd order, it follows that χ has odd degree if and
only if χ∗ has odd degree. Since G/K has order 2, notice that every P -invariant
τ ∈ Irr(B0(K)) extends to some character of G which necessarily lies in the principal
2-block of G (because G/K is a 2-group, using Corollary 9.6 of [N1]). It follows that
K has exactly two irreducible P -invariant characters of odd degree in B0(K) which
are 1 and θK . Hence C has exactly two irreducible P -invariant characters of odd
degree in B0(C) which are 1 and η = (θK)∗. Since C has index 2 in NG(P )N , we
conclude that NG(P )N satisfies the hypothesis of the theorem. If NG(P )N < G, then
the theorem follows by induction. So we may assume that PN / G. Since G/PN has
odd order, we conclude that G/N has order 2; in particular, B is the only block that
covers the principal 2-block B0(N) of N . Also, we have that CG(N) = 1. (Notice
that N is non-abelian, since otherwise G would be a 2-group, using that O2′(G) = 1
and that G/N has order 2.) Assume that N is not simple. Then N = Sn, where S is
a non-abelian simple group. Now we apply Theorem 2.3(ii) to S. In the case of (a),
every χ ∈ Irr2′(G) lies above some ρ ∈ B0(N) and so belongs to B. Hence we are
done by Proposition 2.4. Next we consider the case of (b) and let θ1,2,3 ∈ Irr2′(B0(S))
be three distinct characters that are Aut(S)-extendible. It is then easy to see

γi = θi ⊗ θi ⊗ . . .⊗ θi ∈ Irr2′(B0(N))

is G-invariant, and so extends to G (in two different ways) for each i = 1, 2, 3. As B is
the only block that covers B0(N), we see that B0(G) contains at least six odd-degree
characters, a contradiction.

Now we may assume that N is simple, and apply Theorem 2.3(i) to G to complete
the proof. �

3. Odd-degree characters of almost simple groups

In this section we will prove Theorem 2.3. We begin with the following simple
observation:

Lemma 3.1. Let G be a finite group and let χ ∈ Irr(G) be a real-valued character of
odd degree. Then χ belongs to B0(G).

Proof. Consider any irreducible constituent ϕ of the restriction χ◦ of χ to 2′-elements
of G. If ϕ 6= ϕ̄, then ϕ̄ is also a constituent of χ◦. On the other hand, if ϕ = ϕ̄ 6= 1G,
then 2|ϕ(1) by Fong’s theorem. Since 2 - χ(1), 1G must be a constituent of χ◦. In
particular, χ ∈ B0(G). �

Proposition 3.2. Theorem 2.3 holds true if at least one of the following conditions
is satisfied:

(i) S has self-normalizing Sylow 2-subgroups.
(ii) S is a simple group of Lie type in characteristic 2.
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Proof. First we consider the case of (i): NS(Q) = Q for Q ∈ Syl2(S). In this case,
B0(S) is the only 2-block of maximal defect of G, see e.g. [NT1, Lemma 3.1], whence
the conclusion (a) of Theorem 2.3(ii) holds for S. Since |G/S| ≤ 2, we see that
P ∈ Syl2(G) is also self-normalizing, and again B0(G) is the only 2-block of maximal
defect of G. Now we can apply Proposition 2.4 to G.

Assume now that (ii) holds. By the main result of [Hu], all characters of positive
defect of S lie in B0(S), including all of odd degree. Since |G/S| ≤ 2, B0(G) is the
only 2-block of G that covers B0(S), see e.g. [NTV, Lemma 5.1]. It follows that
Irr2′(G) = Irr2′(B0(G)). Now we can again apply Proposition 2.4 to G. �

In what follows, we use the notation PSLεn(q) to denote PSLn(q) if ε = + and
PSUn(q) if ε = −. Similarly, Eε

6(q) denotes the simple group E6(q) if ε = + and the
simple group 2E6(q) if ε = −.

Proposition 3.3. Theorem 2.3 holds true if S = PSLεn(q) with ε = ±, n ≥ 3, and
2 - q.

Proof. (i) We aim to show that in the cases under consideration | Irr2′(B0(G))| > 4,
unless G = S = PSLε3(q) with 4|(q + ε). Note that unipotent characters of simple
classical groups are uniquely determined by their multiplicities in the Deligne-Lusztig
characters and hence in particular they are rational-valued. Furthermore, unipotent
characters of S extend to Aut(S) ≥ G by [M, Theorems 2.4, 2.5]. Hence, by Lemma
3.1, it suffices to find 3 odd-degree unipotent characters of S in the case |G/S| = 2,
and 5 odd-degree unipotent characters of S in the case G = S. We can view S as
L/Z(L) for L := SLεn(q).

Consider the 2-adic decomposition of n:

n = 2n1 + 2n2 + . . .+ 2nr , n1 > n2 > . . . > nr ≥ 0.

By [GKNT, Theorem 4.3], there are exactly N(n) := 2n1+n2+...+nr partitions λ ` n
such that the corresponding irreducible character Sλ of Sn has odd degree. Arguing
as in the proof of [NT3, Lemma 4.4] and using the hook formula [FS, (1.15)], one can
show that χλ(1) ≡ Sλ(1)(mod 2), if χλ is the unipotent character of S labeled by λ.
In particular, if n ≥ 6, then N(n) ≥ 8 and S has at least 8 odd-degree unipotent
characters. On the other hand, if r = 1, i.e. n is a 2-power, then Q ∈ Syl2(S) is
self-normalizing by [Ko, Corollary] and so we are done by Proposition 3.2(i).

(ii) It remains to consider the case n = 3, 5. Fix ξ ∈ F×q of order q − ε and ξ̃ ∈ C×

also of order q − ε. Also, let V = Fnq denote natural module for L. If ε = +, then L
has q − 1 irreducible Weil characters

(3.1) ζ in,q(g) =
1

q − 1

q−2∑
k=0

ξ̃ikqdimKer(g−ξk·1V ) − 2δ0,i, 0 ≤ i ≤ q − 2
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for g ∈ L, see [TZ, T]. Likewise, if ε = −, then L has q+1 irreducible Weil characters

(3.2) ζ in,q(g) =
(−1)n

q + 1

q∑
k=0

ξ̃ik(−q)dimKer(g−ξk·1V ), 0 ≤ i ≤ q.

In particular, if we let (q−ε)2′ denote the 2′-part of q−ε and choose i to be divisible by
(q− ε)2′ , then ζ in,q is trivial at Z(L) and so can be viewed as an irreducible character
of S.

Assume now that n = 5. As N(5) = 4, S has 4 odd-degree unipotent characters.

In particular, we are done if G > S. Next, the non-unipotent Weil character ζ
(q−ε)/2
5,q

of S has odd-degree (q5 − ε)/(q − ε) and it is real-valued (which can be seen using
(3.1)–(3.2)), so we are also done in the case G = S by Lemma 3.1.

(iii) Now we consider the case n = 3. It is shown in the proof of [DT, Theorem
7.2] that

ζ in,q(g) = ζ0n,q(g) + 1

for all 2′-elements g ∈ L, provided that 0 < i = j(q − ε)2′ < q − ε; in particular,

ζ in,q ∈ B0(S) for such i. It is easy to check that ζ
(q−ε)/2
3,q (of degree (q3 − ε)/(q − ε)) is

Aut(S)-invariant, as well as the principal character 1S and the Steinberg character
St of S. Thus if G > S, then G has at least 6 odd-degree characters in its principal
2-block.

We may now assume that G = S. If 4|(q − ε), then B0(S) contains at least 5

odd-degree characters: 1S, St, and ζ
j(q−ε)/4
3,q , j = 1, 2, 3. Finally, assume that 4|(q+ε).

Then P ∈ Syl2(S) can be viewed as a Sylow 2-subgroup of GLε2(q), and it was checked
in part (a) of the proof of [GKNT, Lemma 5.1] that |P/P ′| = 4. �

Proposition 3.4. Theorem 2.3 holds true if S = PSp2n(q) with n ≥ 2 and 2 - q.
Proof. We view S = L/Z(L), with L = Sp2n(q). As mentioned in the proof of
Proposition 3.3, unipotent characters of S and L are rational-valued; furthermore, as
2 - q, they are Aut(S)-invariant by [M, Theorem 2.5]. First we exhibit 4 odd-degree
unipotent characters of S. Two of them are the principal character and the Steinberg
character. Next, consider 4 unipotent characters: α1,2 and β1,2, where

α1(1) =
(qn + 1)(qn + q)

2(q + 1)
, α2(1) =

(qn − 1)(qn − q)
2(q + 1)

,

β1(1) =
(qn − 1)(qn + q)

2(q − 1)
, β2(1) =

(qn + 1)(qn − q)
2(q − 1)

.

As α1(1) − α2(1) = qn, exactly one of α1,2 has odd degree. Likewise, exactly one of
β1,2 has odd degree. So we are done if G > S. In the case G = S, it is well known, see
eg. [TZ], that L has two pairs of irreducible Weil characters: ξ1,2 of degree (qn+1)/2,
and η1,2 of degree (qn − 1)/2, and

ξ1(g) = η1(g) + 1, ξ2(g) = η2(g) + 1
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for all 2′-elements g ∈ L. It follows that the two odd-degree characters among these
four characters can be viewed as irreducible characters of S and then belong to
B0(S). �

Proof of Theorem 2.3. By Proposition 3.2 we may assume that Q ∈ Syl2(S) is not
self-normalizing and furthermore S is not a group of Lie type in characteristic 2.
Moreover, if S = PSLεn(q) with n ≥ 3 and 2 - q, or if S = PSp2n(q) with n ≥ 2 and
2 - q, then we are done by Propositions 3.3 and 3.4. Hence, by [Ko, Corollary], it
remains to consider the following cases.

(a) S = Eε
6(q) with ε = ± and 2 - q.

Let φm denote the mth cyclotomic polynomial in q. Using [C, §13.9] we will exhibit
6 odd degrees each of which is the degree of exactly one unipotent character (and so
it is Aut(S)-invariant and rational-valued, since Aut(S) and Gal(Q/Q) preserve the
set of unipotent characters):
• ε = +: 1, q36, q6φ3

3φ
2
6φ9φ12, q

10φ3
3φ

2
6φ9φ12,

1
2
q3φ5φ

2
6φ8φ9,

1
2
q3φ5φ8φ9φ12

• ε = −: 1, q36, q6φ2
3φ

3
6φ12φ18, q

10φ2
3φ

3
6φ12φ18,

1
2
q3φ2

3φ8φ10φ18,
1
2
q3φ8φ10φ12φ18

(b) S = 2G2(q) with q = 32a+1 ≥ 27.
Here, since |Out(S)| = 2a+ 1, we have G = S. As shown in [F], B0(S) contains 8

odd-degree characters, all being Aut(S)-invariant.

(c) S = PSL2(q) with 5 ≤ q ≡ ±3(mod 8).
Here, Q ∼= C2

2 and all (four) odd-degree irreducible characters of S belong to B0(S).
Finally, if G > S, then G ∼= PGL2(q) and P ∼= D8.

(d) S = J1, J2, J3, Suz, or HN .
These five cases can be checked directly using the available decomposition matrices

[ModAt]. In all cases, | Irr2′(B0(G))| > 4 and moreover Irr2′(B0(S)) contains at least
three Aut(S)-invariant characters. �

4. Proof of Theorem C

Theorem 4.1. It suffices to prove Theorem C for non-abelian simple groups G.

Proof. Since the proof is quite similar to Theorem 2.5, we only sketch the argument.
Let P ∈ Syl3(G). We argue by induction on |G|. Arguing as in Theorem 2.5, we
may assume that O3′(G) = 1, and that if 1 < N is a normal subgroup of G, then
G/N has 3′-order. In particular, G has a unique minimal normal subgroup L of order
divisible by 3, and G/L is a 3′-group. Suppose that N / G has 3′-index with G/N
simple. Notice that NCG(P ) / G by the Frattini argument. If G = NCG(P ), then
we apply [A] to conclude that N satisfies the hypothesis. If CG(P ) ≤ N , then all the
irreducible characters of G/N lie in the principal block of G (and all of them have
3′-degree). Hence G/N has at most three conjugacy classes. Therefore G/N = C2,
since G/N is a 3′-group. Thus Irr3′(B) = {1, λ, θ}, where N ≤ ker(λ) and θ is
non-linear. Now, if 1 6= γ ∈ Irr3′(B0(N)) then γ should lie below θ, and therefore
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| Irr3′(B0(N))| ≤ 3, and we are done by induction. We conclude that O3′(G) = G.
Thus we have that G = L is a direct product of non-abelian simple groups. Since
|Irrp′(B)| = 3, necessarily G is simple. �

We will spend the rest of this section to prove Theorem C for simple groups G. In
what follows, we will omit the trivial check whether |G|3 = 3.

Lemma 4.2. Theorem C holds if G is a sporadic simple group or if G ∼= 2F4(2)′.

Proof. This is easily checked with [GAP]. �

Lemma 4.3. Theorem C holds in the case G = An with n ≥ 5. Furthermore,
| Irr3′(Sn)| ≥ 6 if n ≥ 5.

Proof. The cases 5 ≤ n ≤ 8 can be checked directly using [GAP], so we will assume
n ≥ 9. It now suffices to prove that B0(Sn) contains at least 8 characters of 3′-degree.
Let Pn ∈ Syl3(Sn). Since the Alperin-McKay conjecture holds for Sn [O], it suffices to
show that NSn(Pn) contains at least 9 characters of 3′-degree in its principal 3-block.

Write n 3-adically: n =
∑t

i=0 ai3
i with 0 ≤ ai ≤ 2 and at > 0. Since n ≥ 9, we

have that t ≥ 2. We can choose

P = Pn0 × Pn1 × . . .× Pnt ,

with Pni
∈ Syl3(Sni

) and ni := ai3
i. Then

NSn(P ) = NSn0
(Pn0)×NSn1

(Pn1)× . . .×NSnt
(Pnt),

and so it suffices to show thatB0(NSnt
(Pnt)) contains at least 9 characters of 3′-degree.

Applying the Alperin-McKay conjecture to Snt , it suffices to show that B0(Snt) con-
tains at least 9 characters of 3′-degree. Now observe that any hook λ ` nt = at3

t has
empty 3-core and so the irreducible character χλ labeled by λ belongs to B0(Snt);
also 3 - χλ(1). Thus | Irr3′(B0(Snt))| ≥ nt ≥ 9, and we are done. �

Henceforth we will assume that G is a non-abelian simple group, not isomorphic to
any of the groups considered in Lemmas 4.2, 4.3. Thus we can find a simple algebraic
group H of adjoint type, defined over a field of characteristic r > 0, and a Frobenius
endomorphism F : H → H, such that G ∼= [H,H], where H := HF . Let the pair
(H∗, F ∗) be dual to (H, F ) and let H∗ := H∗F ∗ . Also let StH denote the Steinberg
character of H.

Lemma 4.4. Theorem C holds in the case G is a simple group of Lie type in char-
acteristic r = 3.

Proof. According to [Hu], B0(G) = Irr(G) r {StG}, where StG denotes the Steinberg
character of G. Note that H/G is an abelian 3′-group and StG extends to StH .
It follows that every irreducible constituent of χG, where χ ∈ Irr3′(H), belongs to
Irr3′(B0(G)). Note that each α ∈ Irr(G) can lie under at most [H : G] characters
χ ∈ Irr(H). Hence, it suffices to show that H has more than 3[H : G] irreducible
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characters of 3′-degree. It is easy to check this assertion for G = 2G2(q
2) (with

q2 ≥ 27), so we will assume G 6∼= 2G2(q
2).

Recall [C, §8.4] that every semisimple class sH
∗

in H∗ yields a character χs ∈
Irr3′(H), and morever χs = χt implies that the two semisimple elements s and t are
conjugate in H∗. As H∗ is simply connected, the number of semisimple classes in
H∗ is ql, where l = rank(H) and q is the common absolute value of eigenvalues of F
acting on the character group X(T ) of an F -stable maximal torus T of H∗, cf. [C,
Theorem 3.7.6(ii)]. If l ≥ 3 or if l = 2 but q ≥ 9, then

ql > 3(q + 1) ≥ 3[G : H],

and we are done. In the remaining cases, that is where G = PSL2(q) with q ≥ 9 or
G ∈ {SL3(3), SU3(3),PSp4(3), G2(3)}, it is easy to verify Theorem C directly. �

From now on we may assume that r 6= 3. Recall an element g ∈ G is p-central if
p - |gG|. We will rely on the following construction:

Proposition 4.5. Let r 6= 3 and suppose the following two conditions hold for H:

(a) The Steinberg character StH of H belongs to B0(H);
(b) There exists a 3-central 3-element t ∈ H∗ r Z(H∗) such that CH∗(t) is not a

torus.

Then | Irr3′(B0(G))| ≥ 4.

Proof. First we construct 4 characters in Irr3′(B0(H)). Two of them are 1H and StH .
Next, we consider the semisimple character χt and the regular character χ∗t labeled
by the conjugacy class of t ∈ H∗. Since t is 3-central, but not central, χt(1) and
χ∗t (1) are coprime to 3, and

(4.1) χt(1) = χt(1)r′ = χ∗t (1)r′ = [H∗ : CH∗(t)]r′ > 1.

As H∗ is simply connected, CH∗(t) is connected. Since CH∗(t) is not a torus, it
follows that

(4.2) χ∗t (1)r = |CH∗(t)|r > 1.

Now, since Z(H) = 1, we can apply [H1, Corollary 3.4] to see that χt belongs to
B0(H). Similarly, [H1, Corollary 3.3] implies that χ∗t and StH belong to the same
block, and so χ∗t ∈ B0(H).

Recall that B0(H) covers only B0(G), and that StH restricts to StG. So we get at
least four characters in Irr3′(B0(G)): 1G, StG, and α lying below χt and β lying below
χ∗t . It remains to show that these four characters are pairwise distinct. Recall that
H/G is an abelian r′-group and StG extends to H. Hence any irreducible character
of H lying above 1G or StG has degree being an r-power. It follows by (4.1) that
α, β /∈ {1G, StG}. Next, χ∗t (1)/β(1) divides |H/G| and so r|β(1) by (4.2), whereas
α(1) divides χt(1) and so it is coprime to r by (4.1). Hence β 6= α. �

Next we show
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Proposition 4.6. Assume r 6= 3. Then StG ∈ B0(G) and StH ∈ B0(H).

Proof. (i) Note that the statements follow from the main result of [H2] if G is of type
2B2, G2,

3D4,
2F4, or F4, in which cases we also have G = H.

Next we note that the first statement implies the second. Indeed, it is well known
that StG extends to StH , and so

Irr(H|StG) = {StH · λ | λ ∈ Irr(H/G)}.

As B0(H) covers B0(G) 3 StG, by [N1, Theorem 9.4] at least one of these extensions
StH · λ belongs to B0(H). Let χs denote the semisimple character labeled by a
semisimple element s ∈ H∗ and E(H, (s)) denote the Lusztig series labeled by s. Since
StH ∈ E(H, (1)), we have that Irr(H/G) = {χz | z ∈ Z(H∗)} and StH ·χz ∈ E(H, (z))
by [DM, Proposition 13.30]. Moreover, if z is not a 3-element, then E(H, (z)) cannot
contain any character from B0(H) by the main result of [BM]. On the other hand,
if z is a 3-element, then StH and StH · χz have the same restriction to 3′-elements of
H. It follows that StH ∈ B0(H).

(ii) Now we prove that StG ∈ B0(G) for the remaining cases. We will view G as
GF/Z(GF ) for a suitable simple simply connected algebraic group G in characteristic
r and a Frobenius endomorphism F : G → G. Then StG can be viewed (by inflation)
as the Steinberg character of GF , and it suffices to show that StG ∈ B0(GF ). Let e
denote the order of q modulo 3, where GF is defined over Fq; in particular e ∈ {1, 2}.
As shown in the proof of [NTV, Proposition 5.4], see also the proof of [BLP, Theorem
4.2], if e is a regular number for (G, F ) in the sense of [Spr, §5] (equivalently, there is
a Sylow e-torus S such that CG(S) is a maximal torus, see Definition 2.5 and Remark
2.6 of [Spa1]), then StG ∈ B0(GF ).

All the regular numbers e greater than 1 are listed in [Spr, §§5, 6], showing in
particular that 2 is a regular number. Next we observe that 1 is also regular. Indeed,
let W denote the Weyl group of G and let (G, F ) correspond to the coset Wφ. We
need to show that some element h ∈ Wφ fixes a (nonzero) regular vector in V = Cl,
the defining module for W . In the split case, i.e. φ = 1V , we can certainly take
h = 1V . Consider the non-split case of 2E6. According to the line d = 2 of [Spr, Table
8], Wφ contains −1V , whence

(4.3) Wφ = {−1V g | g ∈ W}.

Next, the line d = 2 of [Spr, Table 1] shows that there is g ∈ W such that g(v) = −v
for some regular vector v ∈ V . Now taking h = −1V g ∈ W we have that h(v) = v
as stated. The same argument applies to the case of 2An, where we again have (4.3).
In the case of 2Dn, see [Spa1, Table 1]; alternatively, observe that G admits a Sylow
Φ1-torus S (so that |SF | = (q − 1)n−1) with CG(S) being a maximal torus.

Thus both 1 and 2 are regular numbers, and so we are done. �

Lemma 4.7. Theorem C holds in the case where G = Eε
6(q), ε = ±, and 3|(q − ε).
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Proof. In this case H/G ∼= C3. According to [Lu2], there is a semisimple element
s ∈ H∗ of order 3 such that |CH∗(s)| = | SLε3(q)|3. Using [H1, Corollary 3.4] as
in the proof of Proposition 4.5, we see that the semisimple character χs labeled by
s belongs to B0(H). We also view G = GF/Z(GF ) for a simple simply connected
algebraic group of type E6 and a Frobenius endomorphism F : G → G. Inspecting
the tables in [Lu1], one can check that GF has no irreducible character of degree χs(1)
and exactly three irreducible characters of degree χs(1)/3. It follows that G has no
irreducible character of degree χs(1) and three irreducible characters α1,2,3 of degree
χs(1)/3 with (χs)|G = α1 +α2 +α3. Now 1G, α1,2,3 ∈ B0(G), and 3 - αi(1), and so we
are done. �

Lemma 4.8. Theorem C holds in the case where G = PSLεn(q), 3 - q, ε = ±, n ≥ 2,
and furthermore 3|(q − ε) if n ≥ 4.

Proof. (i) Assume n = 2. Using the results in [Bu] one can check that

| Irr3′(B0(G))| = (|G|3 + 3)/2,

and so we are done in this case.
Next assume that n = 3 but 3|(q + ε). In this case G ∼= H ∼= H∗ ∼= SLε3(q) and

P ∈ Syl3(G) is cyclic of order 3a = (q+ ε)3. If ε = −, then [Ge, Theorem 4.1] implies
that | Irr3′(B0(G))| = (3a + 3)/2, and so we are again done. Consider the case ε = +.
By the main result of [BM], a character from the Lusztig series E(G, (s)) can belong
to B0(G) only when s ∈ H∗ is a 3-element. Moreover, if s ∈ H∗ is a 3-element,
then the semisimple character χs labeled by s belongs to B0(G) by [H1, Corollary
3.4]. Now if a ≥ 2, then we can choose s to be of order 3 or 9, leading to at least
4 characters in B0(G) (together with 1G and StG). If a = 1, then H∗ ∼= SL3(q) has
a unique conjugacy class of non-trivial 3-elements – any such element s is conjugate
over F3 to diag(1, ω, ω2) where ω ∈ F×q2 has order 3. Note that CH∗(s) ∼= GL1(q

2).

We have therefore shown that Irr3′(B0(G)) consists of exactly three characters: 1G,
StG, and χs (of degree q3 − 1).

(ii) We may now assume that n ≥ 3 and 3|(q − ε). By [CE, Theorem 13], all
irreducible characters in E(H, (t)) for any 3-element t ∈ H∗ belong to B0(H). In
particular, all unipotent characters of H belong to B0(H). Since they all restrict
irreducibly to G, the same arguments as in p. (i) of the proof of Proposition 4.6
show that their restrictions to G are pairwise distinct and all belong to B0(G). The
unipotent characters χλ of H are labeled by λ ` n. Let Sλ denote the irreducible
character of Sn labeled by the partition λ ` n. Since 3|(q−ε), it follows from the hook
formula for the degree of unipotent characters of G, see [FS, (1.15)] that 3 - χλ(1) if
and only if 3 - Sλ(1). Now if n ≥ 5, then | Irr3′(Sn)| ≥ 6 by Lemma 4.3, and so we
have shown that | Irr3′(B0(G))| ≥ 6.

Suppose now that n = 3. As mentioned above, the unipotent characters of G of
degree 1, q(q+ε), and q3 all belong to B0(G). If ε = −, then [Ge, Theorem 4.5] shows
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that Irr3′(B0(G)) also contains three characters of degree (q+ε)(q2+qε+1)/3. Assume
now that ε = + and again fix ω ∈ F×q2 of order 3. Then it follows from [KT, Theorem

1.1] that the irreducible character χ := S(1, (1))◦S(ω, (1))◦S(ω2, (1)) ∈ Irr(GL3(q))
splits into a sum of three irreducible characters α1,2,3 of SL3(q). We again have that
χ ∈ B0(GL3(q)), and 3 - αi(1) = (q + ε)(q2 + qε + 1)/3; in particular, αi is trivial at
Z(SL3(q)) ∼= C3. It follows that α1,2,3 ∈ Irr3′(B0(G)).

Finally, assume that n = 4. With ω chosen as above, consider t ∈ H∗ ∼= SLε4(q)
conjugate to diag(ω, ω, ω, 1) over F3. Note that CH∗(t) ∼= GLε3(q). It follows that t is
3-central, not central, and CH∗(t) is not a torus. Hence we are done by Proposition
4.5. �

Completion of the proof of Theorem C. (i) It remains to prove Theorem C for non-
abelian simple groups G, not isomorphic to any of the groups considered in Lemmas
4.2, 4.3, 4.4, 4.7, and 4.8. Then StG ∈ B0(G) by Proposition 4.6. By Proposition
4.5, it suffices to show that H∗ contains a 3-central t /∈ Z(H∗) of order 3 such that
CH∗(t) is not a torus. In all the remaining cases, 3 - |Z(H∗)|; hence t /∈ Z(H∗) for
any element t ∈ H∗ of order 3. We may also assume that G 6∼= 2B2(q).

First we consider exceptional groups of Lie type. Under the assumptions made on
G, one can check using [Lu2] that CH∗(v) is not a torus for any element v ∈ H∗ of
order 3. Hence we are done in this case by choosing t ∈ Z(P ) of order 3 for some
P ∈ Syl3(H

∗).

(ii) Now we handle the (remaining) simple classical groups. Suppose that G =
PSLεn(q) with n ≥ 4 and 3|(q + ε). Then H = PGLεn(q) and H∗ = SLεn(q). Set m :=
bn/2c and note that GLεn(q) ≥ GLε2m(q) contains a subgroup X ∼= GLm(q2). Since
H∗ = O3′(GLεn(q)), H∗ contains all 3-elements of X as well as [X,X] ∼= SLm(q2). In
particular, H∗ contains t ∈ Z(X) ∼= Cq2−1 of order 3. Furthermore, X contains a
Sylow 3-subgroup P of H∗. Hence P ≤ CH∗(t), i.e. t is 3-central. Finally, as m ≥ 2
and CH∗(t) ≥ [X,X], we conclude that CH∗(t) is not a torus.

Next assume that G = PSp2n(q) or Ω2n+1(q) with n ≥ 2. Then H∗ = Spin2n+1(q) or
Sp2n(q). Choose κ = ±1 such that 3|(q−κ), and observe that SO2n+1(q), respectively
Sp2n(q) contains a subgroup X ∼= GLκn(q). Arguing as above, we see that Y =
Ω2n+1(q), respectively Sp2n(q) contains a 3-central (in Y ) element t̄ ∈ Z(X) of order
3, and CY (t̄) ≥ SLκn(q). Since Y = H∗/Z for a central 2-subgroup Z, we can then
lift t̄ to a 3-central element t of order 3 with non-toral CH∗(t).

Finally, consider the case G = PΩε
2n(q) with ε = ± and n ≥ 4. Then H∗ =

Spinε2n(q). Again we choose κ = ±1 such that 3|(q − κ). We will define a certain
subgroup X of 3′-index in SOε

2n(q) with 3||Z(X)| as follows.

(a) Suppose ε = +. Then choose X ∼= GLn(q) < SO+
2n(q) if κ = +. When κ = −,

choose X ∼= GUn−1(q) < SO+
2n−2(q) < SO+

2n(q) if 2 - n, and X ∼= GUn(q) <
SO+

2n(q) if 2|n.
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(b) Suppose ε = −. Then choose X ∼= GLn−1(q) < SO+
2n−2(q) < SO−2n(q) if κ = +.

When κ = −, choose X ∼= GUn−1(q) < SO−2n−2(q) < SO−2n(q) if 2|n, and X ∼=
GUn(q) < SO−2n(q) for 2 - n.

Again arguing as above, we see that Y = Ωε
2n(q) contains a 3-central (in Y ) element

t̄ ∈ Z(X) of order 3, and CY (t̄) ≥ SLγm(q) for some γ = ± and some m ∈ {n, n− 1}.
Since Y = H∗/Z for a central 2-subgroup Z, we can again lift t̄ to a 3-central element
t of order 3 with non-toral CH∗(t), finishing the proof of Theorem C. �
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